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 quantum multistep models 



Inelastic scattering 

The single-channel optical model describes the scattering in the elastic 
channel alone. It is called the spherical optical model because the target 
may be considered to be spherically symmetric since its structure is never 
introduced. 

Direct reactions that transfer energy as well as momentum are often 
important. Such inelastic scatterings, in the case of the inert projectiles (n, 
p, α, d, etc.), leave the target in an excited state and diminish the 
asymptotic kinetic energy of the projectile. In heavy ion collisions, both 
the projectile and the target are sometimes excited. To describe low-
energy inelastic scattering, we must introduce  at least the basic 
characteristics of the ground and excites states of the target and/or 
projectile.  

 The nature of the ground and excited states of a nucleus are also  
important factors in detemining the degree to which it is excited in a 
collision. The states that are most strongly excited in collisions are those 
that involve collective movement, vibrations and rotations, in particular.  



Vibrations 
Every nucleus possesses collective vibrational modes of excitation. Their 
importance in low-energy scattering, however, varies greatly from nucleus to 
nucleus. 

Vibrational modes may be understood qualitatively as shape oscillations of 
intermixed but incompressible neutron and proton fluids about their 
equilibrium configuration. The protons and neutrons may oscillate in phase 
(isoscalar) or out of phase (isovector) with one another. 

The simplest modes are: 

                                           Isoscalar                                     Isovector 

 

 l=1- – dipole               CM displacement 

 

 l=2+ -- quadrupole                

Octupole (l=3-) modes are also common and many others have been observed. 



Vibrations – Excitation Energies and states 
Isovector vibrations occur ar higher energies than the corresponding isoscalar 
ones, because of the strong nuclear attraction between protons and neutrons. 

Negative parity vibrational modes tend to vary smoothly in energy as a function 
of the mass number. Positive parity vibrational modes, vary greatly with the 
mass and depend on the shell structure. The variations in the excitation energies 
are explained in a microscopic treatment in terms of particle-hole pairs:  
     Negative parity – particle-hole pairs from two adjacent shells, 
     Positive parity – particle-hole pairs from same shell, when possible, 
                                otherwise from one shell and from second higher shell. 
     Ex.: 208Pb – the first excited state is the 3- octupole state.  

Vibrations are bosonic modes. Multiple excitations are possible but must form 
symmetric states. Thus an excited state consisting of two l=2+ quadrupole 
phonons on a I=0+ ground state may have  I=0+, 2+, 4+.   

The states may be written in terms of creation operators           as †
c cI Nb

and 



Vibrations – An example 

I=0+ 

I=2+ 

I=0+,2+, 4+ 

0xE =

xE ω= h
2xE ω= hIn the simplest case of non-interacting phonons, 

the spectrum is harmonic. The ideal spectrum of 
the first few excited quadrupole states on an 
I=0+ ground state are shown here. 

We compare this with the first few excited 
states of 58Ni (energies in MeV). 

Ideal 

I=0+ 

I=2+ 

I=4+,2+,1+,0+ 

0xE =

1.45xE =

2.46,2.78,2.90,2.94xE =

58Ni 

The three states that can be interpreted as 
two-phonon quadrupole states occur close 
in energy to twice the energy of the one-
phonon state and have the correct spin and 
parity The 1+ state, however, does not. 

 Another indicator of the relationship between the states are the branching ratios 
for their EM decay. The two-phonon 4+ and 2+ states decay almost exclusively to 
the one-phonon 2+ state, as does the 1+ state. The 0+ state decays to several of the 
others, but principally to the 1+ state. 



Rotations 
Many nuclei in the regions between closed shells possess a 
statically deformed ground state with axial symmetry.  The 
lowest energy excited states of  these nuclei are usually 
rotations about an axis perpendicular to the symmetry axis. 

We can approximate the surface of a deformed nucleus as 

where the βλ, λ=2, 4, 6,... are deformation parameters and the angle θ´ is 
taken with respect to the symmetry axis of the nucleus. The most important 
of the deformation parameters is β2.  

