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Direct Reactions 

•  Elastic scattering – (n, n),  (p, p),  (α ,α), ... 
•  Inelastic Scattering -- (n, n"),  (p, p"),  (α ,α"), ... 
•  Knockout – (n, 2n), (n, np), (p, pn), (p, 2p), ...  
•  Stripping – (d, p), (d, n), (t, d), ... 
•  Pickup – (p, d), (n, d), (d, t), ... 
•  Charge exchange – (n,p), (p,n), (t,3He), (3He, t), ... 
 
The optical model is particularly important for the study of 
the direct (fast) contribution to all the of these, in particular, 
to elastic and inelastic scattering --  on which we will 
concentrate our attention.    

However, it also plays an important role in the analysis of 
the statistical (slow) contribution to nuclear reactions.  



Conservation laws 

•  Charge and nucleon number, Z and A  --   56Fe (p, n) 56Co 
•  Energy, E – 238U(n,n ")238U* (Ex= 0.045 MeV) 
•  Linear momentum,     –  thresholds, recoil 
•  Angular momentum and parity,     and  π --   
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d dσ Ω

Conservation laws are important in determining the 
basic characteristics of nuclear reactions. 



Experimental Setup for Studying Scattering 
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• Distance from accelerator to target and from target to detector on the 
order of a meter or more. 

• Cross sectional area of beam A on the order of mm2. 

• Target thickness t on the order of µm or more. 

• Beam intensity – n0  (particles/s) – varies greatly, from about 105 to 
1013 particles/s 

• In target, atomic dimension on the order of 10-10 m and nuclear 
dimension on the order of 10-15 m. 



The Experimental Cross Section 
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( )( )0

particle intensity entering detector in solid angle  ( , )
(incident intensity/area) * (no. of target particles in beam) / tar

d n dd
n A tA

θ ϕ
σ

ρ
Ω Ω

= =

•  A – cross sectional area of beam 

•  n0 – incident beam intensity 

 

! ρtar – target particle density 

!  t – target thickness  

 •  n(θ,ϕ)dΩ -- particle intensity (part./s) entering detector of solid angle dΩ%

The differential cross section  d
d
σ
Ω

has the units of  area/solid angle. 



The Classical Cross Section 
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b – the impact parameter 

   -  perpendicular distance 

      between particle trajectory 

      and center of target 
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An example – Hard sphere scattering 
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For 238U, R ≈ 7.5 fm and 

    R2/4 ≈ 14 fm2/sr = 140 mb/sr. 



Another example – a sticky hard sphere 

Now, suppose that a fraction of the incoming particles do not scatter, but 
instead stick to the target. Let us assume, for instance, that the fraction 
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(which decreases as the collision becomes more grazing) is absorbed by 
the target.  
Decomposition of the differential 
cross section: 
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Only dσel/dθ  is observed as scattered particles.      In the figure, α = 0.4 



Integrated cross sections 
We can integrate the differential cross sections over angle to obtain 
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The total cross section of πR2 is what we would expect and what we 
would obtain in the simple hard sphere case. 

In the general case, when there is a value of the impact parameter 
bmax such that θ(b)=0 for b>bmax, we have 
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Attenuation and the total cross section 
Both elastic scattering and absorption remove particles from the incident 
beam. The sum of the two – the total cross section – determines how the 
beam is attenuated as it passes through the target. 
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From the definition of the cross 
section, we have in any dz 
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( )0( ) exp tar totn z n zρ σ= −

The inverse of the product ρtarσtot 
defines the mean free path λ of the 
projectile through the target. 

1 tar totλ ρ σ=

For our example of hard scattering 
from U-like spheres, assuming a 
density close to that of  U, we have  
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Laboratory and Center-of-mass Coordinates 
In order to properly treat the conservation of momentum and energy,  
scattering problems should be analyzed in the center-of-mass frame.  

The basic steps in the transformation to the center-of-mass frame and 
back to the lab one are shown below.  

mP, vPi mT mP, vP mT, vT 

mP +mT, vCM 

mP +mT, vCM 

mT, vT’ 

mP, vP’ mP, vPf 

mT, vTf 

to c.m. 
scattering in c.m. 

back to 
the lab 



Laboratory and Center-of-mass Coordinates - Basics  

The transformation of the scattering angle does not reduce to a simple 
expression. However, its numerical calculation is straightforward. 

