

Statistical Theory of Nuclear Reactions, Channel Widths and Level Densities

S. Hilaire - CEA, DAM, DIF

TRIESTE 2014 – S. Hilaire & The TALYS Team – 23/09/2014

www.cea.fr

Content

- Introduction

TODAY

- General features about nuclear reactions

- Time scales and associated models
- Types of data needed
- Data format = f (users)

- Nuclear Models

- Basic structure properties
- Optical model
- Pre-equilibrium model
- Compound Nucleus model
- Miscellaneous : level densities, fission, capture

- From in depth analysis to large scale production with TALYS

- General features about TALYS
- Fine tuning and accuracy
- Global systematic approaches
- What remains to be done ?

Content

- Introduction

- General features about nuclear reactions

- Time scales and associated models
- Types of data needed
- Data format = f (users)

- Nuclear Models

- Basic structure properties
- Optical model
- Pre-equilibrium model
- Compound Nucleus model
- Miscellaneous : level densities, fission, capture

- From in depth analysis to large scale production with TALYS

- General features about TALYS
- Fine tuning and accuracy
- Global systematic approaches
- What remains to be done ?

INTRODUCTION

Available online at www.sciencedirect.com

Nuclear Data Sheets 110 (2009) 3107-3214

Nuclear Data Sheets

www.elsevier.com/locate/nds

RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

R. Capote,^{1*} M. Herman,^{1,2} P. Obložinský,^{1,2} P.G. Young,³ S. Goriely,⁴ T. Belgva,⁵ A.V. Ignatvuk,⁶ A.J. Koning,⁷ S. Hilaire,⁸ V.A. Plujko,⁹ M. Avrigeanu,¹⁰ O. Bersillon,⁸ M.B. Chadwick,³ T. Fukahori,¹¹ Zhigang Ge,¹² Yinlu Han,¹² S. Kailas,¹³ J. Kopecky,¹⁴ V.M. Maslov,¹⁵ G. Reffo,¹⁶ M. Sin,¹⁷ E.Sh. Soukhovitskii,¹⁵ P. Talou³ ¹ NAPC-Nuclear Data Section, International Atomic Energy Agency, A-1400 Vienna, Austria ² National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973, USA ³ Los Alamos National Laboratory, Los Alamos, NM 87544, USA ⁴ Université Libre de Bruxelles, BE 1050 Brussels, Belgium ⁸ Institute of Isotope and Surface Chemistry, Chemical Research Center, H-1525 Budapest, Hungary ⁶ Institute of Physics and Power Engineering, 249033 Obninsk, Russia ⁷ Fuels Actinides and Isotopes NRG Nuclear Research and Consultance Group, NL-1755 Petten, The Netherlands 8 CEA, DAM, DIF, F-91297 Arpajon, France ⁹ Taras Shevchenko National University, 03022 Kiev, Ukraine ¹⁰ National Institute of Physics and Nuclear Engineering "Horia Hulubet", 077125 Bucharest-Magurele, Romania ¹¹ Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 Japan ¹² China Institute of Atomic Energy, Beijing 102413 China ¹³ Bhabha Atomic Research Center, Trombay, 400085 Mumbai, India 14 JUKO Research, NL-1817 Alkmaar, The Netherlands ¹⁵ Joint Institute for Power and Nuclear Research – Sosny, BY-220109 Minsk, Belarus ¹⁶ Retired in 1998, Ente Nuove Tecnologie, Energia e Ambiente (ENEA), 10129 Bologna, Italy and ¹⁷ Nuclear Physics Department, Bucharest University, 077125 Bucharest-Magurele, Romania

(Received July 20, 2009)

We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library

Nuclear data needed for

Understanding basic reaction mechanism between particles and nuclei

Good accuracy if possible \Rightarrow good understanding or room for improvements

Nuclear data needed for

Understanding basic reaction mechanism between particles and nuclei Astrophysical applications (Age of the Galaxy, element abundances ...)

Good accuracy if possible \Rightarrow good understanding or room for improvements Predictive power important \Rightarrow sound physics (first principles)

Nuclear data needed for

Understanding basic reaction mechanism between particles and nuclei Astrophysical applications (Age of the Galaxy, element abundances ...) Existing or future nuclear reactor simulations

Good (Excellent) accuracy required \Rightarrow reproduction of data, safety Predictive power less important \Rightarrow Reproductive power

Nuclear data needed for

Understanding basic reaction mechanism between particles and nuclei Astrophysical applications (Age of the Galaxy, element abundances ...) Existing or future nuclear reactor simulations Medical applications, oil well logging, waste transmutation, fusion, ...

Good accuracy required \Rightarrow reproduction of data Predictive power less important \Rightarrow Reproductive power

Nuclear data needed for

Understanding basic reaction mechanism between particles and nuclei Astrophysical applications (Age of the Galaxy, element abundances ...) Existing or future nuclear reactor simulations Medical applications, oil well logging, waste transmutation, fusion, ...

But

Finite number of experimental data (price, safety or counting rates) Complete measurements restricted to low energies (< 1 MeV) to scarce nuclei

Predictive & Robust Nuclear models (codes) are essential

GENERAL FEATURES ABOUT NUCLEAR REACTIONS

- Introduction

- General features about nuclear reactions

- Time scales and associated models
- Types of data needed
- Data format = f (users)

- Nuclear Models

- Basic structure properties
- Optical model
- Pre-equilibrium model
- Compound Nucleus model
- Miscellaneous : level densities, fission, capture
- From in depth analysis to large scale production with TALYS
 - General features about TALYS
 - Fine tuning and accuracy
 - Global systematic approaches
- What remains to be done ?

TIME SCALES AND ASSOCIATED MODELS (1/4) Typical spectrum shape

62 MeV⁵⁶Fe (p,xp) Double differential cross sections

- Always evaporation peak
- Discrete peaks at forward angles
- Flat intermediate region

Reaction time

TIME SCALES AND ASSOCIATED MODELS (2/4)

TIME SCALES AND ASSOCIATED MODELS (2/4)

Direct (shape) elastic

TIME SCALES AND ASSOCIATED MODELS (4/4)

TYPES OF DATA NEEDED

Cross sections :

total, reaction, elastic (shape & compound), non-elastic, inelastic (discrete levels & total) total particle (residual) production all exclusive reactions (n,nd2a) all exclusive isomer production all exclusive discrete and continuum γ -ray production

Spectra :

elastic and inelastic angular distribution or energy spectra all exclusive double-differential spectra total particle production spectra compound and pre-equilibrium spectra per reaction stage.