When β2 <0, the nucleus is oblate. When β2 >0, the nucleus is prolate.  

The wave function of a rotational state can be written in terms of an intrinsic 
wave function χK and the rotation matrices        as 

where K is the projection of the angular momentum on the symmetry axis. 
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Rotations – An example 
A rotational band built on a 0+ ground state consists of  states with I=0+, 2+, 4+, 
6+, ...  A rotational band built on a ground state with spin I0≠0 consists of states 
with J=I0, I0+1, I0+2, I0+3, ...  

The excitation energy of a state with angular momentum I is 

The nucleus 238U possesses static deformations of β2=0.198 and β4=0.057. The 
rotational band based on its 0+ ground state consists of excited states with 
I=2+     Ex=0.045 MeV = 0.0075 MeV * 2*3, 
I=4+     Ex=0.148 MeV = 0.0074 MeV * 4*5, 
I=6+     Ex=0.307 MeV = 0.0073 MeV * 6*7, 
I=8+     Ex=0.518 MeV = 0.0072 MeV * 8*9, 

           :'
I=28+   Ex=4.516 MeV = 0.0056 MeV *28*29, and possibly more. 

The electromagnetic decay of each of these states occurs exclusively to the next 
state of lower energy in the chain. 



The generalized optical potential -- vibrations 
The simplest manner of extending the optical potential to take into account 
either static deformation or the dynamical deformation of a vibrational mode  
is to modify the radii of the terms in the potential accordingly. 

In its simplest form, a vibrational mode of a nucleus may be taken as a shape 
oscillation about a spherical equilibrium mode. The radii of the terms in the 
potential may be expressed as  

with 

where       and       are the phonon creation/annihilation operators and the βλ 
are the amplitudes of the shape oscillations. 

We may then expand the optical potential in the creation/annihilation 
operators as 

†bλµ bλµ

The potential is sometimes expanded to second order in the operators. The 
second order potential permits single-step transitions to two-phonon states. 



The generalized optical potential -- rotations 
The optical potential for a deformed nucleus may also be obtained by 
expanding the deformed potential radii  

in a Taylor series in the deformation parameters, βλ. However, when the 
deformations are large, it is better to expand it directly in multipoles as  

The moments Uλµ(r), with µ≠0, vanish in the body-fixed frame. The 
body-fixed angles     are related to the space fixed ones    through the 
collective angular coordinates of the nucleus,      . This implies that 

The optical potential in the rotational model may thus be expanded as  

The generalized optical potential, in both models, couples the relative motion 
to the internal degrees of freedom of the target. 

r̂ˆ 'r
intr̂

with 



Coupled-channels partial wave expansion 
To properly take into account the angular momentum of the target, the spin-
angular functions must be coupled to the target states to form target-spin-
angular functions of total angular momentum J and projection M, 

l
r
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j
r
cI
r

J
r

The functions also depend on the internal target coordinates. In 
terms of these, the scattering wave function may be expanded in a 
sum over both the excited states and angular momenta, 

The most significant difference here is that the partial wave functions depend on 
two sets of indices, l,  j, c and l´,  j´, c´. For a particle with spin in the spherical 
optical model, we have two indices l and l´, in principal, for each value of the 
total angular momentum j. For particles of spin 0 or spin ½, parity conservation 
reduces the two, l and l´, to have the same value. The partial wave functions and 
S-matrix elements are then uncoupled scalar quantities. Here, we should look 
more carefully to see how the channels could be coupled.  



