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infinite series are the basis for a wide class of 
approximations in mathematics and physics 

most series are divergent

understanding divergence has been a thread running 
through mathematics for several centuries

the subject has been repeatedly reborn, more 
deeply each time

divergent series are the deepest area of asymptotics -
the study of limits - and limits in physics are usually 
singular

singular limits lie at the heart of relations between 
physical theories at different levels



Thomas Bayes 
submitted1747, 
published 1763



Thomas Bayes 
submitted1747, 
published 1763



Thomas Bayes 
submitted1747, 
published 1763



Thomas Bayes 
submitted1747, 
published 1763



Thomas Bayes 
submitted1747, 
published 1763



 

log z!( )− z + 1
2( )log z + log 2π − z = 1

2π 2z
−1( )r 2r( )!

2π z( )2n
n=0

∞

∑ ζ 2n + 2( )

        = 1
12z

+ 1
360z3 +

1
1260z5 +

1
1680z7 +

1
1188z9 +

691
360360z11 +!

Bayes’s discovery: Stirling’s series for the factorial 
diverges factorially



 

log z!( )− z + 1
2( )log z + log 2π − z = 1

2π 2z
−1( )r 2r( )!

2π z( )2n
n=0

∞

∑ ζ 2n + 2( )

        = 1
12z

+ 1
360z3 +

1
1260z5 +

1
1680z7 +

1
1188z9 +

691
360360z11 +!

Bayes’s discovery: Stirling’s series for the factorial 
diverges factorially



 

log z!( )− z + 1
2( )log z + log 2π − z = 1

2π 2z
−1( )r 2r( )!

2π z( )2n
n=0

∞

∑ ζ 2n + 2( )

        = 1
12z

+ 1
360z3 +

1
1260z5 +

1
1680z7 +

1
1188z9 +

691
360360z11 +!

Euler 1755-1760: took divergent 
series seriously, as coded 

representations of functions

Bayes’s discovery: Stirling’s series for the factorial 
diverges factorially



 

log z!( )− z + 1
2( )log z + log 2π − z = 1

2π 2z
−1( )r 2r( )!

2π z( )2n
n=0

∞

∑ ζ 2n + 2( )

        = 1
12z

+ 1
360z3 +

1
1260z5 +

1
1680z7 +

1
1188z9 +

691
360360z11 +!

Euler 1755-1760: took divergent 
series seriously, as coded 

representations of functions

Bayes’s discovery: Stirling’s series for the factorial 
diverges factorially

Abel 1826 Divergent series are the invention 
of the devil, and it is shameful to base on 
them any demonstration whatsoever.



 

log z!( )− z + 1
2( )log z + log 2π − z = 1

2π 2z
−1( )r 2r( )!

2π z( )2n
n=0

∞

∑ ζ 2n + 2( )

        = 1
12z

+ 1
360z3 +

1
1260z5 +

1
1680z7 +

1
1188z9 +

691
360360z11 +!

Euler 1755-1760: took divergent 
series seriously, as coded 

representations of functions

Bayes’s discovery: Stirling’s series for the factorial 
diverges factorially

2+2=5, for sufficiently large values of 2

Abel 1826 Divergent series are the invention 
of the devil, and it is shameful to base on 
them any demonstration whatsoever.
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factorial divergence again

for z>>1, pre-invented WKB

for z<<-1, pre-invented 
stationary phase

least term: n~|F|
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e1 = exp 1
2 F( ) = exp − 2

3 i -z( )3/2{ }
e2 = exp − 1

2 F( ) = exp + 2
3 i -z( )3/2{ }

one exponential:!
e1

two exponentials: 
e1 and e2

puzzle of the two exponentials

z
Ai(z)

two exponentials: 
e1 and e2

one exponential:!
e1

e2 is born where it is maximally dominated by e1

F positive real
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Stokes phenomenon occurs throughout asymptotics - 
in integrals, differential equations, integral equations, 
difference equations, series, near more general types of 
caustics...
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cusp diffraction catastrophe (Wright 1980)
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bifurcation (caustic, catastrophe) set: real saddles collide 

two real waves one evanescent wave 
(complex saddle) 