Fission observables :

cross sections (total, per chance) fission fragment mass and isotopic yields fission neutrons (multiplicities, spectra)

Miscellaneous :

recoil cross sections and ddx particle multiplicities astrophysical reaction rates covariances informations

- Trivial for basic nuclear science : x,y,(z) file
- Complicated (even crazy) for data production issues : ENDF file

DATA FORMAT : ENDF file

Content nature (σ**)**

1

6,215100+4 1	1,496234+2	0	0	0	06210	3	16	350
-5,596445+6-5	5,596445+6	0	0	1	1336210	3	16	351
133	2				6210	3	16	352
5,633849+6 (0+000000+0	5,700000+6	1,580180-3	5,800000+6	6,073681-36210	3	16	353
5,900000+6 1	1,347960-2	6,000000+6	2,690410-2	6,100000+6	4,687551-26210	3	16	354
6,200000+6 7	7,598900-2	6,300000+6	1,119810-1	6,400000+6	1,518520-16210	3	16	355
6.500000+6 2	2.016680-1	6,600000+6	2.528690-1	6,700000+6	3,144490-16210	3	16	356
6,800000+6 3	3,780410-1	6,900000+6	4,433380-1	7,000000+6	5,136740-16210	3	16	357
7,100000+6 5	5.833550-1	7,200000+6	6.576591-1	7,300000+6	7,306390-16210	3	16	358
7,400000+6 8	3.033710-1	7,500000+6	8.746620-1	7,600000+6	9,434911-16210	3	16	359
7,700000+6 1	1,010920+0	7,800000+6	1,078550+0	7,900000+6	1,140340+06210	3	16	360
8.000000+6 1	1,202710+0	8,100000+6	1.257750+0	8,200000+6	1,313880+06210	3	16	361
8,300000+6 1	1,367080+0	8,400000+6	1,416210+0	8,500000+6	1,463580+06210	3	16	362
8,600000+6 1	1.506400+0	8,700000+6	1.546900+0	8,800000+6	1,586770+06210	3	16	363
8,900000+6 1	1,623670+0	9,000000+6	1,656720+0	9,100000+6	1,687830+06210	3	16	364
9,200000+6 1	1.717430+0	9,300000+6	1.745200+0	9,400000+6	1,771480+06210	3	16	365
9,500000+6 1	1,796050+0	9,600000+6	1,817200+0	9,700000+6	1,837390+06210	3	16	366
9,800000+6 1	1.858090+0	9,900000+6	1.876590+0	1,000000+7	1,893530+06210	3	16	367

DATA FORMAT : ENDF file

6,215100+4	1,496234+2	0	0	0	06210	3	16	350
-5,596445+6	-5,596445+6	0	0	1	1336210	3	16	351
133	2				6210	3	16	352
5,633849+6	0,000000+0	5,700000+6	1,580180-3	5,800000+6	6,073681-36210	3	16	353
5,900000+6	1.347960-2	6,000000+6	2.690410-2	6,100000+6	4,687551-26210	3	16	354
6,200000+6	7,598900-2	6,300000+6	1,119810-1	6,400000+6	1,518520-16210	3	16	355
6,500000+6	2,016680-1	6,600000+6	2,528690-1	6,700000+6	3,144490-16210	3	16	356
6,800000+6	3,780410-1	6,900000+6	4,433380-1	7,000000+6	5,136740-16210	3	16	357
7,100000+6	5.833550-1	7,200000+6	6,576591-1	7,300000+6	7,306390-16210	3	16	358
7.400000+6	8.033710-1	7,500000+6	8.746620-1	7,600000+6	9,434911-16210	3	16	359
7,700000+6	1,010920+0	7,800000+6	1,078550+0	7,900000+6	1,140340+06210	3	16	360
8,000000+6	1,202710+0	8,100000+6	1.257750+0	8,200000+6	1,313880+06210	3	16	361
8,300000+6	1,367080+0	8,400000+6	1,416210+0	8,500000+6	1,463580+06210	3	16	362
8,600000+6	1.506400+0	8,700000+6	1.546900+0	8,800000+6	1,586770+06210	3	16	363
8,900000+6	1,623670+0	9,000000+6	1,656720+0	9,100000+6	1,687830+06210	3	16	364
9,200000+6	1,717430+0	9,300000+6	1,745200+0	9,400000+6	1,771480+06210	3	16	365
9,500000+6	1,796050+0	9,600000+6	1,817200+0	9,700000+6	1,837390+06210	3	16	366
9,800000+6	1.858090+0	9,900000+6	1.876590+0	1.000000+7	1,893530+06210	3	16	367

Content type (n,2n)

DATA FORMAT : ENDF file

6,215100+4	1,496234+2	0	0	0	0 62	210	3 16	350
-5,596445+6	-5,596445+6	0	0	1	133 <mark>62</mark>	210	3 16	351
133	2				62	210	3 16	352
5,633849+6	0,000000+0	5,700000+6	1,580180-3	5,800000+6	-6₊073681- <mark>36</mark> 2	210	3 16	353
5,900000+6	1.347960-2	6,000000+6	2,690410-2	6,100000+6	4.687551-2 <mark>62</mark>	210	3 16	354
6,200000+6	7,598900-2	6,300000+6	1,119810-1	6,400000+6	1.518520-1 <mark>62</mark>	210	3 16	355
6,500000+6	2,016680-1	6,600000+6	2,528690-1	6,700000+6	3,144490-1 <mark>6</mark> 2	210	3 16	356
6,800000+6	3,780410-1	6,900000+6	4,433380-1	7,000000+6	5,136740-1 <mark>6</mark> 2	210	3 16	357
7.100000+6	5.833550-1	7,200000+6	6.576591-1	7,300000+6	7.306390-1 <mark>62</mark>	210	3 16	358
7,400000+6	8.033710-1	7,500000+6	8.746620-1	7,600000+6	9.434911-1 <mark>6</mark> 2	210 -	3 16	359
7,700000+6	1,010920+0	7,800000+6	1,078550+0	7,900000+6	1,140340+0 <mark>6</mark> 2	210 -	3 16	360
8,000000+6	1,202710+0	8,100000+6	1,257750+0	8,200000+6	1.313880+0 <mark>6</mark> 2	210 -	3 16	361
8,300000+6	1,367080+0	8,400000+6	1,416210+0	8,500000+6	1,463580+0 <mark>62</mark>	210	3 16	362
8,600000+6	1.506400+0	8,700000+6	1.546900+0	8,800000+6	1.586770+0 <mark>6</mark> 2	210 -	3 16	363
8,900000+6	1,623670+0	9,000000+6	1,656720+0	9,100000+6	1.687830+0 <mark>62</mark>	210	3 16	364
9,200000+6	1.717430+0	9,300000+6	1.745200+0	9,400000+6	1.771480+0 <mark>6</mark> 2	210 -	3 16	365
9,500000+6	1,796050+0	9,600000+6	1,817200+0	9,700000+6	1 ₊ 837390+0 <mark>62</mark>	210	3 16	366
9,800000+6	1,858090+0	9,900000+6	1,876590+0	1.000000+7	1.893530+0 <mark>6</mark> 2	210 -	3 16	367

