

Divergent series: from Thomas Bayes to resurgence via the rainbow

Michael Berry

H HWills Physics Laboratory, University of Bristol, UK
http://michaelberryphysics.wordpress.com
infinite series are the basis for a wide class of approximations in mathematics and physics
infinite series are the basis for a wide class of approximations in mathematics and physics most series are divergent
infinite series are the basis for a wide class of approximations in mathematics and physics
most series are divergent
divergent series are the deepest area of asymptotics the study of limits - and limits in physics are usually singular
infinite series are the basis for a wide class of approximations in mathematics and physics
most series are divergent
divergent series are the deepest area of asymptotics the study of limits - and limits in physics are usually singular
singular limits lie at the heart of relations between physical theories at different levels
infinite series are the basis for a wide class of approximations in mathematics and physics
most series are divergent
divergent series are the deepest area of asymptotics the study of limits - and limits in physics are usually singular
singular limits lie at the heart of relations between physical theories at different levels
understanding divergence has been a thread running through mathematics for several centuries
infinite series are the basis for a wide class of approximations in mathematics and physics
most series are divergent
divergent series are the deepest area of asymptotics the study of limits - and limits in physics are usually singular
singular limits lie at the heart of relations between physical theories at different levels
understanding divergence has been a thread running through mathematics for several centuries
the subject has been repeatedly reborn, more deeply each time

If the following observatione do not secen to you to be foe moniut, g shou'd cotcom it as a faver if you wou'd plears to conomuwicale them to the rayal secith
that
It hat becn afourted by vome cmonent onaflemaficians, the aum of 4^{*} logarithmy of the numbers $1.2 .3 .4 .8 \%$ to z is equal to $\frac{1}{2} \log , c+\overline{2+\frac{1}{2}} \times \log , 2$ lefoenced by the sorien

$$
z=\frac{1}{12 z}+\frac{1}{360 z^{3}}-\frac{1}{1260 z^{5}}+\frac{1}{1640 z^{7}}-\frac{1}{1188 z^{9}}+8 f \quad \text { if c denotc }
$$ the circumference of a circle whose radsut is unity. And it is true that thi exprefoion with very wearly approach to the value of that dum when z is targe, $\$$ you take in onty a proper number of the first terms of the foregoing series: but the whole deried can never properly expiof any quantity at all; because aftor the $s^{\text {th }}$ term the cotffiensth begin to incruase, they afteowanis incriase at a greater rath than whal can be compinsalid by the increare of the powen of ty cowideaing the follewing mancer in which the cocfficicets of that

 If $f=2 d a+2 c b \quad 13 f=2 a a+2 d b+c^{2} \quad 15 g=2 f a \mathrm{~m} 2 \mathrm{f} b+2 d c$, \& , om, then take $A=a \quad B=2 b \quad C=2 \times 3 \times 4 C \quad D=2 \times 3 \times 4 \times 5.6 d$ $E=2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \in \&$ so on, \& A, B, C, D, E, F, fr with be the cosfficients of the forigoing swics: from whence it casily follorty that if any term in the itries aftor the 3 first be called y * its distanic from the, st $t \mathrm{crm}$, the nest term immedialicy
 length the subrequent termy of this sewts arc greake than the precee= ding onct s increate in infinitut os thencforc the wertil can have wo ulfimate value whahococr.
Mueh tef can that scrict bhere any whimate value, which is deduced from it by taking $z=1$ is supprocd to bs equal to the legarithere of the Square root of the peripheiy of a circte whose noliue it urithy, 4. whet it said concoming the forcesing verift is hue tappeass to be Te, much in the same mancothioning the seorte for finding gut the sum of of the-togarithms of the odd nuriters $3,5,7.8 \%, z$ form these that ase given for finding our the swn of the infinite piogrefoens in which the sevesal kerms have the same numerator whitst their deno minatow are any cerhain pewer of numberd increaring sis arithmethcal

If the following obocrvations do not sum to you to be toe miniuk, J shou'd cotsum it as a fawer it you woud plears to comenumicate them to the royal secitly It hat been afourted by vome comonent onablematicianen, the aum of 4 . logarithmy of the numbers 1.2.3.4.8\% to z is equal to $\frac{1}{2} \log , c+\overline{2+\frac{9}{2}} \times \log , 2$ lefomed by the sovire
$z=\frac{1}{12 z}+\frac{1}{360 z^{3}}-\frac{1}{1260 z^{5}}+\frac{1}{16400 z^{7}}-\frac{1}{1188 z^{9}}+8 c$ if c denols the circumference of a circle whose radsist is unity. A no it is true that this exprefoion witl vivy wearly approach to the value of that dum when z is targe, s you take in onty a proper number of the firal termy of the foregoing deries: but the whole deried can neve properly expief any quantity at all; because after the $s^{\text {th }}$ term the cotffienents begin to incucase, sthey aftewnand incriase at a greater rath than what can be compindalid by the incricale of the porven or z : thot z represent as number coor so targe, fo witt te cordont
 then take $A=a \quad B=2 b \quad C=2 \times 3 \times 4 \mathrm{C} \quad D=2 \times 3.4 \times 5 \times 6 \mathrm{~d}$ $E=2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \in \&$ an on A, B, C, D, E, F, fr wifl be the cosfficients of the forigoing swics: from whence it casily follorts that if any term in the itries after the 3 first be called y * its distanice from the, st $t \mathrm{crm}$ n, the nest term immediakly
 length the subsequent terms of thel sewt are greake than the precees ding own s increase in infinitut os thencfore the whote sell can have wo ulfimate vatue whabocuct.
Mueh Lef can that serict bhere any whimate value, which is deduced from it by taking $z=1$ is supproed to bc equal to the legarithom
 or mut it said concorning the forceoing verift is the the sappcans to to be of thach in the same comeining the setits for finding gut the sume of inding out the som of $3,5,7$, If,z a those that are given for finding oul the swo of the infinite pregrefoions in which the sevesal kerms have the same numerator shitst their demo minaton ave any certain pewer of numberd increaring sis ariffometrcal

Thomas Bayes submitted I747, published I763

XLIII. A Letter from the late Reverend Mr. Thomas Bayes, F. R. S. to John Canton, M. A. and F. R.S.

S I R,

Read Nov. 24, TF the following obfervations do not 1763. feem to you to be too minute, I fhould efteem it as a favour, if you would pleafe to communicate them to the Royal Society.