Coupled partial waves 
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To analyze the partial waves that can couple, we must consider 
all possible combinations of the orbital angular momentum l, 
the spin s, the channel angular momentum j and the target spins 
Ic that can sum to a given value J of the total angular 
momentum and possess  a given value of the parity, π.  
Consider a simple example: a spin-½ nucleon incident on a 0+ ground state 
that can be excited to a 2+ target state. We have 
For the Jπ=1/2+ channel: 
  0+ ground state: l=0, j=1/2 
  2+ excited state: l=2, j=3/2 
                             l=2, j=5/2 

For the Jπ=1/2- channel: 
  0+ ground state: l=1, j=1/2 
  2+ excited state: l=1, j=3/2 
                             l=3, j=5/2 

For the Jπ=5/2+ channel: 
  0+ ground state: l=2, j=5/2 
  2+ excited state: l=0, j=1/2 
                             l=2, j=3/2 
                             l=2, j=5/2 
                             l=4, j=7/2 
                             l=4, j=9/2 

For the Jπ=5/2- channel: 
  0+ ground state: l=3, j=5/2 
  2+ excited state: l=1, j=1/2 
                             l=1, j=3/2 
                             l=3, j=5/2 
                             l=3, j=7/2 
                             l=5, j=9/2 

3 
coupled 
channels 

6 
coupled 
channels 



The coupled equations 
When the partial-wave expansion is substituted in the Schrödinger equation, 
it reduces to a set of coupled equations for each value of Jπ, 

where the potential matrix elements are those of the target-spin-angular 
functions, 

The matrix elements are independent of M due to rotational invariance and 
symmetric under interchange of indices, if the system is time-reversal invariant. 

If we group the matrix elements of the coupled equations into matrices, 

we may write the coupled equations for each value of Jπ as a matrix equation 



The scattering amplitude and S-matrix 
We may also introduce the target-spin angular functions into the matrix 
representation of the partial wave decomposition, but as a vector rather than as 
a matrix, 

The wave function may then be written as  

Conceptually, obtaining the scattering amplitude is now straightforward. As 
before, the wave function must be integrated numerically from the origin to 
beyond the range of the nuclear potential. There, it is matched to either 
Coulomb or free waves (in matrix form), 

Substituting this expression in the partial wave expansion and analyzing its 
asymptotic form, we obtain the scattering amplitude, 

The matrix elements of the scattering amplitude,                 , are labeled by 
the target state and the projections of the projectile and target spins. 

'' ',c cN c N c
f
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where 



Flux normalization 
The cross section can be defined in terms of a ratio of current densities or 
fluxes. When energy is removed from the relative motion, as in inelastic 
scattering, the relative velocity and the corresponding flux are reduced. To  
correct for this, we must multiply the scattering amplitude by a factor of  

We may do this by defining first the normalized S-matrix,  

and then defining the normalized scattering amplitude in its terms as  

where the Coulomb amplitude fC(θ) is now a matrix, diagonal in the spin 
projections and state indices, but different for each of the target states due to 
the difference in the relative motion. 



Angular distributions and cross sections 
The angular distributions for an unpolarized beam and target are obtained by 
averaging the squared amplitude over the initial spin projections and summing 
over the final ones. Denoting the initial state by c0 and its spin by I0, the 
differential elastic cross section is  

The differential inelastic cross section to an excited state c with spin Ic is 

For neutrons, the integrated elastic cross section is 

For charged or neutral particles, the inelastic cross section to an excited 
state c with spin Ic is 



Absorption cross sections 
Just as in the spherical optical model, we may associate an elastic absorption 
cross section σr with the flux lost from the elastic channel, 

with      being the ground-state component of the wave function. This cross 
section includes the flux lost to inelastic scattering as well as absorption.  

We may also define a total absorption cross section σabs (which is smaller 
than the elastic one) as the flux lost from all of the channels together, 

with Ψc the component of the wave function of state c.  

We have for the inelastic channels 

0c
Ψ

That is, the elastic absorption cross section is the sum of the total absorption 
cross section and the inelastic excitation cross sections. 

where 

where 

so that 



Cross sections and transmission coefficients 
Uing the asymptotic form of the wave function, the elastic absorption cross  
section may be calculated, 

It is a sum of the contributions of the elastic S-matrix elements. 