Material number

Target identification (¹⁵¹**Sm)**

-								
6,215100+4	1,496234+2	0	0	0	06210	3	16	350
-5,596445+6-	-5,596445+6	0	0	1	1336210	3	16	351
133	2				6210	3	16	352
5,633849+6	0,000000+0	5,700000+6	1,580180-3	5,800000+6	6,073681-36210	3	16	353
5,900000+6	1,347960-2	6,000000+6	2.690410-2	6,100000+6	4,687551-26210	3	16	354
6,200000+6	7,598900-2	6,300000+6	1,119810-1	6,400000+6	1,518520-16210	3	16	355
6,500000+6	2.016680-1	6,600000+6	2,528690-1	6,700000+6	3,144490-16210	3	16	356
6,800000+6	3,780410-1	6,900000+6	4,433380-1	7,000000+6	5,136740-16210	3	16	357
7,100000+6	5.833550-1	7,200000+6	6.576591-1	7,300000+6	7,306390-16210	3	16	358
7,400000+6	8.033710-1	7,500000+6	8.746620-1	7,600000+6	9,434911-16210	3	16	359
7,700000+6	1,010920+0	7,800000+6	1,078550+0	7,900000+6	1,140340+06210	3	16	360
8,000000+6	1,202710+0	8,100000+6	1,257750+0	8,200000+6	1,313880+06210	3	16	361
8,300000+6	1,367080+0	8,400000+6	1,416210+0	8,500000+6	1,463580+06210	3	16	362
8,600000+6	1.506400+0	8,700000+6	1.546900+0	8,800000+6	1,586770+06210	3	16	363
8,900000+6	1,623670+0	9,000000+6	1,656720+0	9,100000+6	1,687830+06210	3	16	364
9,200000+6	1.717430+0	9,300000+6	1.745200+0	9,400000+6	1,771480+06210	3	16	365
9,500000+6	1,796050+0	9,600000+6	1,817200+0	9,700000+6	1,837390+06210	3	16	366
9,800000+6	1,858090+0	9,900000+6	1,876590+0	1,000000+7	1,893530+06210	3	16	367

Target mass

		_						
6,215100+4	1,496234+2	¢	0	0	06210	3	16	350
-5,596445+6-	-5,596445+6	0	0	1	1336210	3	16	351
133	2				6210	3	16	352
5,633849+6	0,000000+0	5,700000+6	1,580180-3	5,800000+6	6,073681-36210	3	16	353
5,900000+6	1,347960-2	6,000000+6	2,690410-2	6,100000+6	4,687551-26210	3	16	354
6,200000+6	7,598900-2	6,300000+6	1,119810-1	6,400000+6	1,518520-16210	3	16	355
6,500000+6	2,016680-1	6,600000+6	2,528690-1	6,700000+6	3,144490-16210	3	16	356
6,800000+6	3,780410-1	6,900000+6	4,433380-1	7,000000+6	5,136740-16210	3	16	357
7,100000+6	5.833550-1	7,200000+6	6.576591-1	7,300000+6	7,306390-16210	3	16	358
7,400000+6	8.033710-1	7,500000+6	8.746620-1	7,600000+6	9,434911-16210	3	16	359
7,700000+6	1,010920+0	7,800000+6	1,078550+0	7,900000+6	1,140340+06210	3	16	360
8,000000+6	1,202710+0	8,100000+6	1,257750+0	8,200000+6	1,313880+06210	3	16	361
8,300000+6	1,367080+0	8,400000+6	1,416210+0	8,500000+6	1,463580+06210	3	16	362
8,600000+6	1,506400+0	8,700000+6	1,546900+0	8,800000+6	1,586770+06210	3	16	363
8,900000+6	1,623670+0	9,000000+6	1,656720+0	9,100000+6	1,687830+06210	3	16	364
9,200000+6	1.717430+0	9,300000+6	1,745200+0	9,400000+6	1,771480+06210	3	16	365
9,500000+6	1,796050+0	9,600000+6	1,817200+0	9,700000+6	1,837390+06210	3	16	366
9,800000+6	1.858090+0	9,900000+6	1.876590+0	1.000000+7	1,893530+06210	3	16	367

DATA FORMAT : ENDF file

6,215100+4	1,496234+2	0	0	0	06210	3	16	350
-5,5964 <u>45+6</u>	-5,596445+6	0	0	1	1336210	3	16	351
133	2				6210	3	16	352
5,633849+6	0,000000+ 💦	5,700000+6	1,580180-3	5,800000+6	6,073681-36210	3	16	353
5,900000+6	1.347960-2	S.000000+6	2,690410-2	6,100000+6	4,687551-26210	3	16	354
6,200000+6	7,598900-2	\`.300000+6	1,119810-1	6,400000+6	1,518520-16210	3	16	355
6,500000+6	2.016680-1	600000+6	2,528690-1	6,700000+6	3,144490-16210	3	16	356
6,800000+6	3,780410-1	£ 900000+6	4,433380-1	7,000000+6	5,136740-16210	3	16	357
7,100000+6	5.833550-1	7,\00000+6	6.576591-1	7,300000+6	7,306390-16210	3	16	358
7,400000+6	8.033710-1	7,.\10000+6	8.746620-1	7,600000+6	9,434911-16210	3	16	359
7,700000+6	1,010920+0	7,8\0000+6	1,078550+0	7,900000+6	1,140340+06210	3	16	360
8,000000+6	1,202710+0	8,10\000+6	1,257750+0	8,200000+6	1,313880+06210	3	16	361
8,300000+6	1,367080+0	8,40,00+6	1,416210+0	8,500000+6	1,463580+06210	3	16	362
8,600000+6	1,506400+0	8,700 \10+6	1,546900+0	8,800000+6	1,586770+06210	3	16	363
8,900000+6	1,623670+0	9,000(\)+6	1,656720+0	9,100000+6	1,687830+06210	3	16	364
9,200000+6	1,717430+0	9,3000(+6	1,745200+0	9,400000+6	1,771480+06210	3	16	365
9,500000+6	1,796050+0	9,60000 \ 6	1,817200+0	9,700000+6	1,837390+06210	3	16	366
9,800000+6	1.858090+0	9,900000 /3	1.876590+0	1,000000+7	1,893530+06210	3	16	367