It has been afferted by fome eminent mathematicians, that the fum of the logarithms of the numbers I .2.3.4. \& c. to z, is equal to $\frac{1}{2} \log . c+\overline{z+\frac{1}{2}} \mathrm{X}$ \log. z leffened by the feries $z-\frac{1}{12 z}+\frac{1}{360 z^{3}} \frac{1}{1260 z^{5}}+$ $\frac{1}{1680 z^{1}}-\frac{1}{1188 z^{9}}+\& c$. if c denote the circumference of a circle whofe radius is unity. And it is true that this expreffion will very nearly approach to the value of that fum when z is large, and you take in only a proper number of the firft terms of the foregoing feries: but the whole feries can never properly ex-

If the folloving obocrvations do not sum to you to be toe minink, l tho id cothom it as a faom it you woud plears ho communicate them to the rogal vecitity
tan g1 hae buen afourted by ome cminent mathematicamo the the sum of M. loganitiom, of $=$ the numten 1.2 .3 4. .4 to z is equal to $\frac{1}{2} \log , c+\overline{z+\frac{1}{2}} \times \log , z$ lefored by the sariue
$z=\frac{1}{12} z+\frac{1}{360 z^{3}}-\frac{1}{1260 z^{5}}+\frac{1}{1640 z^{7}}-\frac{1}{1188 z^{9}}+$ \& 8 if c denote the circumfenence of a circle whone radiues is unity. And it is true that thic expreffion will veny mearly approach to the vabie of that sum when z a large, A you take in only a proper number of the firnt term, of the foregoing seriu: but the whole sericict can neece properly espisf any quantity at att; because after the sth tern the corffietinnt begin to incriate, "they aftewardo incriase at a greater rath than what can be comptinatid by the incriare of the porven or Z: tho' z repritent as numbice coer oo large, \&o, will ic cordint
 II t may be formed. Jake $a=\frac{1}{12}$ then take $A=a \quad B=26 \quad C=2 \times 3 \times 4 C \quad D=2 \times 3,4 \times 5,6 d$ $E=2 \times 3 \times 4 \times 5 \times 6 \times 7 \cdot 8$ \& 10 on, \& A, B, C, D, E, E, w win be the corfficients of the forigoing suric: from whence it casily follown that if any torm in the zerries altur the 3 first be called y * it distanze from the , ot torm n, the nest terme immediatily following will be greater than $\frac{n \times \frac{\pi}{2 n-1}}{6 n+9} \times \frac{g}{2^{2}}$. Wherefore at leng th the subscguent tions of thay sent are greake than the pricees
 ω thimate value whenosoce.
Much teso can that serice heve any uctimate value, which is deduces Fom it by taking $x=1$ a in ouppocd to be equal to the logaritthm

 of thaterearithene of the odl are gieve for sinding out the surer of the in fiminte orogrefion in in which the sevoal tomu have the same numerator tobitiot theier dene minatow are any certain sower of numbers inceating cin aritifimctrical

Thomas Bayes submitted I747, published I763

XLIII. A Letter from the late Reverend Mr. Thomas Bayes, F. R. S. to John Canton, M. A. and F. R.S.

SIR,

Read Nov. 24, TF the following obfervations do not ${ }_{17} 63$. feem to you to be too minute, I hould efteem it as a favour, if you would pleafe to communicate them to the Royal Society.

It has been afferted by fome eminent mathematicians, that the fum of the logarithms of the numbers $1.2 \cdot 3 \cdot 4.8 \mathrm{cc}$. to z, is equal to $\frac{x}{2} \log \cdot c+\overline{z+\frac{1}{2}} \mathrm{X}$ log. z leffened by the feries $z-\frac{1}{12 z}+\frac{1}{360 z^{3}} \frac{1}{1260 z^{5}}+$ $\frac{1}{1680 z^{7}}-\frac{1}{1188 z^{9}}+\& c$. if c denote the circumference of a circle whofe radius is unity. And it is true that this expreffion will very nearly approach to the value of that fum when z is large, and you take in only a proper number of the firf terms of the foregoing feries

If the following observations do not sum to you to be foe minus, J the sher it at a facer it you would pleas to comenumicate them to the royal seceitly
that
It hat been afourted by some eminent mathenaticeant, the sum of
$9^{\text {i }}$ logarithm of the numbers 1.2 .3 .4 .8 t to z it equal to
$\frac{1}{2} \log , c+\overline{2+\frac{1}{2}} \times \log , 2$ lefoened by the savvier
$z * \frac{1}{12 z}+\frac{1}{360 z^{3}}-\frac{1}{1260 z^{5}}+\frac{1}{1640 z^{7}}-\frac{1}{1188 z^{9}}+8 \%$ if c denote the circumference of a circle whose radius is unity. And it is true that this exprefoion will very nearly approach to the value of that sum when z is targe, $\$$ you take in only a proper number of the first terms of the foregoing service: but the whole series can new properly expires any quantity at all; because after the $\boldsymbol{s}^{\text {th }}$ term the corffierinth begin to increase, they afteowanis increase at a greater rath than what can be compinoatid by the incricare of the power of z : tho' z represent as number cor so targe, It will be cordons 4 considering the following manner in which the coefficients of that verite may be formed. Take $a=\frac{1}{12} \quad \bar{s} b=a \quad 7 c=20 a^{\prime}$ ghideonas

Thomas Bayes submitted I747, published I763

XLIII. A Letter from the late Reverend Mr. Thomas Bayes, F. R. S. to John Canton, M. A. and F. R.S.

SIR,

Read Nov. 24, T F the following observations do not 1763.
 1763. rem to you to be too minute, I mould

but the whole series can never

properly expieg any quantity at all; because at tor the $s^{\text {th }}$ term the coefficients begin to increase, st they afterwards increase at a greater rath than what can be compinealid by the increase of the power of z : tho z represent as number for so targe

[^0]a circle whole radius is unity. And it is true that this expreffion will very nearly approach to the value of that fum when z is large, and you take in only a proper number of the firft terms of the foregoing Series
\[

$$
\begin{gathered}
\log (z!)-\left(z+\frac{1}{2}\right) \log z+\log \sqrt{2 \pi}-z=\frac{1}{2 \pi^{2} z} \sum_{n=0}^{\infty}(-1)^{r} \frac{(2 r)!}{(2 \pi z)^{2 n}} \zeta(2 n+2) \\
\quad=\frac{1}{12 z}+\frac{1}{360 z^{3}}+\frac{1}{1260 z^{5}}+\frac{1}{1680 z^{7}}+\frac{1}{1188 z^{9}}+\frac{691}{360360 z^{11}}+\cdots
\end{gathered}
$$
\]

Bayes's discovery: Stirling's series for the factorial diverges factorially

$$
\begin{gathered}
\log (z!)-\left(z+\frac{1}{2}\right) \log z+\log \sqrt{2 \pi}-z=\frac{1}{2 \pi^{2} z} \sum_{n=0}^{\infty}(-1)^{r} \frac{(2 r)!}{(2 \pi z)^{2 n}} \zeta(2 n+2) \\
=\frac{1}{12 z}+\frac{1}{360 z^{3}}+\frac{1}{1260 z^{5}}+\frac{1}{1680 z^{7}}+\frac{1}{118 p z^{9}}+\frac{691}{360360 z^{11}}+\cdots \\
\text { Bayes's discovery: Stirling's sefies for the factorial } \\
\text { diverges factorially }
\end{gathered}
$$

$$
\begin{gathered}
\log (z!)-\left(z+\frac{1}{2}\right) \log z+\log \sqrt{2 \pi}-z=\frac{1}{2 \pi^{2} z} \sum_{n=0}^{\infty}(-1)^{r} \frac{(2 r)!}{(2 \pi z)^{2 n}} \zeta(2 n+2) \\
=\frac{1}{12 z}+\frac{1}{360 z^{3}}+\frac{1}{1260 z^{5}}+\frac{1}{1680 z^{7}}+\frac{1}{118 p z^{9}}+\frac{691}{360360 z^{11}}+\cdots \\
\text { Bayes's discovery: Stirling's series for the factorial } \\
\text { diverges factorially }
\end{gathered}
$$