The total absorption cross  section may be reduced to a similar form, 

where we have introduced the coupled-channel transmission coefficients, 
which in matrix form are 

For neutrons, we may define the total cross section as the sum of the elastic 
and the elastic absorption ones, 

The total cross section measures the flux lost from the incident plane wave. It 
takes into account scattering of any type. 



An example – Rotational excitation of 238U 
Let us consider excitation of the ground state rotational band of 238U through 
the 8+ state. For J=1/2, 1+2+2+2+2=9 coupled channels are involved. For 
large values of the total angular momentum, we have 1+5+9+13+17=45 
coupled channels in each partial wave. 

The cross sections of the first excited states increase rapidly above their 
thresholds. The cross sections of the more highly excited states increase 
more smoothly. 

All of the cross sections 
decrease very slowly at high 
energy.  

The high energy values of the 
cross sections decrease by  a 
factor of about 5 for each state  
as one ascends  the rotational 
band in excitation energy.  



Comparison with 
experiment 

Inelastic cross sections are dominated 
by the contribution from the compound 
nucleus at low energies, as seen here 
for the first excited states of 58Ni and 
238U. 

The two calculations of the 58Ni 
inelastic cross  section use the same 
value of β2=0.2, yet yield cross 
sections that differ by almost a factor 
of two due to differences in the optical 
potentials. 

The cross section for excitation of the 
rotational state in 238U is 5 to 10 times 
greater than that of the vibrational state 
in 58Ni, mainly due to the factor of 30 
difference in their excitation energies. 



The Lippmann-Schwinger equation -- I 
The integral representation of the wave equation, the Lippmann-Schwinger 
equation,  

is often very useful for the analysis and solution of scattering problems. 
Here,       is the outgoing-wave Green’s function and  Ψ0 a wave function 
with an incoming wave boundary condition. It is usually most  convenient to 
place the single-channel optical potential in the H0 of the equation and only 
the couplings between states in U´. 

For the single-channel optical model, we can define incoming/outgoing-
wave solutions,            , of the wave equation, 

0G
+

( )j
lch r±

where the spin-orbit factor is 

Asymptotically, these solutions behave as incoming/outgoing Coulomb (free) 
waves,  

( )( 1) ( 1) ( 1) / 2.j
l sod d j j l l s s= + − + − +

where 



The Lippmann-Schwinger equation -- II 
The solution to the single-channel Schrödinger equation that is regular at the 
origin is given in terms of the incoming/outgoing solutions and the S-matrix as 

which is just the single-channel wave function of the partial wave expanson. 
We have merely relabeled the S-matrix as S0 . 

The single-channel Green’s function may be decomposed in partial waves as 

where 

The complete single-channel Green’s function for the coupled-channels 
problem may then be composed as  



The Lippmann-Schwinger equation -- III 
In terms of the channel matrices, the Green’s function       takes the form 0G

+

where we have grouped the appropriate Green’s functions in diagonal 
matrices, 

In terms of these, we can write the contribution to the Lippmann-Schwinger 
equation of each partial wave as  

Substituting the large-r expressions for the  wave functions,   

and using flux conservation to normalize the S-matrix,                               , 
we obtain 



The distorted-wave Born approximation (DWBA) 
The Lippmann-Schwinger equation, 

here in partial wave form, contains the wave function ΨJ(r) on both the 
right and left sides of the equation. This can be used to advantage when the 
coupling potential U´ is small. We then expect the wave function ΨJ  to be 
little different from the uncoupled  one Ψ0J , so that we have, to first order, 

The corresponding DWBA S-matrix is  

The DWBA approximation may be extended to higher orders by substituting 
the solution of the previous order in the Lippmann-Schwinger equation. The 
second-order solution, for example, is obtained by substituting the first order 
solution in the integral equation. However, the DWBA is usually not used 
above the second-order. 