Number of values

DATA FORMAT : ENDF file

	6,215100+4	1,496234+2	0	0	0	06210	3	16	350
-	-5,596445+6-	-5,596445+6	Q	Q	1	1336210	5	16	351
	133	2				6210	3	16	352
	5,633849+6	0,000000+0	5,700000+6	1.580180-3	5,800000+6	6,073681-36210	3	16	353
	5,900000+6	1.347960-2	6,000000+6	2.690410-2	6,100000+6	4.687551-26210	3	16	354
	6,200000+6	7,598900-2	6,300000+6	1,119810-1	6,400000+6	1,518520-16210	3	16	355
-	6,500000+6	2,016680-1	6,600000+6	2,528690-1	6,700000+6	3,144490-16210	3	16	356
	6,800000+6	3,780410-1	6,900000+6	4,433380-1	7,000000+6	5,136740-16210	3	16	357
	7,100000+6	5,833550-1	7,200000+6	6.576591-1	7,300000+6	7,306390-16210	3	16	358
	7,400000+6	8,033710-1	7,500000+6	8,746620-1	7,600000+6	9,434911-16210	3	16	359
	7,700000+6	1,010920+0	7,800000+6	1,078550+0	7,900000+6	1,140340+06210	3	16	360
	8,000000+6	1,202710+0	8,100000+6	1,257750+0	8,200000+6	1,313880+06210	3	16	361
	8,300000+6	1,367080+0	8,400000+6	1,416210+0	8,500000+6	1,463580+06210	3	16	362
	8,600000+6	1,506400+0	8,700000+6	1.546900+0	8,800000+6	1,586770+06210	3	16	363
	8,900000+6	1,623670+0	9,000000+6	1,656720+0	9,100000+6	1,687830+06210	3	16	364
	9,200000+6	1.717430+0	9.300000+6	1.745200+0	9,400000+6	1.771480+06210	3	16	365
	9.500000+6	1.796050+0	9.600000+6	1.817200+0	9.700000+6	1.837390+06210	3	16	366
	9.800000+6	1.858090+0	9.900000+6	1.876590+0	1.000000+7	1.893530+06210	3	16	367
	•	• • •	•	• •		••	-		

Values

NUCLEAR MODELS

- Introduction

- General features about nuclear reactions

- Time scales and associated models
- Types of data needed
- Data format = f (users)

- Nuclear Models

- Basic structure properties
- Optical model
- Pre-equilibrium model
- Compound Nucleus model
- Miscellaneous : level densities, fission, capture
- From in depth analysis to large scale production with TALYS
 - General features about TALYS
 - Fine tuning and accuracy
 - Global systematic approaches
- What remains to be done ?

BASIC STRUCTURE PROPERTIES (1/5) What is needed

Nuclear Masses :

 \Rightarrow basic information to determine reaction threshold

Excited levels :

- ⇒ Angular distributions (depend on spin and parities)
- \Rightarrow Decay properties (branching ratios)
- \Rightarrow Excitation energies (reaction thresholds)

Target levels' deformations :

- \Rightarrow Required to select appropriate optical model
- \Rightarrow Required to select appropriate coupling scheme

Many different theoretical approaches if experimental data is missing Recommended databases (RIPL !)

 $rms(M) = 600-700 \text{ keV on } 2149 \text{ (} Z \ge 8\text{)}$ experimental masses

BASIC STRUCTURE PROPERTIES (3/5) Mass models predictive power

Comparison between several mass models adjusted with 2003 exp and tested with 2012 exp masses

BASIC STRUCTURE PROPERTIES (4/5) HFB Mass models

Most advanced theoretical approach = multireference level

• Methodology : E = $E_{mf} + \delta E_{\infty} + \delta E_{bmf}$

* Additional filters

- Collective properties (0+,2+, BE2), RPA modes, backbending properties, pairing properties, fission properties, gamma strength functions, level densities

BASIC STRUCTURE PROPERTIES (5/5) HFB-Gogny Mass model

Cez

Direct (shape) elastic

Direct interaction of a projectile with a target nucleus considered as a whole Quantum model \rightarrow Schrödinger equation

Direct interaction of a projectile with a target nucleus considered as a whole Quantum model \rightarrow Schrödinger equation

The optical model yields :

TWO TYPES OF APPROACHES

Phenomenological

Adjusted parameters Weak predictive power Very precise (≈ 1%) Important work

(Semi-)microscopic

No adjustable parameters Usable without exp. data Less precise (\approx 5-10 %) Quasi-automated

PHENOMENOLOGICAL OPTICAL MODEL

- \approx 20 adjusted parameters
- Very precise (1%)

92

- Weak predictive power

SEMI-MICROSCOPIC OPTICAL MODEL

- No adjustable parameters
- Based on nuclear structure properties
 - \Rightarrow usable for any nucleus
- Less precise than the phenomenological approach

SEMI-MICROSCOPIC OPTICAL MODEL

Unique description of elastic scattering

Unique description of elastic scattering (n,n)

Unique description of elastic scattering (n,n), (p,p)

Unique description of elastic scattering (n,n), (p,p) and (p,n)

SEMI-MICROSCOPIC OPTICAL MODEL

07

Enables to give predictions for very exotic nuclei for which there exist no experimental data

THE PRE-EQUILIBRIUM MODEL

Shape elastic

/

THE PRE-EQUILIBRIUM MODEL

TIME SCALES AND ASSOCIATED MODELS (1/4) Typical spectrum shape

62 MeV⁵⁶Fe (p,xp) Double differential cross sections

- Always evaporation peak
- Discrete peaks at forward angles
- Flat intermediate region

THE PRE-EQUILIBRIUM MODEL (quantum vs semi-classical approaches)

Semi-classical approaches

- called « exciton model »
- « simple » to implement
- initially only able to describe angle integrated spectra (1966 & 1970)
- extended to ddx spectra in 1976
- link with Compound Nucleus established in 1987
- systematical underestimation of ddx spectra at backward angles
- complemented by Kalbach systematics (1988) to improve ddx description
- link with OMP imaginary performed in 2004

Quantum mechanical approaches

- distinction between MSC and MSD processes
 - MSC = bound p-h excitations, symetrical angular distributions
 - MSD = unbound configuration, smooth forward peaked ang. dis.
- MSD dominates pre-equ xs above 20 MeV
- 3 approaches : FKK (1980)
 - TUL (1982)
 - NWY (1986)
- ddx spectra described as well as with Kalbach systematics

1

1/

C22

 $\mathbb{C}\mathbb{P}$

de la recherche à l'industrie

P(n,E,t) = Probability to find for a given time t the composite system with an energy E and an exciton number n.

 $\lambda_{a, b}$ (E) = Transition rate from an initial state a towards a state b for a given energy E.

P(n,E,t) = Probability to find for a given time t the composite system with an energy E and an exciton number n.

λ_{a, b} (E) = Transition rate from an initial state a towards a state b for a given energy E.

Evolution equation

 $\frac{dP(n,E,t)}{dt} = Apparition$

- **Disparition**

P(n,E,t) = Probability to find for a given time t the composite system with an energy E and an exciton number n.

 $\lambda_{a, b}$ (E) = Transition rate from an initial state a towards a state b for a given energy E.

Evolution equation

 $\frac{dP(n,E,t)}{dt} = P(n-2, E, t) \lambda_{n-2, n}(E) + P(n+2, E, t) \lambda_{n+2, n}(E)$

- **Disparition**

P(n,E,t) = Probability to find for a given time t the composite system with an energy E and an exciton number n.

 $\lambda_{a, b}$ (E) = Transition rate from an initial state a towards a state b for a given energy E.

Evolution equation

 $\frac{dP(n, E, t)}{dt} = P(n-2, E, t) \lambda_{n-2, n}(E) + P(n+2, E, t) \lambda_{n+2, n}(E)$ $- P(n, E, t) \left[\lambda_{n, n+2}(E) + \lambda_{n, n-2}(E) + \lambda_{n, emiss}(E)\right]$
P(n,E,t) = Probability to find for a given time t the composite system with an energy E and an exciton number n.