Two fundamental quantities that result from the transformation are the 
reduced mass µ and the energy Ecm in the center-of-mass frame. In terms 
of the projectile and target masses, mP and mT and the projectile energy in 
the lab frame Elab, these are 

P T

P T

m m
m m

µ =
+

and T
cm lab

P T

mE E
m m

=
+

The relative momentum in the c.m. frame is T
cm lab

P T

mp p
m m

=
+

From this point on, we will assume that we are using the center-of-mass 
frame, unless otherwise noted. 



Yet another example – Coulomb scattering 
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with pr the radial momentum and r 
the radial coordinate and  
When b = 0, the point of 
closest approach a0 is given by 
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For arbitary b, the point of 
closest approach a satisfies 
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The orbit for repulsive Coulomb 
scattering forms a hyperbola 
satisfying 
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Substituting in the expression 
above, we obtain 
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Coulomb scattering – the differential cross section 

θ%

Target 

b 

φ%
φ%

a 

0 tan
2
ab φ=

Combining  
2θ π φ= − and 

we have 
0 cot .
2 2
ab θ" #= $ %

& '

The differential cross section is then 
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No integrated Coulomb cross section 

p + 238U 

Ecm=15 MeV 

as well as from the figure, that the 
Coulomb angular distribution 
diverges at small angles. 

It is obvious from its explicit form, 
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This expression may be 
integrated formally, 
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but is also divergent. 

The long range of the Coulomb 
potential is the physical reason for the 
divergences in the Coulomb angular 
distribution and cross section. There is 
no value of the impact parameter bmax 
for which scattering no longer occurs.  



Coulomb scattering from a charge distribution 
In scattering calculations, the nuclear 
charge distribution is usually taken as 
that of a uniformly charged sphere of 
radius Rc=1.25 A1/3 (fm).  
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Since the nuclear potential is short-
ranged, the scattering at large values 
of the impact parameter is Coulomb 
scattering.  

In the example given here, the 
scattering at angles below about 95° 
would be pure point-like Coulomb 
scattering. 

Coulomb Nuclear 



The Coulomb barrier for charged particles 
The Coulomb + nuclear potential forms a barrier to charged particles that 
reaches its maximum just outside the nucleus. Outside the barrier 
maximum, the potential is very similar to the Coulomb potential of  
pointlike particles. At relative energies below the Coulomb barrier or at 
distances of closest approach greater than the barrier position, the 
scattering is almost purely point-like Coulomb scattering.  

We can estimate the barrier 
position as 

1/ 31.25 2.0 (fm)BR A≈ +

and its height as  
2

(MeV).P T
B

B

Z Z eV
R

≈

The barrier height VB for 
protons is shown at the 
right. 



Waves and particles 
We know that the wave-like nature of the scattering particles may be neglected 
only if their wavelength is much smaller than the length scale on which the 
scattering system varies. For nuclear scattering, the appropriate length scale 
would be at most the size of the nucleus and should probably be of the size of 
the nuclear surface – about 0.5 to 1.0 fm. 

Comparing the wavelength of a nucleon to a typical nuclear radius, taken to be 
R = 1.25A1/3 (fm), we find that the wavelike nature must be taken into account 
over a wide range of energy. 

 



The quantum view of scattering 
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Far from the scattering center, 
we take the scattering wave 
function to be the sum of a 
plane wave and a scattered 
outgoing spherical wave,  

The differential cross section is the 
squared magnitude of the scattering 
amplitude, 

when r→  ∞. (                         ) 

z 



Back to the basics 

( )( )0

particle intensity entering detector of solid angle  ( )
(incident intensity/area) * (no. of target particles in beam) / tar
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We defined the differential cross section as  

How did we relate this with the asymptotic form of the wave function  

to obtain                                   ? 