Euler 1755-I760: took divergent series seriously, as coded representations of functions

$$
\begin{gathered}
\log (z!)-\left(z+\frac{1}{2}\right) \log z+\log \sqrt{2 \pi}-z=\frac{1}{2 \pi^{2} z} \sum_{n=0}^{\infty}(-1)^{r} \frac{(2 r)!}{(2 \pi z)^{2 n}} \zeta(2 n+2) \\
=\frac{1}{12 z}+\frac{1}{360 z^{3}}+\frac{1}{1260 z^{5}}+\frac{1}{1680 z^{7}}+\frac{1}{1188 z^{9}}+\frac{691}{360360 z^{11}}+\cdots
\end{gathered}
$$

Bayes's discovery: Stirling's series for the factorial diverges factorially

Euler 1755-I760: took divergent series seriously, as coded representations of functions
Abel 1826 Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever.

$$
\begin{gathered}
\log (z!)-\left(z+\frac{1}{2}\right) \log z+\log \sqrt{2 \pi}-z=\frac{1}{2 \pi^{2} z} \sum_{n=0}^{\infty}(-1)^{r} \frac{(2 r)!}{(2 \pi z)^{2 n}} \zeta(2 n+2) \\
=\frac{1}{12 z}+\frac{1}{360 z^{3}}+\frac{1}{1260 z^{5}}+\frac{1}{1680 z^{7}}+\frac{1}{118 p z^{9}}+\frac{691}{360360 z^{11}}+\cdots
\end{gathered}
$$

Bayes's discovery: Stirling's sefies for the factorial diverges factorially

Euler 1755-I760: took divergent series seriously, as coded representations of functions
Abel 1826 Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever.
$2+2=5$, for sufficiently large values of 2

Airy and interference fringes in the rainbow

George Airy (1838)

Airy and interference fringes in the rainbow

George Airy (1838)

fundamental physics: waves near the singularities of ray optics (caustics)

Airy and interference fringes in the rainbow

George Airy (1838)

fundamental physics: waves near the singularities of ray optics (caustics)
the Airy function
the Airy function

$$
\mathrm{Ai}(\mathrm{z})=\frac{1}{2 \pi} \int^{0} \mathrm{~d} \operatorname{dexp}\left\{\left[\frac{1}{3} t^{3}+z t\right)\right\}
$$

the Airy function

$$
\mathrm{Ai}(z)=\frac{1}{2 \pi} \int^{0} d \operatorname{dexp}\left\{\left(\frac{1}{3} t^{3}+z t\right)\right\}
$$

the Airy function

$$
\operatorname{Ai}(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} t \exp \left\{\mathrm{i}\left(\frac{1}{3} t^{3}+z t\right)\right\}
$$

numerical experiment

Stokes's approximations for large $|z|$, e.g. on the dark side

George Stokes (1847)

Stokes's approximations for large $|z|$, e.g. on the dark side

$$
\begin{aligned}
& \operatorname{Ai}(z)=\frac{\exp \left(+\frac{1}{2} F\right)}{2 \sqrt{\pi} z^{1 / 4}} \sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}, \quad F=-\frac{4}{3} z^{3 / 2} \\
& a_{0}=1, \quad a_{n}=\frac{\left(n-\frac{1}{6}\right)!\left(n-\frac{5}{6}\right)!}{2 \pi n!} \underset{r \rightarrow \infty}{\rightarrow} \frac{(n-1)!}{2 \pi}
\end{aligned}
$$

George Stokes (1847)

Stokes's approximations for large $|z|$, e.g. on the dark side

$$
\begin{aligned}
& \operatorname{Ai}(z)=\frac{\exp \left(+\frac{1}{2} F\right)}{2 \sqrt{\pi} z^{1 / 4}} \sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}, \quad F=-\frac{4}{3} z^{3 / 2} \\
& a_{0}=1, \quad a_{n}=\frac{\left(n-\frac{1}{6}\right)!\left(n-\frac{5}{6}\right)!}{2 \pi n!} \underset{r \rightarrow \infty}{ } \frac{(n-1)!}{2 \pi}
\end{aligned}
$$

factorial divergence again

George Stokes (1847)

Stokes's approximations for large $|z|$, e.g. on the dark side

George Stokes (1847)

$$
\begin{aligned}
& \operatorname{Ai}(z)=\frac{\exp \left(+\frac{1}{2} F\right)}{2 \sqrt{\pi} z^{1 / 4}} \sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}, \quad F=-\frac{4}{3} z^{3 / 2} \\
& a_{0}=1, \quad a_{n}=\frac{\left(n-\frac{1}{6}\right)!\left(n-\frac{5}{6}\right)!}{2 \pi n!} \underset{r \rightarrow \infty}{ } \frac{(n-1)!}{2 \pi}
\end{aligned}
$$

factorial divergence again

Stokes's approximations for large $|z|$, e.g. on the dark side

George Stokes (1847)

$$
\begin{aligned}
& \operatorname{Ai}(z)=\frac{\exp \left(+\frac{1}{2} F\right)}{2 \sqrt{\pi} z^{1 / 4}} \sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}, \quad F=-\frac{4}{3} z^{3 / 2} \\
& a_{0}=1, \quad a_{n}=\frac{\left(n-\frac{1}{6}\right)!\left(n-\frac{5}{6}\right)!}{2 \pi n!} \underset{r \rightarrow \infty}{ } \frac{(n-1)!}{2 \pi}
\end{aligned}
$$

factorial divergence again

Stokes's approximations for large $|z|$, e.g. on the dark side

George Stokes (1847)
for $z \gg 1$, pre-invented WKB

$$
\begin{aligned}
& \operatorname{Ai}(z)=\frac{\exp \left(+\frac{1}{2} F\right)}{2 \sqrt{\pi} z^{1 / 4}} \sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}, \quad F=-\frac{4}{3} z^{3 / 2} \\
& a_{0}=1, \quad a_{n}=\frac{\left(n-\frac{1}{6}\right)!\left(n-\frac{5}{6}\right)!}{2 \pi n!} \underset{r \rightarrow \infty}{ } \frac{(n-1)!}{2 \pi}
\end{aligned}
$$

factorial divergence again

Stokes's approximations for large $|z|$, e.g. on the dark side

George Stokes (1847)
for $z \gg 1$, pre-invented WKB for $z \ll-1$, pre-invented stationary phase

$$
\begin{aligned}
& \operatorname{Ai}(z)=\frac{\exp \left(+\frac{1}{2} F\right)}{2 \sqrt{\pi} z^{1 / 4}} \sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}, \quad F=-\frac{4}{3} z^{3 / 2} \\
& a_{0}=1, \quad a_{n}=\frac{\left(n-\frac{1}{6}\right)!\left(n-\frac{5}{6}\right)!}{2 \pi n!} \underset{r \rightarrow \infty}{ } \frac{(n-1)!}{2 \pi}
\end{aligned}
$$