Limit of the DWBA 
Two examples give us an idea of 
when the DWBA might be applied to 
inelastic scattering.  
The DWBA provides a reasonable 
approximation to excitation of a 
vibrational state such as the 2+ one in 
58Ni. However, it greatly 
overestimates the excitation of a 
strongly-excited rotational state, such 
as the 2+ one in 238U. 
In general, the DWBA overestimates 
the inelastic cross section, since it 
does not take into account transitions 
back to the ground state. 
In the case of 238U, we note that  
transitions to other states of the 
rotational band can also be important. 



Quantum models of preequilibrium emission 
1) Quantum mechanical models separate the energy spectrum of a 
particle into a continuum component  P and a bound state component Q. 
The angular distribution expected of the two is quite different. The 
continuum component can be forward peaked but the bound state 
component must necessarily be symmetric about 90o. 
 

2) The semi-classical models are limited to a simplistic particle-hole 
description of nuclear structure, due to the fact that they are based on a 
particle picture of the evolution of the collision. This is compensated in 
part by the use of single-particle and hole energies rather than 
coordinates and momenta, as in an intra-nuclear cascade model. 
However, these models cannot take into account the coherent effects 
that lead to nuclear collectivity. These effects are quantum in nature. 
They can be taken into account in part by considering a quantum 
partition of the particle-hole structure of the semi-classical models,   

and taking into account the interactions within each exciton class. 



Multistep Compound (MSC) models - I 
The simplest example of a MSC model is in fact a semiclassical exciton 
one. There are two principal differences from the standard exciton model: 
1) The densities of states contain only bound single-particle states; 
2) Emission requires a transition that raises one of the nucleons to an 
unbound, continuum state. 
 

The densities of bound states can be calculated in much the same manner 
as the densities of states that take into account the maximum hole energy. 
With B being the maximum energy of a bound particle, we have 

when                and 

when                . The terms correcting for the maximum hole energy 
should also be included when the energy is sufficiently high. 

H. Feshbach, A. Kerman , S. Koonin, Ann Phys. (N.Y.) 125 (1988) 166. 



Multistep Compound (MSC) models - II 
The differential width for emission of a particle of energy εc is the sum of 
three contributions, from transitions that increase the exciton number by 
two, leave it the same or decrease it by two. The subsequent emission also 
decreases the exciton number by one. We define the corresponding 
densities of available states as     

and 

Note that the exciton number of the final configuration is n+1, n-1 and 
n-3, respectively. 



Multistep Compound (MSC) models - II 
We now write the differential widths for emission in terms of the densities 
of available states as  

and 

where 

is the density of states of the particle in the continuum. 
 

Note that the bound state to continuum matrix element |Mc|
2 contains a  1/ 

V  ¨normalization” of the continuum state that will cancel the factor of V 
in the density of states, as V (the volume) becomes large.  



Multistep Compound (MSC) models - III 

The internal transition widths are limited to bound-state densities but 
have the same form as before, 

To normalize the emission widths to standard optical quantities, we 
require that the emission rates leading to the same final exciton class and 
emission channel sum to the optical quantity,   

which furnishes 

H. Nishioka, J.J.M. Verbaarschot, H.A. Weidenmüller, S. Yoshida, Ann. Phys. (N.Y.) 183 (1988) 166. 
M. Herman, G. Reffo, H.A. Weidenmüller, Nucl. Phys. A 536 (1992)124. 



Multistep Compound (MSC) models - IV 

As the energy increases, the contribution to the MSC process decreases. 
Flux can also enter the MSC from the 3p-2h, 4p-3h, etc. MSD stages. 
However, the higher stages tend to emit fewer pre-equilibrium particles.   
 

This model can be extended to a two-component model and can also be 
extended to include angular momentum conservation. The MSC model in 
the EMPIRE-3.1 code conserves angular momentum. 
 

The complete MSC model contains terms in which a nucleon is emitted 
and then reabsorbed. Such terms could in principal change the exciton 
number by four. They are usually not included in model calculations. 