• First, we assume that we have but one target nucleus,   

• Next, we note that n0/A is proportional to the plane wave current density,  

1.tartAρ =

since .ikz
in eψ =

• Finally, we write the particle intensity entering the detector in terms of the 
current density of scattered particles,  
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The partial-wave expansion 
Neglecting spin for the moment, we use conservation of angular momentum 
to expand the wave function in partial waves of the orbital angular 
momentum, 
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where each of the partial waves satisfies the Schrödinger equation 



More on the partial-wave expansion 
Outside the scattering region defined by the 
potential U(r), the wave function ψl(r) satisfies 
the same Schrödinger equation as the plane 
wave and must be a linear combination of the 
same incoming / outgoing waves   ( ) ( ),lh kr±

r 

scattering 
region 

( ) ( )lh kr−

( ) ( )l lS h kr+

( )( ) ( )( ) ( ) ( ) .
2l l l l
ir h kr S h krψ − +→ −

The incoming wave must be the same as that of the plane wave, so that the 
only difference with the plane wave is in the outgoing scattered wave. 
Substituting in the partial wave expansion, 
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Solving the scattering problem 
How do we obtain the asymptotic 
form of the wave function, 

( )( ) ( )( ) ( ) ( ) ?
2l l l l
ir h kr S h krψ − +→ −

rm 

ψin ψex 

First, we fix a radius rm , called the 
matching radius, that is beyond the 
range of the interaction. 
The wave function inside the 
matching radius, ψin , is determined 
numerically, up to a multiplicative 
factor. Outside the matching radius, 
the wave function has the asymptotic 
form, 

( )( ) ( )
, ( ) ( ) ( ) .

2l ex l l l
i

r h kr S h krψ − += −

This gives us two equation in two 
unknowns, Al and Sl , 

We require continuity of the wave 
function and its derivative at the 
matching radius. 

( )( ) ( )
, ( ) ( ) ( )

2l l in m l m l l m
iA r h kr S h krψ − += −

and the derivative equation. We solve 
these for each value of l, stopping 
when Sl is sufficiently close to one. 



Integrated cross sections 
We obtain the elastic cross section by integrating over the differential one, 
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We may calculate the absorption cross section by taking into account all of 
the flux entering and leaving the scattering region. Integrating the flux over 
a sphere whose radius tends to infinity, we have  
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The total cross section takes into account all flux lost from the incident 
plane wave, either by scattering or absorption, 
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The total cross section satisfies the optical theorem, 
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Low-energy neutron scattering – a simple example 
Because of the Coulomb barrier, only neutral particles can reach the 
nucleus in a low-energy scattering. At extremely low energies, the 
centripetal barrier keeps all but l=0, s-waves away from the nucleus.  
Let us re-examine hard-sphere scattering in the case of low-energy 
neutron scattering. 
Scattering from the hard sphere requires 
that the wave-function vanish at the 
radius of the sphere. The s-wave wave 
function is then 

2
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2
ikr ikR ikrir e e e
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The S-matrix element is  2
0 .ikRS e=

The elastic cross section is  
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When k→0, the elastic cross 
section tends to a constant, 

2
0 4 .el k Rσ π

→
$$$→

This is 4 times the classical 
cross section. 



Low-energy neutron scattering -- resonances 

Although the neutron-nucleus interaction is attractive, its rapid variation at 
the nuclear surface has the same effect on low energy neutrons as a hard-
sphere does– the neutrons are reflected.  Absorption also usually occurs, so 
that the total cross section is larger than the elastic one. However, if both 
the elastic scattering and absorption are prompt processes, one would 
expect them to vary slowly with energy. Behavior of this type can be seen 
on the low energy side of the figure. 

The cross section of the figure also 
possesses a rapidly varying resonant 
component, a feature common to all 
low-energy neutron-nucleus systems. 

The resonant contribution arises from 
scattering  through a quasi-bound 
state (a compound nuclear state) of 
the neutron+nucleus.  



Direct and compound nuclear scattering 
At low energies, neutron-nucleus scattering occurs either directly or 
through the qausi-bound compound nucleus states. 

Direct scattering Compound nuclear scattering 

20 22~ 10 10 st − −Δ − 12 20~ 10 10 st − −Δ −

In a direct scattering, the incident neutron interacts with the average field of 
the nucleus. The duration of the collision is approximately the time it takes 
the neutron to cross the nucleus. 

In a compound nuclear scattering, the incident neutron loses energy upon 
colliding with the nucleus and is trapped. After a fairly long interval, enough 
energy is again concentrated on one neutron to allow it to escape.  

E tΔ Δ ≥ h



Formalities - I  

To formally separate the direct and compound nucleu contributions, we 
assume that we can partition the space of states into two components: 

P -- containing the continuum states, such as the n + 58Ni ones, and  

Q-- containing the quasi-bound states, such as the ground and excited 
states of 59Ni (and any other states that we don’t want in P).  