factorial divergence again

puzzle of the two exponentials

puzzle of the two exponentials

two exponentials:
e_{1} and e_{2}

puzzle of the two exponentials

$$
\begin{aligned}
& e_{1}=\exp \left(\frac{1}{2} F\right)=\exp \left\{-\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\} \\
& e_{2}=\exp \left(-\frac{1}{2} F\right)=\exp \left\{+\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\}
\end{aligned}
$$

two exponentials:
e_{1} and e_{2}

puzzle of the two exponentials

$$
\begin{aligned}
& e_{1}=\exp \left(\frac{1}{2} F\right)=\exp \left\{-\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\} \\
& e_{2}=\exp \left(-\frac{1}{2} F\right)=\exp \left\{+\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\}
\end{aligned}
$$

two exponentials:
e_{1} and e_{2}

puzzle of the two exponentials

$$
\begin{aligned}
& e_{1}=\exp \left(\frac{1}{2} F\right)=\exp \left\{-\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\} \\
& e_{2}=\exp \left(-\frac{1}{2} F\right)=\exp \left\{+\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\}
\end{aligned}
$$

two exponentials:
e_{1} and e_{2}

puzzle of the two exponentials

$$
\begin{aligned}
& e_{1}=\exp \left(\frac{1}{2} F\right)=\exp \left\{-\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\} \\
& e_{2}=\exp \left(-\frac{1}{2} F\right)=\exp \left\{+\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\}
\end{aligned}
$$

two exponentials:
e_{1} and e_{2}
two exponentials: e_{1} and e_{2}

120°
one exponential:
e_{1}

puzzle of the two exponentials

$$
\begin{aligned}
& e_{1}=\exp \left(\frac{1}{2} F\right)=\exp \left\{-\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\} \\
& e_{2}=\exp \left(-\frac{1}{2} F\right)=\exp \left\{+\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\}
\end{aligned}
$$

two exponentials:
e_{1} and e_{2}
F positive real Stoke
two exponentials: e_{1} and e_{2}

120°
one exponential:
e_{1}

puzzle of the two exponentials

$$
\begin{aligned}
& e_{1}=\exp \left(\frac{1}{2} F\right)=\exp \left\{-\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\} \\
& e_{2}=\exp \left(-\frac{1}{2} F\right)=\exp \left\{+\frac{2}{3} \mathrm{i}(-z)^{3 / 2}\right\}
\end{aligned}
$$

two exponentials: e_{1} and e_{2}
F positive real Stoke
two exponentials: e_{1} and e_{2}

e_{2} is born where it is maximally dominated by e_{1}

the quietly beating heart of asymptotics:

 Stokes's phenomenon: the sudden appearance of a small exponential while hidden behind a large one, going from dark to bright 'around the rainbow' without passing $z=0$
the quietly beating heart of asymptotics:

 Stokes's phenomenon: the sudden appearance of a small exponential while hidden behind a large one, going from dark to bright 'around the rainbow' without passing $z=0$Stokes phenomenon occurs throughout asymptotics in integrals, differential equations, integral equations, difference equations, series, near more general types of caustics...

fold caustic

cusp caustic

fold caustic

wave pattern decorating a cusp caustic: Pearcey's integral

$$
\Psi_{\text {cusp }}(x, y)=\int_{-\infty}^{\infty} \mathrm{d} t \exp \left\{\mathrm{i}\left(\frac{1}{4} t^{4}+x t^{2}+y t\right)\right\}
$$

wave pattern decorating a cusp caustic: Pearcey's integral

$$
\Psi_{\text {cusp }}(x, y)=\int_{-\infty}^{\infty} \mathrm{d} t \exp \left\{\mathrm{i}\left(\frac{1}{4} t^{4}+x t^{2}+y t\right)\right\}
$$

caustic
(cusp catastrophe)
wave pattern decorating a cusp caustic: Pearcey's integral

$$
\Psi_{\text {cusp }}(x, y)=\int_{-\infty}^{\infty} \mathrm{d} t \exp \left\{\mathrm{i}\left(\frac{1}{4} t^{4}+x t^{2}+y t\right)\right\}
$$

caustic
(cusp catastrophe)

maximum
\uparrow
for $\operatorname{Ai}(u)$, Stokes set occurs in the complex plane

for $\operatorname{Ai}(u)$, Stokes set occurs in the complex plane
for higher diffraction catastrophes, the Stokes phenomenon can occur for real parameters

for $\operatorname{Ai}(u)$, Stokes set occurs in the complex plane
for higher diffraction catastrophes, the Stokes phenomenon can occur for real parameters

cusp diffraction catastrophe (Wright 1980)

two contrasting general phenomena, with exponents i $\Phi(t)$

two contrasting general phenomena, with exponents $\mathrm{i} \Phi(t)$

bifurcation (caustic, catastrophe) set: real saddles collide

violent birth/death of real waves

$$
\begin{gathered}
\partial_{t} \Phi=0 \\
\partial_{t}{ }^{2} \Phi=0
\end{gathered}
$$

two contrasting general phenomena, with exponents $\mathrm{i} \Phi(t)$
bifurcation (caustic, catastrophe) set: real saddles collide

one evanescent wave (complex saddle)
violent birth/death of real waves

$$
\begin{aligned}
& \partial_{t} \Phi=0 \\
& \partial_{t}^{2} \Phi=0
\end{aligned}
$$

stokes set

gentle birth/death of evanescent waves
$\operatorname{Re}\left(\Phi_{1}-\Phi_{2}\right)=0$ nonlocal bifurcation
two contrasting general phenomena, with exponents $\mathrm{i} \Phi(t)$
bifurcation (caustic, catastrophe) set: real saddles collide

one evanescent wave (complex saddle)
violent birth/death of real waves

$$
\begin{aligned}
& \partial_{t} \Phi=0 \\
& \partial_{t}^{2} \Phi=0
\end{aligned}
$$

stokes set

```
evanescent wave + dominant wave
```


gentle birth/death of evanescent waves
$\operatorname{Re}\left(\Phi_{1}-\Phi_{2}\right)=0$ nonlocal bifurcation
(strictly, change of coefficient of subdominant exponential)

Stokes's argument: the least term represents an irremovable vagueness in optimally-truncated asymptotic series, and the small exponential e_{2} can enter only where it is smaller than this vagueness - which only happens very close to a Stokes line

Stokes's argument: the least term represents an irremovable vagueness in optimally-truncated asymptotic series, and the small exponential e_{2} can enter only where it is smaller than this vagueness - which only happens very close to a Stokes line
modern understanding: the second exponential is born from the resummed tail of the divergent series, by a universal mechanism:

Stokes's argument: the least term represents an irremovable vagueness in optimally-truncated asymptotic series, and the small exponential e_{2} can enter only where it is smaller than this vagueness - which only happens very close to a Stokes line
modern understanding: the second exponential is born from the resummed tail of the divergent series, by a universal mechanism:
natural (large) variable F : difference between exponents

