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most series are divergent

divergent series are the deepest area of asymptotics -
the study of limits - and limits in physics are usually
singular

singular limits lie at the heart of relations between
physical theories at different levels

understanding divergence has been a thread running
through mathematics for several centuries

the subject has been repeatedly reborn, more
deeply each time
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XLIIL. A Letter from the rverend B 7
Thomas Bayes, F. R.S. to John Canton,
M. A. and F. R. S.

SIR,

Read Nov. 24, T F the following obfervations do not
1763 feem to you to be too minute, I fhould
efteem it as a favour, if you would pleafe to commu-
nicate them to the Royal Society.
It has been afferted by fome eminent mathemati-
cians, that the fum of the logarithms of the num-

bers 1.2. 3. 4. &c. to 2, is equal to} log. ¢+ 241 x

. I I I
lo§. z lcﬂ':ncd by the. feries 2 mm—- Soor 1260m T
— i T &c. if ¢ denote the circumference of
a circle whofe radius is unity. And it is true that this
expreffion will very nearly approach to the value of
that fum when 2 is large, and you take in only a
proper number of the firft terms of the foregoing
feries: but the whole feries can never properly ex-
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Bayes’s discovery: Stirling’s series for the factorial
diverges factorially
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Euler 1755-1760: took divergent
series seriously, as coded
representations of functions
Abel 1826 Divergent series are the invention

of the devil, and it is shameful to base on
them any demonstration whatsoever.

2+2=5, for sufficiently large values of 2
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numerical experiment
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the quietly beating heart of asymptotics:
Stokes’s phenomenon: the sudden appearance of a small
exponential while hidden behind a large one, going from

dark to bright ‘around the rainbow’ without passing z=0

Stokes phenomenon occurs throughout asymptotics -
in integrals, differential equations, integral equations,
difference equations, series, near more general types of
caustics...
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wave pattern decorating a cusp caustic: Pearcey’s integral

Yoo (x,y)= [ dt exp{i(it“ +xt” + yt)}

caustic
(cusp catastrophe)

wave intensity
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2 complex
phenomenon can occur waves / \
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for real parameters

cusp diffraction catastrophe (Wright |980)

VT Stokes set

1 real, 1 complex 1 = 3(3\/— 1/3‘2 2/3
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bifurcation set
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two contrasting general phenomena, with exponents 1P(7)

bifurcation (caustic, catastrophe) set: real saddles collide

violent birth/death of real waves 0°®=0
stokes set
. hamd

gentle birth/death of evanescent waves Re(®,-d,)=0
nonlocal bifurcation

(strictly, change of coefficient of subdominant exponential)



Stokes’s argument: the least term represents an
irremovable vagueness in optimally-truncated asymptotic
series, and the small exponential e2 can enter only where
it is smaller than this vagueness - which only happens very
close to a Stokes line



Stokes’s argument: the least term represents an
irremovable vagueness in optimally-truncated asymptotic
series, and the small exponential e2 can enter only where
it is smaller than this vagueness - which only happens very
close to a Stokes line

modern understanding: the second exponential is born
from the resummed tail of the divergent series, by a
universal mechanism:



Stokes’s argument: the least term represents an
irremovable vagueness in optimally-truncated asymptotic
series, and the small exponential e2 can enter only where
it is smaller than this vagueness - which only happens very
close to a Stokes line

modern understanding: the second exponential is born
from the resummed tail of the divergent series, by a
universal mechanism:

natural (large) variable F: difference between exponents



Stokes’s argument: the least term represents an
irremovable vagueness in optimally-truncated asymptotic
series, and the small exponential e2 can enter only where
it is smaller than this vagueness - which only happens very
close to a Stokes line

modern understanding: the second exponential is born
from the resummed tail of the divergent series, by a
universal mechanism:

natural (large) variable F: difference between exponents

least term: order n~I|Fl



Stokes’s argument: the least term represents an
irremovable vagueness in optimally-truncated asymptotic
series, and the small exponential e2 can enter only where
it is smaller than this vagueness - which only happens very
close to a Stokes line

modern understanding: the second exponential is born
from the resummed tail of the divergent series, by a
universal mechanism:

natural (large) variable F: difference between exponents

least term: order n~I|Fl
|F|-1 -

a, a
-y L.y

=T

= a,
asymptotics: large |F]| 2



Stokes’s argument: the least term represents an
irremovable vagueness in optimally-truncated asymptotic
series, and the small exponential e2 can enter only where
it is smaller than this vagueness - which only happens very
close to a Stokes line

modern understanding: the second exponential is born
from the resummed tail of the divergent series, by a
universal mechanism:

natural (large) variable F: difference between exponents

least term: order n~I|Fl

asymptotics: large |F]|




Stokes’s argument: the least term represents an
irremovable vagueness in optimally-truncated asymptotic
series, and the small exponential e2 can enter only where
it is smaller than this vagueness - which only happens very
close to a Stokes line

modern understanding: the second exponential is born
from the resummed tail of the divergent series, by a
universal mechanism:

natural (large) variable F: difference between exponents

least term: order n~IFl head tail

asymptotics: large |F]|




asymptotics of the
asymptotics: large n



universality of factorial
divergence of high orders
(Dingle, based on Darboux)

asymptotics of the
asymptotics: large n



universality of factorial
divergence of high orders
(Dingle, based on Darboux)

asymptotics of the
asymptotics: large n

L.

Roert Dingle



universality of factorial
divergence of high orders
(Dingle, based on Darboux)

asymptotics of the
asymptotics: large n

A

L.