We define projection operators, P and Q, onto the subspaces with the 
properties 

† †

2 2

,
,
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P P Q Q
P P Q Q

P Q

= =

= =

+ =

We then decompose the wave function into  Ψ = PΨ + QΨ,  where PΨ is the 
continuum component  and QΨ the quasi-bound component of the wave 
function.  



Formalities - II 
Using P and Q, we decompose the Schrödinger equation, (E - H) Ψ = 0, 
into coupled equations for the two components of the wave function, 

( )

( ) ,
PP PQ

QQ QP

E H P V Q

E H Q V P

− Ψ = Ψ

− Ψ = Ψ
and 

where 
0 , , etc.,PP PQH PH P PVP V PHQ PVQ≡ + ≡ =

and we have assumed that the contributions of the kinetic energy and 
the target Hamiltonian, both contained in H0, do not couple the P and Q 
subspaces. 
We can now solve the second equation formally, using an outgoing 
wave boundary condition, to obtain QΨ,  

( ) 1( )QQ QPQ E H V P+ −Ψ = − Ψ

and substitute in the first of these to obtain an equation for PΨ alone, 
( ) 1( ( ) ) 0,PP PQ QQ QPE H V E H V P+ −− − − Ψ =

and which explicitly contains the direct and compound processes we expect.   



Formalities - III 
However, it will be useful for us to follow a more convoluted path here. We 
first solve for the continuum component of the wave function PΨ,  

( ) ( ) 1( ) ,c c PP PQ cP E H V Qφ + + −Ψ = + − Ψ

where the wave function ( )
cφ
+ satisfies the equation 

( )( ) 0,PP cE H φ +− =

with an incoming wave in channel c. When the solution for PΨ is 
substituted in the equation for QΨ, the latter may be rewritten as 

( )( ) ,QQ QQ c QP cE H W Q V φ +− − Ψ =
where 

( ) 1( ) .QQ QP PP PQW V E H V+ −≡ −

In the last expression, we may decompose the P-subspace propagator as 

where P.P. is the principal part. The open channels in the P subspace make a 
negative imaginary contribution to WQQ, leading to poles of the the wave 
function in the lower half of the complex energy plane. 
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Formalities - IV 

( )( )QQ QQ c QP cE H W Q V φ +− − Ψ =

( ) ( ) 1( ) ,c c PP PQ cP E H V Qφ + + −Ψ = + − Ψ

If we solve the equation for Q-subspace component,   
1 ( )( ) ,c QQ QQ QP cQ E H W V φ− +Ψ = − −

we may substitute this in the solution for the P-subspace  component, 

to immediately obtain, 
( ) ( ) 1 1 ( )( ) ( ) .c c PP PQ QQ QQ QP cP E H V E H W Vφ φ+ + − − +Ψ = + − − −

This is a solution for the complete P-subspace wave function in terms of 
pure continuum component       and a compound nucleus component. 
The prompt contribution  of VPP to the scattering is not as visible as 
before – it is contained in the  wave function        and in the P-subspace 
propagator. The compound nucleus term appears in a modified form, in 
which passage through the continuum is taken into account by the WQQ  
term in the Q-subspace propagator. 
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cφ
+

( )
cφ
+



Low-energy neutron scattering -- resonances 
We may now take the expression for the P-subspace wave function, 

( ) ( ) 1 1 ( )( ) ( ) ,c c PP PQ QQ QQ QP cP E H V E H W Vφ φ+ + − − +Ψ = + − − −

and apply it to s-wave neutron scattering, for which, 

0 0( ) ( ),
2

ikr ikrir e S e
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outside the range of the interaction. (We continue to neglect the spin of the 
neutron.) 
After a bit of work, we can approximate the S-matrix of the P-subspace 
wave function in a multi-level Breit-Wigner form (among others) as 
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where φa and φb are the initial and final channel phase shifts and gµc 
characterizes the coupling of the compound state µ to the continuum 
channel c, with  
The phase shifts vary slowly with the energy while the resonance sum 
varies quickly. 

2 .cc
gµ µΓ =∑



Low-energy neutron scattering – cross sections 

( )2

2 1 Re .tot el abs lSk
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σ σ σ= + = −

2
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The absorption cross section is non-zero when non-elastic channels, 
such as γ emission or fission, remove flux from the compound 
nucleus. The cross sections for these take the form 

The cross sections directly related to the elastic S-matrix element are 
the elastic, absorption and total ones,  

and 

2
0,2 .ac caS

k
π

σ =

The total flux is conserved,so that 
and .abs ca tot el abs

c a

σ σ σ σ σ
≠

= = +∑
The elastic cross section is well described at energies below the 
resonance region by a hard-sphere cross section of  4π R 2. 