Stokes's argument: the least term represents an irremovable vagueness in optimally-truncated asymptotic series, and the small exponential e_{2} can enter only where it is smaller than this vagueness - which only happens very close to a Stokes line
modern understanding: the second exponential is born from the resummed tail of the divergent series, by a universal mechanism:
natural (large) variable F : difference between exponents
least term: order $n \sim|F|$

Stokes's argument: the least term represents an irremovable vagueness in optimally-truncated asymptotic series, and the small exponential e_{2} can enter only where it is smaller than this vagueness - which only happens very close to a Stokes line
modern understanding: the second exponential is born from the resummed tail of the divergent series, by a universal mechanism:
natural (large) variable F : difference between exponents least term: order $n \sim|F|$
asymptotics: large $|F|$

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}=\sum_{n=0}^{|F|-1} \frac{a_{n}}{F^{n}}+\sum_{n=|F|}^{\infty} \frac{a_{n}}{F^{n}}
$$

Stokes's argument: the least term represents an irremovable vagueness in optimally-truncated asymptotic series, and the small exponential e_{2} can enter only where it is smaller than this vagueness - which only happens very close to a Stokes line
modern understanding: the second exponential is born from the resummed tail of the divergent series, by a universal mechanism:
natural (large) variable F : difference between exponents
least term: order $n \sim|F|$
asymptotics: large $|F|$

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}=\sum_{n=0}^{|F|-1} \frac{a_{n}}{F^{n}}+\sum_{n=F \mid}^{\infty} \frac{a_{n}}{F^{n}}
$$

Stokes's argument: the least term represents an irremovable vagueness in optimally-truncated asymptotic series, and the small exponential e_{2} can enter only where it is smaller than this vagueness - which only happens very close to a Stokes line
modern understanding: the second exponential is born from the resummed tail of the divergent series, by a universal mechanism:
natural (large) variable F : difference between exponents
least term: order $n \sim|F|$
asymptotics: large $|F|$

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}=\begin{gathered}
\text { head } \\
\sum_{n=0}^{|F|-1} \frac{a_{n}}{F^{n}}+\sum_{n=|F|}^{\infty} \frac{a_{n}}{F^{n}}
\end{gathered}
$$

asymptotics of the
 asymptotics: large n

asymptotics of the asymptotics: large n

universality of factorial divergence of high orders (Dingle, based on Darboux)
asymptotics of the asymptotics: large n

Robert Dingle
universality of factorial divergence of high orders (Dingle, based on Darboux)
asymptotics of the asymptotics: large n
universality of factorial divergence of high orders (Dingle, based on Darboux)

Robert Dingle

Gaston Darboux
asymptotics of the asymptotics: large n
universality of factorial divergence of high orders (Dingle, based on Darboux)

Robert Dingle

Gaston Darboux

$$
\begin{aligned}
& \text { tail }=\sum_{n=|F|}^{\infty} \frac{a_{n}}{F^{n}} \\
& \approx C \sum_{n=|F|}^{\infty} \frac{(n-\alpha)!}{F^{n}}
\end{aligned}
$$

asymptotics of the asymptotics: large n
universality of factorial divergence of high orders (Dingle, based on Darboux)

Robert Dingle

Gaston Darboux

$$
\begin{aligned}
& \text { tail }=\sum_{n=|F|}^{\infty} \frac{a_{n}}{F^{n}} \\
& \approx C \sum_{n=|F|}^{\infty} \frac{(n-\alpha)!}{F^{n}}
\end{aligned}
$$

huge simplification
because exact terms
rapidly get
complicated
asymptotics of the asymptotics: large n
universality of factorial divergence of high orders (Dingle, based on Darboux)

Robert Dingle

$C_{20}(z)=\frac{332727711 C_{0}(z)}{274877906944 \pi^{10}}+\frac{117753804989 C_{0}^{(4)}(z)}{3298534883328 \pi^{12}}+\frac{13899745416281 C_{0}^{(8)}(z)}{69269232549880 \pi^{14}}+\frac{311274631265011 C_{0}^{(12)}(z)}{164583696538533888 \pi^{16}}+$ $\frac{2431103703048530417 C_{0}^{(16)}(z)}{44931349155019751424000 \pi^{18}}+\frac{232544268738862214941 C_{0}^{(20)}(z)}{373186948553264049684480000 \pi^{20}}+$
huge simplification because exact terms rapidly get complicated

$$
\begin{aligned}
& \text { tail }=\sum_{n=F \mid}^{\infty} \frac{a_{n}}{F^{n}} \\
& \approx C \sum_{n=F \mid}^{\infty} \frac{(n-\alpha)!}{F^{n}}
\end{aligned}
$$

$\frac{361888761444289010497 C_{0}^{(24)}(z)}{106489993378346112059965440000 \pi^{22}}+\frac{66540631045322715923177 C_{0}^{(28)}(z)}{6843046974492521160973379174400000 \pi^{24}}+$
$\frac{391261681973226653 C_{0}^{(32)}(z)}{25057539453517190072893440000000 \pi^{26}}+\frac{1259995823308801 C_{0}^{(36)}(z)}{85717193786692288213155840000000 \pi^{28}}+$
$\frac{713214794639 C_{0}^{(40)}(z)}{85717193786692288213155840000000 \pi^{30}}+\frac{50407933481 C_{0}^{(44)}(z)}{17650884544555675988853050572800000 \pi^{32}}+$
$\frac{1039499 C_{0}^{(48)}(z)}{1768363201124316332834999500800000 \pi^{34}}+\frac{22411 C_{0}^{(52)}(z)}{321391973789793928418521000181760000 \pi^{36}}+$
$1768363201124316332834999500800000 \pi^{34}$
$\frac{59 C_{0}^{(56)}(z)}{13636202316509828105757248150568960000 \pi^{38}}+\frac{C_{0}^{(60)}(z)}{9327162384492722424337957734989168640000 \pi^{40}}$

asymptotics of the asymptotics of the asymptotics

asymptotics of the asymptotics of the asymptotics

resumming the tail by Borel summation, giving an integral

Émile Borel

asymptotics of the asymptotics of the asymptotics

resumming the tail by Borel summation, giving an integral uniform approximation of the integral across a Stokes line

Émile Borel

asymptotics of the asymptotics of the asymptotics

resumming the tail by Borel summation, giving an integral uniform approximation of the integral across a Stokes line

the small exponential is born not suddenly but smoothly, according to a universal scaling in terms of

Émile Borel an error function

subtract the large exponential series

$$
\text { tail }=-\operatorname{iexp}\left(\frac{1}{2} F\right)\left(2 \sqrt{\pi} z^{1 / 4} \mathrm{Ai}(z)-\exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\text {int }|F|} \frac{a_{n}}{F^{n}}\right)
$$

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

subtract the large exponential series

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

subtract the large exponential series
tail $=-\operatorname{iexp}\left(\frac{1}{2} F\right)\left(\begin{array}{c}\text { big } \\ \sqrt{2 \sqrt{\pi} z^{1 / 4}} \mathrm{Ai}(z)- \\ \exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\text {in } \mid F /} \frac{a_{n}}{F^{n}}\end{array}\right)$