 $\lambda_{a, b}$ (E) = Transition rate from an initial state a towards a state b for a given energy E.

Evolution equation

$$\frac{dP(n, E, t)}{dt} = P(n-2, E, t) \lambda_{n-2, n}(E) + P(n+2, E, t) \lambda_{n+2, n}(E)$$
$$- P(n, E, t) \left[\lambda_{n, n+2}(E) + \lambda_{n, n-2}(E) + \lambda_{n, emiss}(E)\right]$$

Emission cross section in channel c

$$d\sigma_{c}(E, \varepsilon_{c}) = \sigma_{R} \int_{0}^{\infty} \sum_{n, \Delta n=2} P(n, E, t) \lambda_{n, c}(E) dt d\varepsilon_{c}$$

DE LA RECHERCHE À L'INDUSTRIE

THE PRE-EQUILIBRIUM MODEL (Initialisation & transition rates)

THE PRE-EQUILIBRIUM MODEL (Initialisation & transition rates)

Initialisation

 $P(n, E, 0) = \delta_{n, n_0}$ with $n_0=3$ for nucleon induced reactions

Transition rates

$$\lambda_{n, n-2} (E) = \frac{2\pi}{\hbar} \langle M^2 \rangle \quad \omega(p,h,E) \text{ with } p+h=n-2$$

$$\lambda_{n, n+2} (E) = \frac{2\pi}{\hbar} \langle M^2 \rangle \quad \omega(p,h,E) \text{ with } p+h=n+2$$

$$\lambda_{n, n+2} (E) = \frac{2s_c+1}{\hbar} \langle M^2 \rangle \quad \omega(p,h,E) \text{ with } p+h=n+2$$

$$\lambda_{n, c} (E) = \frac{2s_c+1}{\pi^2 \hbar^3} \mu_c \quad \varepsilon_c \quad \sigma_{c,inv} (\varepsilon_c) \frac{\omega(p-p_b,h,E-\varepsilon_c-B_c)}{\omega(p,h,E)}$$
Original formulation

THE PRE-EQUILIBRIUM MODEL (Initialisation & transition rates)

Initialisation

 $P(n, E, 0) = \delta_{n, n_0}$ with $n_0=3$ for nucleon induced reactions

Transition rates

$$\lambda_{n, n-2}(E) = \frac{2\pi}{\hbar} \langle M^2 \rangle \quad \omega(p,h,E) \text{ with } p+h=n-2$$

$$\lambda_{n, n+2}(E) = \frac{2\pi}{\hbar} \langle M^2 \rangle \quad \omega(p,h,E) \text{ with } p+h=n+2$$

$$\lambda_{n, c}(E) = \frac{2s_c+1}{\pi^2 \hbar^3} \mu_c \, \varepsilon_c \, \sigma_{c,inv} \, (\varepsilon_c) \frac{\omega(p-p_b,h,E-\varepsilon_c-B_c)}{\omega(p,h,E)} \, Q_c(n) \, \Phi_c$$

Corrections for proton-neutron distinguishability & complex particle emission

THE PRE-EQUILIBRIUM MODEL (Initialisation & transition rates)

Initialisation

 $P(n, E, 0) = \delta_{n, n_0}$ with $n_0 = 3$ for nucleon induced reactions

Transition rates

$$\lambda_{n, n-2} (E) = \frac{2\pi}{\hbar} \langle M^2 \rangle \quad \omega(p,h,E) \text{ with } p+h=n-2$$

$$\lambda_{n, n+2} (E) = \frac{2\pi}{\hbar} \langle M^2 \rangle \quad \omega(p,h,E) \text{ with } p+h=n+2$$

$$\lambda_{n, c} (E) = \frac{2s_c+1}{\pi^2 \hbar^3} \mu_c \, \varepsilon_c \, \sigma_{c,inv} \, (\varepsilon_c) \frac{\omega(p-p_b,h,E-\varepsilon_c-B_c)}{\omega(p,h,E)} \, Q_c(n) \, \Phi_c$$

State densities

 $\omega(\mathbf{p},\mathbf{h},\mathbf{E}) =$ number of ways of distributing \mathbf{p} particles and \mathbf{h} holes on among accessible single particle levels with the available excitation energy \mathbf{E}

THE PRE-EQUILIBRIUM MODEL (State densities)

State densities in ESM

- Ericson 1960 : no Pauli principle
- Griffin 1966 : no distinction between particles and holes
- Williams 1971 : distinction between particles and holes as well as between neutrons and protons but infinite number of accessible states for both particle and holes

$$\omega_{p_{\pi}h_{\pi}p_{\nu}h_{\nu}}(U) = g_{\pi}^{p_{\pi}+h_{\pi}}g_{\nu}^{p_{\nu}+h_{\nu}}\frac{(U-B)^{M-1}}{p_{\pi}!p_{\nu}!h_{\pi}!h_{\nu}!(M-1)!},$$

where M is the total number of particles and holes of both kinds and

$$B = \frac{1}{4} \left(\frac{p_{\pi}^2 + h_{\pi}^2 + p_{\pi} - h_{\pi}}{g_{\pi}} + \frac{p_{\nu}^2 + h_{\nu}^2 + p_{\nu} - h_{\nu}}{g_{\nu}} \right) - \frac{1}{2} \left(\frac{h_{\pi}}{g_{\pi}} + \frac{h_{\nu}}{g_{\nu}} \right)$$

THE PRE-EQUILIBRIUM MODEL (State densities)

State densities in ESM

- Ericson 1960 : no Pauli principle
- Griffin 1966 : no distinction between particles and holes
- Williams 1971 : distinction between particles and holes as well as between neutrons and protons but infinite number of accessible states for both particle and holes
- Běták and Doběs 1976 : account for finite number of holes' states
- Obložinský 1986 : account for finite number of particles' states (MSC)
- Anzaldo-Meneses 1995 : first order corrections for increasing number of p-h
- Hilaire and Koning 1998 : generalized expression in ESM

THE PRE-EQUILIBRIUM MODEL

Cross section

91

Outgoing energy

THE PRE-EQUILIBRIUM MODEL

DE LA RECHERCHE À L'INDUSTRIE

• p-h level density tables

Shape elastic

THE COMPOUND NUCLEUS MODEL (initial population)

After direct and pre-equilibrium emission

After direct and pre-equilibrium emission

THE COMPOUND NUCLEUS MODEL (initial population)

After direct and pre-equilibrium emission

THE COMPOUND NUCLEUS MODEL (basic formalism)

Compound nucleus hypothesys

- Continuum of excited levels
- Independence between incoming channel a and outgoing channel b

 \Rightarrow Hauser- Feshbach formula

$$\sigma_{ab} = \frac{\pi}{k_a^2} \qquad \frac{T_a T_b}{\sum_c T_c}$$

DE LA RECHERCHE À L'INDUSTRIE

THE COMPOUND NUCLEUS MODEL (qualitative feature)