From resonances to fluctuations 
At low energies, the resonance expression for the l=0 S-matrix, and for 
higher partial waves as well, permits the separation of the direct and 
compound contributions to cross sections. However. the density of 
compound nucleus states increases rapidly with energy so that the 
resonances overlap and can no longer be distinguished. The cross section 
fluctuates rapidly, as in the figure, but the fluctuations, called Ericson 
fluctuations, cannot be attributed to individual resonances. 

It is in this context that the 
optical model plays a 
fundamental role. The objective 
of the model is to describe just 
the prompt, direct reactions in a 
collision. To this end, one 
defines the optical potential as 
the potential that furnishes the 
energy-averaged (short time) 
scattering amplitudes. 



Energy averaging and the optical potential 
To obtain the optical potential, we begin by calculating the energy average 
of the P-subspace wave function, which depends linearly on the scattering 
amplitude. After rewriting the wave function in the form of an equation, 
we will obtain an expression for the optical potential. 

The energy average of the P-subspace wave function may be written directly,  
( ) ( ) 1 ( )( ) 1/ .c c PP PQ QQ QP cP E H V e Vφ φ+ + − +Ψ = + −

.QQ QQ QQe E H W= − −
since the only rapidly varying quantity in the wave function is 

By multiplying by (E-HPP) as well as solving formally for       and 
substituting, we can write a Schrödinger-like equation for 〈PΨc〉, 
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The optical potential is then  
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Performing the energy average 
To conclude the derivation of the optical potential, we must calculate 〈1/
eQQ〉. Although there are many ways to perform the average, the 
simplest is to average over a normalized Lorentzian density, 
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Assuming that 1/eQQ has no poles in the upper half of the complex E 
plane (causality), we can perform the integral by closing the contour in 
the UHP to find 
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The optical potential is energy-dependent, non-local and complex. Its 
imaginary part is negative, resulting in a potential that is absorptive. The 
absorption accounts for the flux that is lost to the Q-subspace. 



Low-energy neutron scattering – optical potential 
One finds for the low-energy neutron s-wave S-matrix element 2

0 ,ikS e ρ−=

where ρ is a complex scattering length. 

We have, as k→0, 

n + 238U 

24 4 ,el
d R
d
σ

σ π π= →
Ω

R ρ= is called the scattering 
radius.  

The resulting elastic cross section tends to a constant as the energy tends to 
zero, while the absorption and total cross sections diverge at small energy 
as 1/k. 
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k
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σ ρ ρ→ − +

.tot el absσ σ σ= +

and 



Experimental significance 
An optical model calculation furnishes a wave function  and a scattering  
amplitude that should describe the prompt part of the scattering. The S-
matrix that results is an energy-averaged one. We could write the S-
matrix before averaging as  

The energy-averaged total cross-section is just the optical one, 

since it is linear in the S-matrix. 
However, the energy-averaged elastic and absorption cross sections are 

and 

Only the total optical cross section may be compared with the 
experimental one. 

with so that 



The s-wave strength function 
If we average the resonance expression for the elastic S-matrix, 
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where       is the average neutron width and D the average s-wave resonance 
spacing. Since the average is the same as that of the optical potential, the 
average S-matrix should be the same as the optical one. In particular, we 
expect 
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when      << D. We define the strength function as  
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where E0 is usually taken to be 1 eV. The factor of           cancels the 
energy dependence of the neutron partial width. 
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Strength functions and SPRT 
The s-wave strength function may be obtained from experimental data, 
either from measurements of the total cross section or from averages over 
resonances. When compared to optical model calculations, the agreement 
is quite good. The two peaks in the s-wave strength function occur in the 
regions where the 3s1/2 and 4s1/2  neutron shell-model orbitals  are 
becoming bound and have a large overlap with continuum states. 

A p-wave strength function 
may also be associated with 
p-wave absorption and 
extracted from data. The two 
strength functions, together 
with the scattering radius and 
the total cross section,  may 
be used to fit optical model 
parameters at low energy. 
This is known as the SPRT 
method. 