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

subtract the large exponential series

tail $=$| big |
| :---: |
| $-\mathrm{iexp}\left(\frac{1}{2} F\right)$ |
| $2 \sqrt{\pi} z^{1 / 4} \mathrm{Ai}(z)-$ |
| $\left.-\exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\text {in } \mid F /} \frac{a_{n}}{F^{n}}\right)$ |

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

subtract the large exponential series

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

difference small
subtract the large exponential series
tail $=\frac{\text { big }}{-\operatorname{iexp}\left(\frac{1}{2} F\right)}\left(\sqrt{\left.2 \sqrt{\pi} z^{1 / 4} \mathrm{Ai}(z)-\exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\text {int }|F|} \frac{a_{n}}{F^{n}}\right)=\frac{1+\operatorname{erf} \sigma}{2}, ~}\right.$

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

difference small
subtract the large exponential series
big
tail $=\frac{\text { big }}{-\operatorname{iexp}\left(\frac{1}{2} F\right)(}\left(\begin{array}{l}\text { big } \\ \left.2 \sqrt{\pi} z^{1 / 4} \mathrm{Ai}(z)-\exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\text {int }|F|} \frac{a_{n}}{F^{n}}\right)=\frac{1+\operatorname{erf} \sigma}{2}, ~\end{array}\right.$

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

difference small

$$
\sigma=\frac{\operatorname{Im} F}{\sqrt{2 \operatorname{Re} F}}
$$

subtract the large exponential series

$$
\text { tail }=-\operatorname{big}\left(\frac{\text { big }}{-\operatorname{iexp}\left(\frac{1}{2} F\right)}\left(\sqrt{\left.2 \sqrt{\pi} z^{1 / 4} \mathrm{Ai}(z)-\exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\text {int }|F|} \frac{a_{n}}{F^{n}}\right)}\right)=\frac{1+\operatorname{erf\sigma }}{2}\right.
$$

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

difference small

$$
\sigma=\frac{\operatorname{Im} F}{\sqrt{2 \operatorname{Re} F}}
$$

subtract the large exponential series tail $=-\operatorname{liexp}\left(\frac{1}{2} F\right)\left(\sqrt{\text { big }}\left(\sqrt{2 \sqrt{\pi} z^{1 / 4} \mathrm{Ai}(z)}-\exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\text {int }|F|} \frac{a_{n}}{F^{n}}\right)\right)=\frac{1+\operatorname{erf\sigma }}{2}$

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

difference small

$$
\sigma=\frac{\operatorname{Im} F}{\sqrt{2 \operatorname{Re} F}}
$$

subtract the large exponential series tail $\left.=\frac{\text { big }}{-\operatorname{iexp}\left(\frac{1}{2} F\right)}\left(\sqrt{2 \sqrt{\pi} z^{1 / 4} \operatorname{Ai}(z)}-\exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\text {int }|F|} \frac{a_{n}}{F^{n}}\right)\right)=\frac{1+\operatorname{erf\sigma }}{2}$

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

difference small

$$
\sigma=\frac{\operatorname{Im} F}{\sqrt{2 \operatorname{Re} F}}
$$

subtract the large exponential series
 $\left(F=-\frac{4}{3} z^{3 / 2}\right)$
difference small

$$
\sigma=\frac{\operatorname{Im} F}{\sqrt{2 \operatorname{Re} F}}
$$

subtract the large exponential series

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

difference small

$$
\sigma=\frac{\operatorname{Im} F}{\sqrt{2 \operatorname{Re} F}}
$$

subtract the large exponential series tail $=-\frac{\text { big }}{-\mathrm{iexp}\left(\frac{1}{2} F\right)}\left(\frac{\text { big }}{\left.\left(2 \sqrt{\pi} z^{1 / 4} \mathrm{Ai}(z)-\exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\operatorname{inn}|F|} \frac{a_{n}}{F^{n}}\right)\right)=\frac{1+\operatorname{erf\sigma }}{2}, ~}\right.$

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

$$
\sigma=\frac{\operatorname{Im} F}{\sqrt{2 \operatorname{Re} F}}
$$

subtract the large exponential series

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

$$
\sigma=\frac{\operatorname{Im} F}{\sqrt{2 \operatorname{Re} F}}
$$

subtract the large exponential series tail $=-\mathrm{iexp}\left(\frac{1}{2} F\right)\left(\sqrt{\text { big }}\left(\sqrt{2 \sqrt{\pi} z^{1 / 4} \mathrm{Ai}(z)}-\exp \left(\frac{1}{2} F\right) \sum_{n=0}^{\mathrm{inn}|F|} \frac{a_{n}}{F^{n}}\right)\right)=\frac{1+\operatorname{erf\sigma }}{2}$

$$
\left(F=-\frac{4}{3} z^{3 / 2}\right)
$$

$$
\sigma=\frac{\operatorname{Im} F}{\sqrt{2 \operatorname{Re} F}}
$$

disparity $\exp |F=10| \approx 22000$
subtract the large exponential series

many applications in mathematics, to the approximation of a variety of functions: the error function in

- Bessel
- hypergeometric
- gamma
- even the error function itself
- integrals with coalescing saddles
- Riemann zeta function
many applications in mathematics, to the approximation of a variety of functions: the error function in
- Bessel
- hypergeometric
- gamma
- even the error function itself
- integrals with coalescing saddles
- Riemann zeta function
in physics, applications to
- reflection of waves by refractive-index gradients
- histories of quantum jumps induced by slowlychanging external forces, and particle pair creation
- breakdown of slow manifold in slow-fast systems
histories of quantum transitions driven by slowly-changing hamiltonians

transition probability
histories of quantum transitions driven by slowly-changing hamiltonians

(e)

(1)

time
transition probability
histories of quantum transitions driven by slowly-changing hamiltonians

(b)

nth order superadiabatic bases
final probability is
 exponentially small: $\exp (-c o n s t / \varepsilon)$
transition probability

(0)

time
histories of quantum transitions driven by slowly-changing hamiltonians

transition probability

final probability is exponentially small: $\exp (-c o n s t / \varepsilon)$
nth order superadiabatic bases
time
histories of quantum transitions driven by slowly-changing hamiltonians

(a)

(1

nth order superadiabatic bases
final probability is exponentially small: $\exp (-c o n s t / \varepsilon)$
transition probability
time
histories of quantum transitions driven by slowly-changing hamiltonians

nth order

 superadiabatic bases

(0)

final probability is exponentially small: $\exp (-c o n s t / \varepsilon)$

transition probability
time
histories of quantum transitions driven by slowly-changing hamiltonians

nth order

 superadiabatic bases

(0)
final probability is exponentially small: $\exp (-$ const $/ \varepsilon)$
transition probability
time
histories of quantum transitions driven by slowly-changing hamiltonians

histories of quantum transitions driven by slowly-changing hamiltonians

histories of quantum transitions driven by slowly-changing hamiltonians

Poincaré asymptotics: summing to a fixed order

Henri Poincaré

Poincaré asymptotics: summing to a fixed order

cannot capture exponentially
small terms

Henri Poincaré

Poincaré asymptotics: summing to a fixed order

cannot capture exponentially
small terms
does not distinguish divergent from from convergent series