Rert D<ing|e Gaston Darboux



asymptotics of the

asymptotics: large n

-

Roert Dingle

YL T b Ny
(%7 > v
.......

universality of factorial
divergence of high orders
(Dingle, based on Darboux)

Gaston Darboux




asymptotics of the
asymptotics: large n

-

huge simplification

Robert Dingle

universality of factorial
divergence of high orders
(Dingle, based on Darboux)

Gaston Darboux

because exact terms

rapidly get
complicated




asymptotics of the
asymptotics: large n

£

huge simplification
because exact terms
rapidly get
complicated

Robert Dingle Ga

universality of factorial
divergence of high orders
(Dingle, based on Darboux)

332727711C,(z)  117753804989C (z) 13899745416281C" (z) 311274631265011C.” ()

)= 10 + 12 + 14 + 16
274877906944 1 3298534883328 6926923254988807 164583696538533888 7

2431103703048530417C." (z) .\ 232544268738862214941C% (z)
449313491550197514240007" = 3731869485532640496844800007
361888761444289010497C(z) N 66540631045322715923177C% (z)

1064899933783461120599654400007r>  68430469744925211609733791744000007*

391261681973226653C5™ (z) 1259995823308801C}*(z)
250575394535171900728934400000007>° ~ 857171937866922882131558400000007
713214794639C) (7) . 50407933481C* (z) s
857171937866922882131558400000007*  176508845445556759888530505728000007 >
1039499C*(2) . 22411C5 (2) .
17683632011243163328349995008000007** ~ 3213919737897939284185210001817600007 *°
59C1) (2) ¢ (2)

+
136362023165098281057572481505689600007>°  93271623844927224243379577349891686400007 *



asymptotics of the asymptotics
of the asymptotics



asymptotics of the asymptotics
of the asymptotics

resumming the tail by Borel
summation, giving an integral

Emile Borel



asymptotics of the asymptotics
of the asymptotics

resumming the tail by Borel

summation, giving an integral

uniform approximation of the
integral across a Stokes line

ImF
ReF

Emile Borel



asymptotics of the asymptotics
of the asymptotics

resumming the tail by Borel
summation, giving an integral

uniform approximation of the
integral across a Stokes line

ImF
ReF

the small exponential is born not
suddenly but smoothly, according
to a universal scaling in terms of Emile Bore
an error function
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many applications in mathematics, to the
approximation of a variety of functions: the error
function in

* Bessel

* hypergeometric

* gamma

* even the error function itself

* integrals with coalescing saddles

* Riemann zeta function

in physics, applications to

* reflection of waves by refractive-index gradients

* histories of quantum jumps induced by slowly-
changing external forces, and particle pair creation

* breakdown of slow manifold in slow-fast systems
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large oscillations

en route (O(\/ £)),

getting smaller as
optimal order

(n=5) is
approached
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cannot capture exponentially
small terms

does not distinguish divergent
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superasymptotics: summing to the least term r~IFl:
Stokes and the smoothing of the Stokes discontinuity

capturing small exponentials: Kruskal, ‘asymptotics beyond all orders
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hyperasymptotics:
repeated resummation, based on the principle of
resurgence (Dlngle 1960s, Ecalle 1980s)

the series multiplying
each exponential
must diverge, in
order to
accommodate the

Jean Ecalle other exponentials

Roert Dingle

the divergence of a series must reflect its cause

moreover, each component series must contain, coded
into its high orders, information about all the other
exponentials, and all terms of the series multiplying them
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simplest case: only two exponentials eXp(_%F)

n S:Z;’Z a, — 217z(n_1)! dy ( a11) |
n=0 p=ee n—

| d, d;

(n— 1)(n— 2) (n— 1)(n— 2)(n— 3)

hyperasymptotic scheme for sum § as a series of series:
* primitive asymptotics - only q,

* sum series to least term - S, (superasymptotics)

* integral representation for remainder
* asymptotic series for remainder, summed to least term

(51)

* asymptotic series for new remainder, truncated (5, ) ...
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with more than two exponentials, graph structure of
higher approximants, e.g. multisaddle integrals:

(g
C,(-0,)
] @ basic saddle

Ci(-g,) ®
l O adjacent saddles
reached on descent

, O
G (0,9 paths from @
C3(G5) N\ o as argl” varies
3 C2(q) @ non-adjacent
O saddles
Co (0,

more adjacent saddles introduced at successive stages
of hyperasymptotics
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hyperasymptotics generates a sequence of series, from
‘scatterings’ between saddles
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no scattering § one scattering P two 5 three scatterings
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in the 1990s, 2000s, much new mathematics
originating from resurgence, etc:

Boyd, Chapman, Delabaere, Dunster, Ecalle, Howls,
Kruskal, Olde Daalhuis, Lutz, McLeod, Paris, Olver,
Ramis, Pham, Segur, Temme, Voros, Wong, Wood...
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resurgence, resummation... applications to field and

string theory

Analytic Continuation Of Chern-Simons Theory

Edward Witten

School of Natural Sciences, Institute for Advanced Study
Einstein Drive, Princeton, NJ 08540 USA

Resurgence and Trans-series in Quantum Field Theory:
The CPY~! Model

Gerald V. Dunne' and Mithat Unsal®

Introduction to l-summability

and the resurgence theory

David Sauzin

The semi-classical expansion and resurgence
in gauge theories: new perturbative,
instanton, bion, and renormalon effects

Philip C. Argyres' and Mithat Unsal’

Lectures on non-perturbative effects in large N theory,
matrix models and topological strings

Marcos Marino

Département de Physique Théorigue et Section de Mathématiques,
Université de Genéve, Genéve, CH-1211 Switzerland

Decoding perturbation theory using resurgence: Stokes
phenomena, new saddle points and Lefschetz thimbles

Aleksey Cherman,' Daniele Dorigoni’ and Mithat Unsal®
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steps in humanity’s long struggle to understand infinity