The initial configuration will be the 2p-1h exciton class, if the energy is 
sufficiently low for bound 2p-1h states to exist. Assuming that to be the 
case, we must still take into account the competition with the multistep 
direct reactions.   



Multistep Direct (MSD) models 
Multistep direct reaction models treat the case in which a nucleon remains 
in the continuum. As one particle is singled out, they are models of the 
“leading particle” type. However, the MSD is one of the few pre-
equilibrium models that permits a more realistic description of nuclear 
structure than the simple single-particle particle-hole one.  
 

Although they do not treat secondary collisions and emissions, as the 
exciton models can and the HMS model does automatically, they are able 
to describe the cross section and angular distribution of the fast particle 
with more accuracy than any other model.  
 

The first MSD model was proposed by Feshbach, Kerman and Koonin and 
is known as the FKK model. A similar model, but based on a more 
rigorous development, was proposed by Nishioka,Weidenmüller and 
Yoshida. Calculations of single and two-step processes were first 
performed by Tamura, Udagawa and Lenske. The model in the 
EMPIRE-3.1 code follows most closely their version of the MSD.   

H. Feshbach, A. Kerman, S. Koonin, Ann. Phys. (N.Y.) 125 (1980) 429. 
H. Nishioka, H.A. Weidenmüller, S. Yoshida, Ann. Phys. (N.Y.) 183 (1988) 166.  
T. Tamura, T. Udagawa, H. Lenske, Phys. Rev. C 26 (1982) 379. 



Multistep Direct (MSD) models - I 
We begin by writing the Hamiltonian as a sum of three terms,  

where 
- Hopt is the energy-averaged optical model Hamiltonian that describes the 
relative motion of the projectile and the target; 
- Hint is the intrinsic Hamiltonian of the target; and 
-Vres is the residual interaction between the projectile and the target. 
If the residual interaction were strong, we would consider solving 
the Schrödinger equation  

by projecting onto the states of the intrinsic Hamiltonian 

where 

to obtained the coupled equations 



The Coupled Channels model 
Once the coupled channels equations are solved, the scattering amplitude 
can be calculated as  

where the optical wave function is the solution to  

and the differential cross section is  

The reaction cross section is the difference between the flux that enters in 
the elastic channel and that which exits in it, 

while 

so that 



Multistep Direct (MSD) models - II 

For the most part, the residual interaction couples the states weakly. We 
then consider the equation in its Lippmann-Schwinger form 

which we write in terms of coupled channels as  

where the propagator is 

When the coupling is weak, we can obtain a good approximation to the 
solution by back substitution, 



Multistep Direct (MSD) models - III 

The scattering amplitude to the state µ is given by 

where T0 is the elastic optical scattering amplitude. The amplitude 
for scattering inelastically to the state µ is then  

The differential cross section is 

In order to calculate this expression, we must first simplify it. 



Simplifying the MSD model - I 
We first note that the optical wave functions vary slowly with energy 
compared to the variation of the intrinsic wave functions. We denote 
this with a Roman index that refers to the energy in the region of the 
intrinsic state, µ → m, etc. 
To analyze the statistical properties of the cross  section, we focus on 
the matrix elements of the intrinisic Hamiltonian.  
 

If the residual interaction is a two-body one and the ground state is a 
pure 0p-0h state, then the one-step matrix element 

will only couple to the 1p-1h component of the state µ. Likewise, 
assuming that the 1p-1h component has not evolved into others during 
propagation, the two-step matrix element 

will only couple to the 2p-2h (and 0p-0h) of the state µ. In the 
same manner, we expect the three-step amplitude to couple 
principally to the 3p-3h states. 



Simplifying the MSD model - II 

If we perform an average of the cross section over the states in a small 
range of energy, we expect that cross terms, such as  

will tend to vanish due to the incoherence of the amplitudes of the 
states involved. We thus expect the average cross section to be an 
incoherent sum of the n-step cross sections. 