Henri Poincaré

Poincaré asymptotics: summing to a fixed order

cannot capture exponentially small terms
does not distinguish divergent from from convergent series

Henri Poincaré
superasymptotics: summing to the least term $r \sim|F|$:
Stokes and the smoothing of the Stokes discontinuity

Poincaré asymptotics: summing to a fixed order

cannot capture exponentially
small terms
does not distinguish divergent from from convergent series

Henri Poincaré
superasymptotics: summing to the least term $r \sim|F|$:
Stokes and the smoothing of the Stokes discontinuity
capturing small exponentials: Kruskal,'asymptotics beyond all orders

hyperasymptotics:

repeated resummation, based on the principle of resurgence (Dingle 1960s, Écalle 1980s)

hyperasymptotics:

repeated resummation, based on the principle of resurgence (Dingle 1960s, Écalle 1980s)

Robert Dingle

hyperasymptotics:

repeated resummation, based on the principle of resurgence (Dingle 1960s, Écalle 1980s)

Jean Écalle
Robert Dingle

hyperasymptotics:

repeated resummation, based on the principle of resurgence (Dingle I960s, Écalle 1980s)

Jean Écalle
Robert Dingle
the divergence of a series must reflect its cause

hyperasymptotics:

repeated resummation, based on the principle of resurgence (Dingle I960s, Écalle 1980s)

Jean Écalle
the series multiplying each exponential must diverge, in order to accommodate the other exponentials

Robert Dingle
the divergence of a series must reflect its cause

hyperasymptotics:

repeated resummation, based on the principle of resurgence (Dingle I960s, Écalle 1980s)

Jean Écalle
the series multiplying each exponential must diverge, in order to accommodate the other exponentials

Robert Dingle
the divergence of a series must reflect its cause moreover, each component series must contain, coded into its high orders, information about all the other exponentials, and all terms of the series multiplying them

simplest case: only two exponentials $\exp \left(\pm \frac{1}{2} F\right)$

in $S=\sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}$

$$
a_{n} \rightarrow \frac{1}{n \rightarrow \infty}(n-1)!\left[a_{0}-\frac{a_{1}}{(n-1)}+\right.
$$

$$
\left.+\frac{a_{2}}{(n-1)(n-2)}-\frac{a_{3}}{(n-1)(n-2)(n-3)} \cdots\right]
$$

simplest case: only two exponentials $\exp \left(\pm \frac{1}{2} F\right)$
in $S=\sum_{n=0}^{\infty} \frac{a_{n}}{F^{n}}$

$$
a_{n} \rightarrow \frac{1}{n \rightarrow \infty}(n-1)!\left[a_{0}-\frac{a_{1}}{(n-1)}+\right.
$$

$$
\left.+\frac{a_{2}}{(n-1)(n-2)}-\frac{a_{3}}{(n-1)(n-2)(n-3)} \cdots\right]
$$

hyperasymptotic scheme for sum S as a series of series:

- primitive asymptotics - only a_{0}
- sum series to least term $-S_{0}$ (superasymptotics)
- integral representation for remainder
- asymptotic series for remainder, summed to least term $\left(S_{1}\right)$
- asymptotic series for new remainder, truncated $\left(S_{2}\right)$...
hyperasymptotics for Ai for $F=-16$, i.e. $z=5.2414827884177932413$ total number of terms in hyperasymptotic series

hyperasymptotics for Ai for $F=-16$, i.e. $z=5.2414827884177932413$ total number of terms in hyperasymptotic series

hyperasymptotics for Ai for $F=-16$, i.e. $z=5.2414827884177932413$ total number of terms in hyperasymptotic series

hyperasymptotics for Ai for $F=-16$, i.e. $z=5.2414827884177932413$ total number of terms in hyperasymptotic series

hyperasymptotics for Ai for $F=-16$, i.e. $z=5.2414827884177932413$ total number of terms in hyperasymptotic series

hyperasymptotics for Ai for $F=-16$, i.e. $z=5.2414827884177932413$ total number of terms in hyperasymptotic series

hyperasymptotics for Ai for $F=-16$, i.e. $z=5.2414827884177932413$ total number of terms in hyperasymptotic series

hyperasymptotics for Ai for $F=-16$, i.e. $z=5.2414827884177932413$ total number of terms in hyperasymptotic series
 optimally truncated hyperseries get shorter
with more than two exponentials, graph structure of higher approximants, e.g. multisaddle integrals:
with more than two exponentials, graph structure of higher approximants, e.g. multisaddle integrals:

with more than two exponentials, graph structure of higher approximants, e.g. multisaddle integrals:

- basic saddle
with more than two exponentials, graph structure of higher approximants, e.g. multisaddle integrals:

- basic saddle

〇adjacent saddles
with more than two exponentials, graph structure of higher approximants, e.g. multisaddle integrals:

- basic saddle

〇adjacent saddles
reached on descent paths from as $\arg F$ varies
with more than two exponentials, graph structure of higher approximants, e.g. multisaddle integrals:

- basic saddle

〇adjacent saddles
reached on descent paths from as $\arg F$ varies

- non-adjacent saddles
with more than two exponentials, graph structure of higher approximants, e.g. multisaddle integrals:

- basic saddle
\bigcirc adjacent saddles reached on descent paths from as $\arg F$ varies
- non-adjacent saddles
more adjacent saddles introduced at successive stages of hyperasymptotics
example: Pearcey integral

$$
P(x, y)=\int_{C} \mathrm{~d} t \exp \left\{\mathrm{i}\left(\frac{1}{4} t^{4}+\frac{1}{2} x t^{2}+y t\right)\right\} \quad x=7, \quad y=1+\mathrm{i}
$$

example: Pearcey integral

$$
P(x, y)=\int_{C} \mathrm{~d} t \exp \left\{\mathrm{i}\left(\frac{1}{4} t^{4}+\frac{1}{2} x t^{2}+y t\right)\right\} \quad x=7, \quad y=1+\mathrm{i}
$$

three saddles
example: Pearcey integral

$$
P(x, y)=\int_{C} \mathrm{~d} t \exp \left\{\mathrm{i}\left(\frac{1}{4} t^{4}+\frac{1}{2} x t^{2}+y t\right)\right\} \quad x=7, \quad y=1+\mathrm{i}
$$

hyperasymptotics generates a sequence of series, from 'scatterings' between saddles

level
approximation to $\mathrm{P}(7,1+\mathrm{i}) \quad$ |approx./exact - 1|
lowest
super.
$0.779703507027512+\mathrm{i} 0.765551648542315$

```
1.496\times10-2
\(2.916 \times 10^{-6}\)
```