Higher partial waves 

n + 238U 

n + 238U The angular distribution for a pure s-
wave is obviously constant. As the 
energy increases, more partial waves 
participate in the scattering and the 
angular distribution becomes more 
forward peaked.   

An important auxiliary quantity 
determined in an optical model 
calculation is the transmission 
coefficient,                       which is used 
to calculate the fluctuating contribution 
to the cross sections. The transmission 
coefficient measures the fraction of flux 
that is absorbed from each partial wave. 

21 ,l lT S= −

The highest partial wave 
contributing to the scattering may be 
crudely estimated as lmax≈kR. For n
+238U at an energy of 1 MeV, this 
gives lmax≈1.6. 



The partial wave expansion for charged particles 
The difference between the partial wave expansion for neutral and charged 
particles is the long-range Coulomb potential. Rather than consider a plane 
wave, one must consider a Coulomb wave,which contains an additional 
logarithmic phase. The wave function may be expanded as  
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where the σl are the Coulomb phase shifts and 

One may proceed as before to extract the scattering amplitude as 
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The quantum Coulomb scattering cross section is identical to the classical one. 

with 



Proton scattering 

p + 58Ni 

p + 58Ni 
The angular distribution for proton 
scattering on 58Ni at 1 MeV is a 
pure Coulomb one. Even at 4 
MeV, the difference from the pure 
Coulomb angular distribution 
appears small. At 10 MeV, 
substantial deviations have 
appeared. 

Nuclear effects are more easily 
distinguished in the transmission 
coefficients. They support the 
observation that the scattering is 
purely Coulomb at 1 MeV. 
However, at 4 MeV, 40% of the s-
wave and about 10% of the p- and 
d-wave have been absorbed. 
Angular momenta through l=4 
contribute at 10 MeV.  



The optical potential 
We obtained a formal expression for the optical potential, 
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by rewriting the energy-average of the continuum component of the wave 
function as an equation for itself. We observed that this potential is 
complex, non-local and energy-dependent. 

A good deal of work has been done to calculate the optical potential from 
first principles. These potentials are usually non-local, which tends to 
complicate their use. 

Phenomenological optical potentials are normally used to fit and compare 
with experimental data. These potentials are usually taken to be local. 
However, their geometrical characteristics and the general trend of their 
energy dependence are quite similar to those of microscopic potentials. 
They can furnish insight into what one should expect of a microscopic 
potential. After all, both potentials are trying to describe the same physical 
processes.  



The phenomenological optical potential 
Empirical optical potentials are determined by adjusting a limited set of 
parameters to the data on hand. Over the years, a standard form of the 
potential has evolved, which permits the parametrization of the scattering 
of most light particles (n, p, d, t, 3He, or  α) from most nuclei. This is 
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a Coulomb term, 
volume terms, 
surface terms, 

spin-orbit terms 

where the spin-orbit constant is   ( )2 2/ 2 fm .sod m cπ= ≈h
The Coulomb potential is usually taken to be the interaction of a point 
charge with a uniformly-charged sphere of radius Rc=1.25 A1/3 (fm),  
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The volume terms of the optical potential 
The volume terms are usually taken 
to be of Wood-Saxon form, 

[ ]
1

( ) , ,
1 exp ( ) /i

i i

f r i V W
r R a

= =
+ −

The real volume potential reflects the average interaction of the projectile with 
the nucleons of the target. The strength of the real volume potential is roughly 
proportional to the mass of the projectile and and decreases with energy, in 
agreement with nuclear mean field calculations. 

The imaginary volume potential takes into account the loss of projectile flux 
due to collisions with the nucleons in the target. It is zero at low energy, below 
the threshold for single-particle excitations, and increases with energy as the 
phase space of single-particle modes increases.  

where Ri and ai are the radii and 
diffusivities of the two terms. 

The Wood-Saxon form is quite similar 
to the nucleon density of a saturated 
nucleus (A>30). 



The surface terms of the optical potential 
The surface terms are usually taken to be either the derivative of a Wood-
Saxon, [ ]
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or a Gaussian, 
2 2( ) exp ( ) / , .i i ig r r R a i V W! "= − =$ %

The imaginary surface term takes into 
account the absorption due to the 
excitation of low-energy collective 
modes, which have their couplings 
concentrated on the surface.  

A real surface term can result from the 
same coupling but can also be 
explained using a dispersion relation. 