Compound angular distribution & **direct** angular distributions

THE COMPOUND NUCLEUS MODEL (complete channel definition)

Channel Definition

Incident channel a = $(\vec{l}_a, \vec{j}_a = \vec{l}_a + \vec{s}_a, \vec{J}_A, \pi_A, E_A, E_a)$

Conservation equations

- Total energy : $E_a + E_A = E_{CN} = E_b + E_B$
- Total momentum : $\vec{p}_a + \vec{p}_A = \vec{p}_{CN} = \vec{p}_b + \vec{p}_B$
- Total angular momentum : $\vec{l}_a + \vec{s}_a + \vec{J}_A = \vec{J}_{CN} = \vec{l}_b + \vec{s}_b + \vec{J}_B$
- Total parity : π_{A} (-1)^I_a = $\pi_{CN} = \pi_{B}$ (-1)^I_b

THE COMPOUND NUCLEUS MODEL (loops over all quantum numbers)

In realistic calculations, all possible quantum number combinations have to be considered

THE COMPOUND NUCLEUS MODEL (loops over all quantum numbers)

In realistic calculations, all possible quantum number combinations have to be considered

THE COMPOUND NUCLEUS MODEL (loops over all quantum numbers)

In realistic calculations, all possible quantum number combinations have to be considered

THE COMPOUND NUCLEUS MODEL (width fluctuation correction factor)

Breit-Wigner resonance integrated and averaged over an energy width Corresponding to the incident beam dispersion

THE COMPOUND NUCLEUS MODEL (main methods to calculate WFCF)

• Tepel method

Simplified iterative method

Moldauer method

Simple integral

• GOE triple integral

« exact » result

Elastic enhancement with respect to the other channels Inelastic enhancement sometimes in very particular situations ? DE LA RECHERCHE À L'INDUSTRIE

THE COMPOUND NUCLEUS MODEL (the GOE triple integral)

$$W_{a,l_a,j_a,b,l_b,j_b} = \int_0^{+\infty} d\lambda_1 \int_0^{+\infty} d\lambda_2 \int_0^1 d\lambda \frac{\lambda(1-\lambda)|\lambda_1-\lambda_2|}{\sqrt{\lambda_1(1+\lambda_1)\lambda_2(1+\lambda_2)}(\lambda+\lambda_1)^2(\lambda+\lambda_2)^2}$$

$$\prod_{c} \frac{(1 - \lambda T_{c,l_{c},j_{c}}^{J})}{\sqrt{(1 + \lambda_{1} T_{c,l_{c},j_{c}}^{J})(1 + \lambda_{2} T_{c,l_{c},j_{c}}^{J})}} \quad \left\{ \delta_{ab} (1 - T_{a,l_{a},j_{a}}^{J}) \right\}$$

$$\left[\frac{\lambda_1}{1+\lambda_1 T^J_{a,l_a,j_a}} + \frac{\lambda_2}{1+\lambda_2 T^J_{a,l_a,j_a}} + \frac{2\lambda}{1-\lambda T^J_{a,l_a,j_a}}\right]^2 + (1+\delta_{ab})$$

$$\left[\frac{\lambda_1(1+\lambda_1)}{(1+\lambda_1 T^J_{a,l_a,j_a})(1+\lambda_1 T_{b,l_b,j_b})} + \frac{\lambda_2(1+\lambda_2)}{(1+\lambda_2 T^J_{a,l_a,j_a})(1+\lambda_2 T_{b,l_b,j_b})}\right]$$

$$+ \frac{2\lambda(1-\lambda)}{(1-\lambda T^J_{a,l_a,j_a})(1-\lambda T_{b,l_b,j_b})} \bigg] \bigg\}$$

DE LA RECHERCHE À L'INDUSTRIE

THE COMPOUND NUCLEUS MODEL (flux redistribution illustration)

THE COMPOUND NUCLEUS MODEL (multiple emission)

E LA RECHERCHE À L'INDUSTRIE

REACTION MODELS & REACTION CHANNELS

 $n + {}^{238}U$

Cea

THE COMPOUND NUCLEUS MODEL (compact expression)

$$\mathbf{\sigma}_{\mathbf{NC}} = \sum_{\mathbf{b}} \mathbf{\sigma}_{\mathbf{ab}} \quad \text{où } \mathbf{b} = \gamma, \mathbf{n}, \mathbf{p}, \mathbf{d}, \mathbf{t}, \dots, \text{ fission}$$

$$\mathbf{\sigma}_{\mathbf{ab}} = \frac{\pi}{\mathbf{k}_{\mathbf{a}}^{2}} \sum_{\mathbf{J}, \pi} \sum_{\alpha, \beta} \frac{(2\mathbf{J}+1)}{(2\mathbf{s}+1)(2\mathbf{I}+1)} \mathbf{T}_{\mathbf{lj}}^{\mathbf{J}\pi}(\alpha) \quad \frac{\langle \mathbf{T}_{\mathbf{b}}^{\mathbf{J}\pi}(\beta) \rangle}{\sum_{\delta} \langle \mathbf{T}_{\mathbf{d}}^{\mathbf{J}\pi}(\delta) \rangle} \quad W_{\alpha\beta}$$
with $\mathbf{J} = \mathbf{l}_{\alpha} + \mathbf{s}_{\alpha} + \mathbf{I}_{\mathbf{A}} = \mathbf{j}_{\alpha} + \mathbf{I}_{\mathbf{A}} \text{ and } \pi = (-1)^{\mathbf{l}_{\alpha}} \pi_{\mathbf{A}}$

and $\langle T_b(\beta) \rangle$ = transmission coefficient for outgoing channel β associated with the outgoing particle b

THE COMPOUND NUCLEUS MODEL (various decay channels)

Possible decays

• Emission to a discrete level with energy E_d

$$\langle T_{b}(\beta) \rangle = T_{lj}^{J\pi}(\beta)$$
 given by the O.M.P.

Emission in the level continuum

$$\langle T_{b}(\beta) \rangle = \int_{E}^{E + \Delta E} T_{lj}^{J\pi}(\beta) \rho(E, J, \pi) dE$$

 $\rho(E,J,\pi)$ density of residual nucleus' levels (J, π) with excitation energy E

Emission of photons, fission

Specific treatment

Two types of strength functions :

Two types of strength functions :

- the « upward » related to photoabsorption

$$\overrightarrow{f}_{\rm XL}(\epsilon_{\gamma}) = \frac{\epsilon_{\gamma}^{-2L+1}}{(\pi\hbar c)^2} \frac{\langle \sigma_{\rm XL}(\epsilon_{\gamma}) \rangle}{2L+1}.$$

 $\overleftarrow{f}_{\rm XL}(\epsilon_{\gamma}) = \epsilon_{\gamma}^{-(2L+1)} \frac{\langle \Gamma_{\rm XL}(\epsilon_{\gamma}) \rangle}{D_l}$