Average density operators 
It will be useful to be more precise about the average in energy. We can 
write the microscopic instrinsic-state density operator as  

We assume that when we average this over a distribution of width larger 
than the average level spacing, 

it reduces to a sum of terms for each of the np-nh configurations spaces, 

with 

where the spectroscopic densities are given by 



Simplifying the MSD model - III 

We next expand the residual interaction in multipoles Vλ. Since only 1p-1h 
configurations are excited in the one-step process, the average one-step 
cross section involves an average over transitions to 1p-1h states m around 
the excitation energy εm with form factors  

However, we will assume that the interaction can be represented in 
terms of average state-independent form factors Fλ and nuclear 
transition operators Oλ,  

We define the transition strength function Sλ in terms of the average 
density operator as   

This describes the transition rate per unit energy from the state c to the 
states c' centered about ε with angular momentum transfer Δl=λ. 



Simplifying the MSD model - IV 

To determine the average form factor, we might consider an average like 
the following  

However, this is still very specific – it depends on the configuration c. 
Instead, a global average over all np-nh configurations is used, 

We can now write the one-step cross section as  

where 



The MSD two-step cross section - I 

To evaluate the two-step cross section 

we assume that a typical term can be factorized into an optical part  

and an intrinsic part 

This approximation neglects the evolution of the intrinsic states 
and restricts the intrinsic propagator to its 1p-1h part. We also 
assume that the cross terms of these components average to zero. 



The MSD two-step cross section - II 
With the averaging assumption, we have 

where the |ac1|
2 are the coefficients of the 1p-1h term in the states at εn.  

 
We approximate this as 

where the second term is 



The MSD two-step cross section - III 

With these approximations, the two-step cross section can be written as  

Although the transition strength function Sλ(εm,εn) is defined so as to 
describe the 1p-1h to 2p-2h transitions, it is usually approximated in terms 
of the 1p-1h transition strength function as    

Further terms in the series could be calculated, this has only been done in 
the FKK approximation to date. 
 

Although the transition strength factor can (and has been) calculated 
using a simple set of particle-hole basis states, it is the point at which 
more information on the nuclear structure can be included in the 
calculation. It is usually calculated using the RPA or qRPA 
approximation, which diagonalizes the Hamiltonian in an extended 1p-1h 
basis 



Examples of MSD calculations         

This calculation compares an 
exciton model calculation (using 
PCROSS) with an MSD one. Note 
the structure furnished by the MSD 
calculation. 

This calculation shows the 
excellent results obtainable 
from an MSD calculation when 
the nuclear structure is well 
described. 

M. Herman et al., NDS 108 (2007) 2655. 



An example of an MSD-FKK calculations         

This example shows one of the few calculations of both inelastic scattering 
and charge exchange using an MSD model. The calculation was extended to 
the four-step process using a particle-hole basis of states and the FKK 
approximation, which obtains the MSD series through a convolution of 
double differential distributions. 

A.J. Koning, M.B. Chadwick, Phys. Rev. C 56 (1997) 970. 



Summary 

Direct reactions that transfer energy as well as momentum are often quite 
important. Such inelastic scatterings, in the case of the inert projectiles, 
leave the target in an excited state and diminish the asymptotic kinetic 
energy of the projectile.  

The states that are most strongly excited in inelastic collisions are those 
that involve collective movement, vibrations and rotations, in particular. 
When the coupling between states is strong, a coherent coupled channels 
claculation is necessary describe the reaction.  When the coupling is weak, 
the distorted-wave Born approximation is often sufficient. 

Quantum mechanical models separate the energy spectrum of a particle 
into a continuum component and a bound state component. The 
continuum component is usually forward peaked but the bound state 
component must necessarily be symmetric about 90o. These models 
succeed in taking into account the coherent effects that lead to nuclear 
collectivity as well as the incoherent single-particle excitations at slightly 
higher excitation energies.  