The two are practically indistinguishable when aG=2.21 aWS. 



The spin-orbit terms of the optical potential 
The spin-orbit terms are taken to have a Thomas form factor, 
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The spin-orbit interaction also acts between the bound states of a nucleus, 
where it increases the binding of the j=l + ½ levels and decreases the 
binding of the j=l-1/2 levels. 

The Thomas form factor and the spin-
orbit potential itself are obtained (for 
spin ½) when the Dirac equation with 
Wood-Saxon potentials is reduced to 
an equivalent Schrödinger equation. 
The spin-orbit interaction is thus 
another manifestation of the volume 
interaction of the projectile with the 
nucleons of the target.  



Optical potential parameters 
The phenomenological optical potential is thus parametrized in terms of a 
set of potential strengths and corresponding geometrical parameters.  

The best modern reference for optical potential parameters (for light 
projectiles) is the Reference Input Parameter Library (RIPL-3), available 
both online and in CD from the Internationational Atomic Energy Agency. 

For nucleons, typical values of the potential strengths are 
(45 55) MeV - (0.2 0.3) ,
(2 7) MeV - (0.1 0.3) 8 10 MeV,
(4 10) MeV.

s

so

V E
W E E
V

≈ − −

≈ − − < −

≈ −

Above 8-10 MeV, Ws is usually constant or slightly decreasing. Vs and Wso 
can normally be taken to be zero as can W below about 10 MeV. Above 
about 10 MeV, W is constant or slightly increasing. 

The radii Ri take on values                  with the reduced radii in the range 
ri≈1.2 – 1.3 fm. The diffusivities are normally in the range ai ≈0.4 – 0.7 fm. 

Fairly wide ranges of the parameters V, RV, Ws and as result in equally good 
fits if         and Wsas remain constant. These are potential ambiguities. 

1/ 3
i i TR r A=

2
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The microscopic optical potential -- I 

+ + ... +

Microscopic optical potentials attempt to 
describe the projectile-target interaction in 
terms of  nucleon-nucleon interactions, such as 
these representing the first few terms in 
nucleon-nucleus interaction. 

A systematic method for summing the most 
important terms is provided by the self-
consistent Brueckner approximation. The 
Brueckner G-matrix is calculated by summing 
repeated interactions, taking into account 
effects of the nuclear medium.This calculation 
is usually performed in infinite nuclear matter, 
for simplicity. 

The G-matrix is then folded over the target 
nucleon density to obtain the optical potential 
U. Self-consistency requires that the target 
density be obtained with the same potential. 

= + G G

= + + + ... G

G G+ Uopt = 



The microscopic optical potential -- II 

G G+ Uopt = 

 =     Ud      +     Uex 

The microscopic optical potential possesses a direct 
term and an exchange term. The exchange term is 
non-local and both are energy-dependent. The 
exchange term is often approximated as a local term 
with an additional energy-dependence (JLM).  
At high energy, the microscopic 
optical potential reduces to the 
impulse approximation potential, 
obtained by folding the two-nucleon 
t-matrix with the target density -- 
the tρ approximation. 

The figure compares experimental 
reaction cross sections for 12C, 28Si, 
56Fe 90Zr and 208Pb, in ascending 
order, with microscopic optical 
model calculations.  
K. Amos and S. Karataglidis, Phys.Rev.C65 
(2002) 057603. 



The microscopic potential at low energy 
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Formally, we derived the optical potential by considering the scattering in a 
subspace P of the space of states and then energy-averaged to smooth the 
dependence on the remaining subspace of states Q. We obtained 

In the microscopic optical potential, the division into P and Q subspaces is 
no longer transparent. It is there, contained in the G-matrix, but in terms of 
nucleon-nucleon scattering rather than nucleon-nucleus scattering. We 
would thus expect that the microscopic potential does not take into account 
the collective effects that are often important at low energies. We might 
consider decomposing the optical potential at low energies  (using a local 
approximation) as 

( , ) ( , ) ( , ),opt sp collU r E U r E U r E= +

where Usp is the microscopic potential and Ucoll is the remainder, which we 
might attribute to collective effects. At low energies, Usp(r,E)≈VHF(r,E). At 
high energy, we expect that Ucoll(r,E)→0. 