- the « downward » related to γ -decay

$$T^{k\lambda}(E,\varepsilon_{\gamma}) = 2\pi \int \Gamma^{k\lambda}(\varepsilon_{\gamma}) \rho(E) dE$$
$$= 2\pi f(k,\lambda,\varepsilon_{\gamma}) \varepsilon_{\gamma}^{2\lambda+1}$$
$$f(k,\lambda,\varepsilon_{\gamma}) : gamma strength fur$$

k : transition type EM (E ou M)

 $\boldsymbol{\lambda}$: transition multipolarity

 ε_{γ} : outgoing gamma energy

 $f(k,\lambda, \varepsilon_{\gamma})$: gamma strength function (several models)

Decay selection rules from a level J_i^{π} to a level J_f^{π} :

Pour E λ : $\pi_f = (-1)^{\lambda} \pi_i$ Pour M λ : $\pi_f = (-1)^{\lambda+1} \pi_i$ $|J_i - \lambda| \le J_f \le J_i + \lambda$ (E1 $\approx 10^2$ M1) (XL $\approx 10^{-3}$ XL-1)

Renormalisation method for thermal neutrons

$$<\mathbf{T}_{\gamma}>=\sum_{\mathbf{J}_{i},\pi_{i}}\sum_{\mathbf{k}\lambda}\sum_{\mathbf{J}_{f},\pi_{f}}\int_{0}^{\mathbf{B}_{n}}\mathbf{T}_{\mathbf{k}\lambda}(\varepsilon)\rho(\mathbf{B}_{n}-\varepsilon,\mathbf{J}_{f},\pi_{f})\mathbf{S}(\lambda,\mathbf{J}_{i},\pi_{i},\mathbf{J}_{i},\pi_{f}) d\varepsilon = \mathbf{2\pi} <\mathbf{\Gamma}_{\gamma}>\rho(\mathbf{B}_{n})$$

$$T^{k\lambda}(E,\varepsilon_{\gamma}) = 2\pi \int_{\Gamma}^{E+\Delta E} \Gamma^{k\lambda}(\varepsilon_{\gamma}) \rho(E) dE$$
$$= 2\pi f(k,\lambda,\varepsilon_{\gamma}) \varepsilon_{\gamma}^{2\lambda+1}$$
$$f(k,\lambda,\varepsilon_{\gamma}) : gamma strength func-$$

k : transition type EM (E ou M)

- $\boldsymbol{\lambda}$: transition multipolarity
- ε_{γ} : outgoing gamma energy

 $f(k,\lambda, \varepsilon_{\gamma})$: gamma strength function (several models)

Decay selection rules from a level J_i^{π} to a level J_f^{π} :

Pour E λ : π_{f} =(-1)^{λ} π_{i} Pour M λ : π_{f} =(-1)^{λ +1} π_{i} IJ_i- λ | \leq J_f \leq J_i+ λ

experiment

Renormalisation method for thermal neutrons

$$<\mathbf{T}_{\gamma}>=\mathbf{C}\sum_{\mathbf{J}_{i},\pi_{i}}\sum_{\mathbf{k}\lambda}\sum_{\mathbf{J}_{f},\pi_{f}}\int_{0}^{\mathbf{B}_{n}}\mathbf{T}^{\mathbf{k}\lambda}(\varepsilon)\rho(\mathbf{B}_{n}-\varepsilon,\mathbf{J}_{f},\pi_{f})\mathbf{S}(\lambda,\mathbf{J}_{i},\pi_{i},\mathbf{J}_{i},\pi_{f})\,\mathbf{d}\varepsilon=\mathbf{2\pi}<\mathbf{\Gamma}_{\gamma}>\mathbf{1}$$

Improved analytical expressions :

- 2 Lorentzians for deformed nuclei
- Account for low energy deviations from standard Lorentzians for E1
 - . Kadmenskij-Markushef-Furman model (1983)
 - \Rightarrow Enhanced Generalized Lorentzian model of Kopecky-Uhl (1990)
 - \Rightarrow Hybrid model of Goriely (1998)
 - \Rightarrow Generalized Fermi liquid model of Plujko-Kavatsyuk (2003)
- Reconciliation with electromagnetic nuclear response theory
 - \Rightarrow Modified Lorentzian model of Plujko et al. (2002)
 - \Rightarrow Simplified Modified Lorentzian model of Plujko et al. (2008)

FIG. 42: E1 γ -decay strength function plotted against energy ϵ_{γ} for ⁹⁰Zr; experimental data are taken from Ref. [327].

Improved analytical expressions :

- 2 Lorentzians for deformed nuclei
- Account for low energy deviations from standard Lorentzians for E1
 - . Kadmenskij-Markushef-Furman model (1983)
 - \Rightarrow Enhanced Generalized Lorentzian model of Kopecky-Uhl (1990)
 - \Rightarrow Hybrid model of Goriely (1998)
 - \Rightarrow Generalized Fermi liquid model of Plujko-Kavatsyuk (2003)
- Reconciliation with electromagnetic nuclear response theory
 - \Rightarrow Modified Lorentzian model of Plujko et al. (2002)
 - \Rightarrow Simplified Modified Lorentzian model of Plujko et al. (2008)

Microscopic approaches : RPA, QRPA

« Those who know what is (Q)RPA don't care about details, those who don't know don't care either », private communication

 \Rightarrow Systematic QRPA with Skm force for 3317 nuclei performed by Goriely-Khan (2002,2004)

 \Rightarrow Systematic QRPA with Gogny force under work (300 Mh!!!)
MISCELLANEOUS : THE PHOTON EMISSION (phenomenology vs microscopic)

MISCELLANEOUS : THE PHOTON EMISSION (phenomenology vs microscopic)

 \Rightarrow Weak impact close to stability but large for exotic nuclei

MISCELLANEOUS : THE FISSION PROCESS (static picture exhibiting fission barriers)

MISCELLANEOUS : THE FISSION PROCESS (fissile or fertile ?)

Fertile target (²³⁸U)

MISCELLANEOUS : THE FISSION PROCESS (fissile or fertile ?)

MISCELLANEOUS : THE FISSION PROCESS (fissile or fertile ?)

Incident neutron data / ENDF/B-VI.8 / U238 / MT=19 : (n,f) / Cross section

MISCELLANEOUS : THE FISSION PROCESS (Fission transmission coefficients)

+ transition states on top of the barrier !

+ transition states on top of the barrier !

+ transition states on top of each barrier !

+ transition states on top of each barrier !
+ class II states in the intermediate well !

+ transition states on top of each barrier !
+ class II states in the intermediate well !

+ transition states on top of each barrier !
+ class II states in the intermediate well !

More exact expressions in Sin et al., PRC 74 (2006) 014608

MISCELLANEOUS : THE FISSION PROCESS (multiple humped barriers with maximum complexity)

See in Sin et al., PRC 74 (2006) 014608 Bjornholm and Lynn, Rev. Mod. Phys. 52 (1980) 725.