violent birth/death of real waves 
∂tΦ=0 
∂t2Φ=0 

stokes set 

evanescent wave 
+ dominant wave 

nothing 
+ dominant wave 

gentle birth/death of evanescent waves Re(Φ1-Φ2)=0 
nonlocal bifurcation 

(strictly, change of coefficient of subdominant exponential)
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resumming the tail by Borel 
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the small exponential is born not 
suddenly but smoothly, according 
to a universal scaling in terms of 
an error function

uniform approximation of the 
integral across a Stokes line
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approximation of a variety of functions: the error 
function in !
• Bessel!
• hypergeometric!
• gamma!
• even the error function itself!
• integrals with coalescing saddles!
• Riemann zeta function!
• ....
in physics, applications to!
• reflection of waves by refractive-index gradients!
• histories of quantum jumps induced by slowly-
changing external forces, and particle pair creation!

• breakdown of slow manifold in slow-fast systems



histories of quantum transitions driven by slowly-changing hamiltonians



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time

nth order 
superadiabatic 
bases



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time

nth order 
superadiabatic 
bases

final probability is 
exponentially small: 
exp(-const/ε)



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time

nth order 
superadiabatic 
bases

n=0

final probability is 
exponentially small: 
exp(-const/ε)



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time

nth order 
superadiabatic 
bases

n=0 n=1

final probability is 
exponentially small: 
exp(-const/ε)



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time

nth order 
superadiabatic 
bases

n=0

n=2

n=1

final probability is 
exponentially small: 
exp(-const/ε)



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time

nth order 
superadiabatic 
bases

n=0

n=2

n=1

n=3 final probability is 
exponentially small: 
exp(-const/ε)



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time

nth order 
superadiabatic 
bases

n=0

n=2

n=1

n=3

n=4

final probability is 
exponentially small: 
exp(-const/ε)



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time

nth order 
superadiabatic 
bases

n=0

n=2

n=1

n=3

n=4 n=5

final probability is 
exponentially small: 
exp(-const/ε)



histories of quantum transitions driven by slowly-changing hamiltonians

transition 
probability

time

nth order 
superadiabatic 
bases

n=0

n=2

n=1

n=3

n=4 n=5

final probability is 
exponentially small: 
exp(-const/ε)

large oscillations 
en route (O(√ε)), 
getting smaller as 
optimal order 
(n=5) is 
approached
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Poincaré asymptotics: summing to a fixed order

Henri Poincaré

cannot capture exponentially 
small terms

does not distinguish divergent 
from from convergent series 

capturing small exponentials: Kruskal, ‘asymptotics beyond all orders
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hyperasymptotics: !
repeated resummation, based on the principle of 
resurgence (Dingle 1960s, Écalle 1980s)

the divergence of a series must reflect its cause

the series multiplying 
each exponential 
must diverge, in 
order to 
accommodate the 
other exponentials

moreover, each component series must contain, coded 
into its high orders, information about all the other 
exponentials, and all terms of the series multiplying them

Jean Écalle

Robert Dingle 
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simplest case: only two exponentials 

in

hyperasymptotic scheme for sum S as a series of series:!
• primitive asymptotics - only a0!
• sum series to least term - S0 (superasymptotics)!
• integral representation for remainder!
• asymptotic series for remainder, summed to least term 
(S1 )!

• asymptotic series for new remainder, truncated (S2 ) ...

S = an
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hyperasymptotics for Ai for F=-16, i.e. z=5.2414827884177932413

superasymptotics - error exp(-|F|)

zeroth stage

2nd

1st stage

3rd

4th

optimally truncated hyperseries get shorter
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with more than two exponentials, graph structure of 
higher approximants, e.g. multisaddle integrals:

basic saddle

adjacent saddles

non-adjacent 
saddles

more adjacent saddles introduced at successive stages 
of hyperasymptotics

reached on descent 
paths from 
as argF varies
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C
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2 + yt( ){ } x = 7, y = 1+ i
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hyperasymptotics generates a sequence of series, from 
‘scatterings’ between saddles
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in the 1990s, 2000s, much new mathematics 
originating from resurgence, etc: !
Boyd, Chapman, Delabaere, Dunster, Ecalle, Howls, 
Kruskal, Olde Daalhuis, Lutz, McLeod, Paris, Olver, 
Ramis, Pham, Segur, Temme, Voros, Wong, Wood...
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steps in humanity’s long struggle to understand infinity