Dispersion relations  
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Because of causality, the optical potential should 
have no singularities in the upper half-energy plane. 
We may then write ( , ')

' 0,
'

collU r E
dE

E E
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−∫
which we may rewrite as  

Separating Ucoll into its real and imaginary 
parts, Ucoll = ΔV + i W, we have 
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W r EV r E dE
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At low energy,  Uopt ≈VHF+ ΔV + i W. 

The effect of ΔV is seen as a strengthening 
in the real part of the optical potential at 
low energy relative to the linear 
dependence expected of VHF. (Finlay and Petler, Opt. Model 1986) 

208Pb, 209Bi 



where l and j are the orbital and total angular momenta and |sν〉 is a spin 
eigenvector. In the expansion, σl is the Coulomb phase shift,     denotes the 
angular variables and     the direction of the incident momentum. The spin-
angular functions are vectors with components labeled by ν, the projection 
of the spin.  

Because of angular momentum and parity conservation, the equations for 
the            uncouple. They can then be solved as before and the asymptotic 
behavior of the resulting wave function analyzed to extract the scattering 
amplitude. 

The single-channel optical model -- spin 
Because of the spin-orbit interaction, a rigorous treatment of neutron or proton 
scattering requires that the spin be included in the calculation. To do this, one 
performs the  partial wave expansion of the scattering wave function (spin s) as 

in terms of the spin-angular functions, 

r̂
k̂

( )j
l rψ

l
r
sr

j
r



The scattering amplitude -- spin 
The scattering amplitude 

with fC(θ ) the Coulomb scattering amplitude, is now a matrix, fνν´(θ), 
with matrix elements labeled by the spin projections ν and ν´.  

For particles of spin ½,  ( ) ( )
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The amplitude A corresponds to scattering in which the spin projection 
remains constant. The amplitude B describes scattering in which the spin 
projection flips. 

A: B: 



Angular distributions -- spin 
The differential elastic cross section for an unpolarized incident beam is 
obtained  by averaging the squared magnitudes of the scattering amplitudes 
over the initial values of the projectile spin and summing over the final 
ones, 
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For spin-1/2 particles, this becomes 
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σ

θ θ= + =
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For particles of spin ½ and greater, vector and possibly tensor spin 
observables may be defined in terms of other combinations of the 
amplitudes. For particles of spin ½, the vector polarization P(θ) and the 
spin rotation function Q(θ) are defined as  
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Polarization in 
neutron scattering 

The spin-summed  angular 
distribution due to scattering of  a 
polarized beam may be written as  

where Ppol  is a vector defining the 
intitial polarization and     is the 
normal to the scattering plane. 

The spin-orbit interaction is fairly 
strong. Its effects on the 
polarization become visible as soon 
as partial waves above the s-wave 
contribute to the scattering. 

n̂



Integrated cross sections -- spin 
As before, the absorption cross section may be related to flux lost from the 
asymptotic probability current density, 
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For charged particles, the Coulomb interaction leads to an infinite elastic 
cross section. For neutrons, integration of the differential cross section 
yields  2
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For neutron, the total cross section may be defined as the sum of  the 
elastic and absorption ones, 
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The fraction of the flux lost from each partial wave may also be 
expressed as a transmission coefficient, 
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Comparison with 
experiment 

We recall that, being linear in the 
scattering amplitude, the total optical 
cross section may be compare to the 
energy-averaged experimental one. We 
see that reasonable agreement with the 
data is possible here. 

We also verified that the partial wave 
contributions to the energy-averaged 
elastic cross section,  

,
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exceed the shape elastic (optical) ones 
due to contributions from fluctuations. 
We observe that the fluctuation 
contributions are negligible only at 
higher energies. 



Summary 

The objective of the optical model is to describe the fast, direct 
contribution to nuclear scattering. It makes use of an optical potential 
having both real and negative imaginary parts. The absorption of flux 
from the optical wave function, due to the imaginary part of the potential,  
accounts for the flux lost to the slower, compound nucleus component of 
the scattering.  

The single-channel optical model describes the scattering in the elastic 
channel alone. It is often called the spherical optical model because, in it, 
the target may be considered to be spherically symmetric, since its 
structure is never introduced. 

Direct reactions that transfer energy as well as momentum are often quite 
important. Such inelastic scatterings, in the case of the inert projectiles 
that we are considering (n, p, α, d, etc.), leave the target in an excited state 
and diminish the asymptotic kinetic energy of the projectile. We will 
discuss these in more detail in the next two seminars. 