1.535×10^{-12}
$0.788920520763900+\mathrm{i} 0.752101783262683$
ultimate hyper.
$0.788922837595360+\mathrm{i} 0.752103959759701$
exact
$0.788922837596969+\mathrm{i} 0.752103959759243$

level approximation to $\mathrm{P}(7,1+\mathrm{i}) \quad$ |approx./exact -1 |

lowest	$0.779703507027512+\mathrm{i} 0.765551648542315$	1.496×10^{-2}
super.	$0.788920520763900+\mathrm{i} 0.752101783262683$	2.916×10^{-6}
ultimate hyper.	$0.788922837595360+\mathrm{i} 0.752103959759701$	1.535×10^{-12}
exact	$0.788922837596969+\mathrm{i} 0.752103959759243$	0

level
approximation to $\mathrm{P}(7,1+\mathrm{i})$
|approx./exact $-1 \mid$

lowest	$0.779703507027512+\mathrm{i} 0.765551648542315$	1.496×10^{-2}
super.	$0.788920520763900+\mathrm{i} 0.752101783262683$	2.916×10^{-6}
ultimate hyper.	$0.788922837595360+\mathrm{i} 0.752103959759701$	1.535×10^{-12}
exact	$0.788922837596969+\mathrm{i} 0.752103959759243$	0

level
approximation to $\mathrm{P}(7,1+\mathrm{i})$
|approx./exact - 1 |

lowest	$0.779703507027512+\mathrm{i} 0.765551648542315$	1.496×10^{-2}
super.	$0.788920520763900+\mathrm{i} 0.752101783262683$	2.916×10^{-6}
ultimate hyper.	$0.788922837595360+\mathrm{i} 0.752103959759701$	1.535×10^{-12}
exact	$0.788922837596969+\mathrm{i} 0.752103959759243$	0

level
approximation to $\mathrm{P}(7,1+\mathrm{i})$
|approx./exact - 1 |

lowest	$0.779703507027512+\mathrm{i} 0.765551648542315$	1.496×10^{-2}
super.	$0.788920520763900+\mathrm{i} 0.752101783262683$	2.916×10^{-6}
ultimate hyper.	$0.788922837595360+\mathrm{i} 0.752103959759701$	1.535×10^{-12}
exact	$0.788922837596969+\mathrm{i} 0.752103959759243$	0

level
approximation to $\mathrm{P}(7,1+\mathrm{i})$
|approx./exact - 1 |

lowest	$0.779703507027512+\mathrm{i} 0.765551648542315$	1.496×10^{-2}
super.	$0.788920520763900+\mathrm{i} 0.752101783262683$	2.916×10^{-6}
ultimate hyper.	$0.788922837595360+\mathrm{i} 0.752103959759701$	1.535×10^{-12}
exact	$0.788922837596969+\mathrm{i} 0.752103959759243$	0

level
approximation to $\mathrm{P}(7,1+\mathrm{i})$
|approx./exact - 1 |

lowest	$0.779703507027512+\mathrm{i} 0.765551648542315$	1.496×10^{-2}
super.	$0.788920520763900+\mathrm{i} 0.752101783262683$	2.916×10^{-6}
ultimate hyper.	$0.788922837595360+\mathrm{i} 0.752103959759701$	1.535×10^{-12}
exact	$0.788922837596969+\mathrm{i} 0.752103959759243$	0

level
approximation to $\mathrm{P}(7,1+\mathrm{i})$
|approx./exact - 1 |

lowest	$0.779703507027512+\mathrm{i} 0.765551648542315$	1.496×10^{-2}
super.	$0.788920520763900+\mathrm{i} 0.752101783262683$	2.916×10^{-6}
ultimate hyper.	$0.788922837595360+\mathrm{i} 0.752103959759701$	1.535×10^{-12}
exact	$0.788922837596969+\mathrm{i} 0.752103959759243$	0

Legacy from Euler, Dingle, Écalle... from Stokes's insistence on understanding how the rainbow's dark side is connected to the interference fringes on its bright side:

Legacy from Euler, Dingle, Écalle... from Stokes's insistence on understanding how the rainbow's dark side is connected to the interference fringes on its bright side:
a divergent series is not meaningless, or a nuisance, but an essential and informative coded representation of the function

Legacy from Euler, Dingle, Écalle... from Stokes's insistence on understanding how the rainbow's dark side is connected to the interference fringes on its bright side:
a divergent series is not meaningless, or a nuisance, but an essential and informative coded representation of the function
in the 1990s, 2000s, much new mathematics originating from resurgence, etc: Boyd, Chapman, Delabaere, Dunster, Ecalle, Howls, Kruskal, Olde Daalhuis, Lutz, McLeod, Paris, Olver, Ramis, Pham, Segur, Temme, Voros, Wong, Wood...
now, in 2010 s , resurgence of interest in divergence, resurgence, resummation... applications to field and string theory

now, in 2010 s, resurgence of interest in divergence, resurgence, resummation... applications to field and string theory

Analytic Continuation Of Chern-Simons Theory

Edward Witten

School of Natural Sciences, Institute for Advanced Study
Einstein Drive, Princeton, NJ 08540 USA

The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

Philip C. Argyres ${ }^{1}$ and Mithat Ünsal ${ }^{2}$

Resurgence and Trans-series in Quantum Field Theory: The $\mathbb{C P}^{N-1}$ Model

Gerald V. Dunne ${ }^{1}$ and Mithat Ünsal ${ }^{2}$

Lectures on non-perturbative effects in large N theory, matrix models and topological strings

Marcos Mariño
Département de Physique Théorique et Section de Mathématiques,
Université de Genève, Genève, CH-1211 Suitzerland

Introduction to 1 -summability and the resurgence theory

phenomena, new saddle points and Lefschetz thimbles

Resurgence and Transseries in Quantum, Gauge and String Theories

from 30 June 2014 to 4 July 2014 (Europe/Zurich)

CERN
Europe/Zurich timezone

Overview

Scientific Programme
Timetable
Registration
\perp Registration Form
Participant List

> The goal of this CERN TH-Institute/Conference is to bring together researchers in Mathematics (with backgrounds in resurgence, transseries, asymptotic analysis), with researchers in Theoretical Physics (with backgrounds in quantum mechanics, gauge theory, string theory) working on topics where resurgent methods are promising.
> This meeting will have an interdisciplinary nature, where interactions between different communities are likely to foster new advances and results in this exciting subject.

Resurgence and Transseries in Quantum, Gauge and String Theories

```
from 30 June 2014 to 4 July 2014 (Europe/Zurich)
CERN
```

Europe/Zurich timezone

Overview

Scientific Programme
Timetable
Registration
Registration Form
Participant List

> The goal of this CERN TH-Institute/Conference is to bring together researchers in Mathematics (with backgrounds in resurgence, transseries, asymptotic analysis), with researchers in Theoretical Physics (with backgrounds in quantum mechanics, gauge theory, string theory) working on topics where resurgent methods are promising.
> This meeting will have an interdisciplinary nature, where interactions between different communities are likely to foster new advances and results in this exciting subject.

[^0]: To, much in the same mancontioning the suit for finding gut the to be of the- logarithms of the odd nuriters a.s.7. Or, z gut the sum of are given for finding out the sum of the infinite otogrebores in which the several hems have the Jame numerator whiter their in pinatas are any certain power of numbers increasing sit aritfinctical