MISCELLANEOUS : THE FISSION PROCESS (Impact of class II states)

²³⁹Pu (n,f)

MISCELLANEOUS : THE FISSION PROCESS (impact of class II and class III states)

Case of a fertile nucleus

Partially damped class II states. No class III states

MISCELLANEOUS : THE FISSION PROCESS (impact of class II and class III states)

Case of a fertile nucleus

Class II + III states. Partial damping.

MISCELLANEOUS : THE FISSION PROCESS (Hill-Wheeler ?)

22

 \Rightarrow For exotic nuclei : strong deviations from Hill-Wheeler.

DE LA RECHERCHE À L'INDUSTRIE

MISCELLANEOUS : THE FISSION PROCESS (Microscopic fission cross sections)

MISCELLANEOUS : THE LEVEL DENSITIES (Principle)

Cez

MISCELLANEOUS : THE LEVEL DENSITIES (Qualitative aspects 1/2)

• Exponential increase of the cumulated number of discrete levels N(E) with energy

- $\Rightarrow \rho(E) = \frac{dN(E)}{dE}$ increases exponentially
- \Rightarrow odd-even effects

Mean spacings of s-wave neutron resonances at B_n of the order of few eV

 $\Rightarrow \rho(B_n)$ of the order of $10^4 - 10^6$ levels / MeV

DE LA RECHERCHE À L'INDUSTRIE

MISCELLANEOUS : THE LEVEL DENSITIES (Qualitative aspects 2/2)

MISCELLANEOUS : THE LEVEL DENSITIES (Quantitative analysis 1/2)

27

$$\rho(\mathbf{U}, \mathbf{J}, \pi) = \frac{1}{2} \frac{\sqrt{\pi}}{12} \frac{\exp(2\sqrt{aU})}{a^{1/4}U^{5/4}} \frac{2\mathbf{J}+1}{2\sqrt{2\pi}\sigma^3} \exp\left[\frac{(\mathbf{J}+1/2)^2}{2\sigma^2}\right] + \sigma^2 = \mathbf{I}_{rig} \sqrt{\frac{\mathbf{U}}{a}}$$

MISCELLANEOUS : THE LEVEL DENSITIES (Quantitative analysis 1/2)

E LA RECHERCHE À L'INDUSTRIE

MISCELLANEOUS : THE LEVEL DENSITIES (Quantitative analysis 1/2)

E LA RECHERCHE A L'INDUSTRI

MISCELLANEOUS : THE LEVEL DENSITIES (Quantitative analysis 2/2)

MISCELLANEOUS : THE LEVEL DENSITIES (Summary of most simple analytical description)

de la recherche à l'industrie

MISCELLANEOUS : THE LEVEL DENSITIES (More sophisticated approaches)

Superfluid model & Generalized superfluid model

Ignatyuk et al., PRC 47 (1993) 1504 & RIPL3 paper (IAEA)

 \Rightarrow More correct treatment of pairing for low energies

- \Rightarrow Fermi Gas + Ignatyuk beyond critical energy
- \Rightarrow Explicit treatment of collective effects

 \Rightarrow Collective enhancement only if $\rho_{int}(U) \neq 0$ not correct for vibrational states

MISCELLANEOUS : THE LEVEL DENSITIES (More sophisticated approaches)

Superfluid model & Generalized superfluid model

Ignatyuk et al., PRC 47 (1993) 1504 & RIPL2 Tecdoc (IAEA)

- \Rightarrow More correct treatment of pairing for low energies
- \Rightarrow Fermi Gas + Ignatyuk beyond critical energy
- \Rightarrow Explicit treatment of collective effects

Shell Model Monte Carlo approach

Agrawal et al., PRC 59 (1999) 3109

- \Rightarrow Realistic Hamiltonians but not global
- \Rightarrow Coherent and incoherent excitations treated on the same footing
- \Rightarrow Time consuming and thus not yet systematically applied

Combinatorial approach

S. Hilaire & S. Goriely, NPA 779 (2006) 63 & PRC 78 (2008) 064307.

- \Rightarrow Direct level counting
- \Rightarrow Total (compound nucleus) and partial (pre-equilibrium) level densities
- \Rightarrow Non statistical effects
- \Rightarrow Global (tables)

THE LEVEL DENSITIES (The combinatorial method 1/3)

See PRC 78 (2008) 064307 for details

- HFB + effective nucleon-nucleon interaction \Rightarrow single particle level schemes
- Combinatorial calculation \Rightarrow intrinsic p-h and total state densities ω (U, K, π)

THE LEVEL DENSITIES (The combinatorial method 1/3)

Level density estimate is a counting problem: $\rho(U)=dN(U)/dU$

N(U) is the number of ways to distribute the nucleons among the available levels for a fixed excitation energy U

THE LEVEL DENSITIES (The combinatorial method 1/3)

See PRC 78 (2008) 064307 for details

- HFB + effective nucleon-nucleon interaction \Rightarrow single particle level schemes
- Combinatorial calculation \Rightarrow intrinsic p-h and total state densities ω (U, K, π)
- Collective effects \Rightarrow from state to level densities $\rho(U, J, \pi)$

folding of intrinsic and vibrational state densities
construction of rotational bands for deformed nuclei

$$\rho(\mathbf{U}, \mathbf{J}, \pi) = \sum_{\mathbf{K}} \omega \left(\mathbf{U} - \mathbf{E}_{\text{rot}}^{\mathbf{JK}}, \mathbf{K}, \pi\right)$$

2) spherical nuclei

$$\rho(\mathbf{U}, \mathbf{J}, \pi) = \omega (\mathbf{U}, \mathbf{K}=\mathbf{J}, \pi) - \omega (\mathbf{U}, \mathbf{K}=\mathbf{J}+1, \pi)$$

- Phenomenological transition for deformed/spherical nucleus

THE LEVEL DENSITIES (The combinatorial method 2/3)

→ Structures typical of non-statistical feature

DE LA RECHERCHE À L'INDUSTRIE

97

THE LEVEL DENSITIES (The combinatorial method 3/3)

$$f_{\rm rms} = \exp\left[\frac{1}{\bar{N}_e}\sum_{i=1}^{5}\ln^2\frac{D_{\rm th}^i}{D_{\rm exp}^i}\right]$$

DE LA RECHERCHE À L'INDUSTRIE

THE LEVEL DENSITIES (The combinatorial method 3/3)

Description similar to that obtained with other global approaches

E LA RECHERCHE À L'INDUSTRIE

CONCLUSIONS & PROPECTS

- Nuclear reaction modeling complex and no yet fully satisfactory
 - \Rightarrow pre-equilibrium phenomenon must be improved
 - \Rightarrow fission related phenomena (fission, FF yields & decay) must be improved
- Formal and technical link between structure and reactions has to be pushed further
 - \Rightarrow pre-equilibrium and OMP efforts already engaged
 - \Rightarrow computing time is still an issue
- Fundamental v-v interaction knowledge (and treatment) has to be improved
 - \Rightarrow Ab-initio not universal (low mass or restricted mass regions)
 - \Rightarrow Relativistic aspects not included systematically
 - \Rightarrow Human & computing time is still an issue