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Introduction

The plan is to obtain the world-volume action for a

D3-brane in AdS5×S5 and to interpret the result as an

effective action for a SCFT on the Coulomb branch.

U(N + 1) → U(1)× U(N)

I have conjectured that the D3-brane action is the

exact effective action for the U(1) factor. I call such an

action a Highly Effective Action (HEA). This conjecture

has not been proved, and many people are skeptical. I

will discuss some of the issues that are involved.
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The Main Examples

I have constructed the world-volume action for a probe

p-brane in an AdSp+2 ×Mq background with N units

of flux,
∫
Mq

Fq = N , in the following cases:

• D3-brane in AdS5 × S5

•M2-brane in AdS4 × S7/Zk

• D2-brane in AdS4 × CP 3

•M5-brane in AdS7 × S4

This talk will only describe the D3 example.
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Brane actions involve well-known approximations:

• The probe approximation involves neglecting the back

reaction of the brane on the geometry and the other

background fields. Since the brane is a source for one

unit of flux, this requires that N is large.

• D-brane actions include a Born–Infeld–like term that

is a functional of a U(1) field strength, Fαβ, on the

brane. F is assumed to be slowly varying, so that its

derivatives can be neglected.
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Nevertheless, the brane actions have some beautiful

exact properties.

• They precisely realize the isometry of the background

as a world-volume superconformal symmetry given by

PSU(2, 2|4), OSp(6|4), etc.

• The brane actions exactly implement the duality sym-

metries of the background theories as dualities: SL(2,Z)

for the D3-brane example; and a duality relating the

D2-brane and M2-brane examples.
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The brane world-volume actions are naturally formu-

lated with local symmetries: general coordinate invari-

ance and kappa symmetry.

There is a natural gauge choice – called static gauge –

that results in formulas with the expected field content:

an abelian N = 4 supermultiplet (Aµ, 4ψ, 6ϕ) in the

D3-brane case.
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The Coulomb Branch

Let us consider N = 4 SYM theory with the gauge

group U(N + 1). It has an SL(2,Z) duality group, as

required by AdS/CFT. On the Coulomb branch,

U(N + 1) → U(1)× U(N),

2N supermultiplets acquire mass.

In principle, one can integrate out the massive fields

exactly. The resulting action for the U(1) factor (“the

photon supermultiplet”) defines the highly effective ac-

tion (HEA). The D3-brane action is conjectured to be

this HEA.
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General Requirements for the HEA

• Field content is an abelian N = 4 supermultiplet

• Global symmetries and dualities same as the original

Coulomb branch theory

• Conformal symmetry spontaneously broken by vev of

a massless scalar field

• The same BPS spectrum; the SL(2,Z) multiplet con-

taining the W particles and monopoles should arise

as solitons of the HEA
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The D3-brane in AdS5 × S5

The ten-dimensional metric gMN (x)dxMdxN is

ds2 = R2
(
ϕ2dx · dx + ϕ−2dϕ2 + dΩ2

5

)
= R2

(
ϕ2dx · dx + ϕ−2dϕIdϕI

)
.

ϕ is the length of the six-vector ϕI , and we use standard

AdS/CFT formulas

R2 =
√

4πgsNl
2
s and

∫
S5
F5 ∼ N.

The SL(2,Z) modular parameter is

τ = χ +
i

gs
=

θ

2π
+
4πi

g2
.
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The D3-brane action has two terms: S = S1 + S2.

S1 is a DBI functional of the embedding functions

xM (σα) and a world-volume U(1) gauge field Aβ(σ
α)

with field strength Fαβ = ∂αAβ − ∂βAα:

S1 = −TD3

∫ √
− det

(
Gαβ + 2πα′Fαβ

)
d4σ,

where Gαβ is the induced 4d world-volume metric

Gαβ = gMN (x)∂αx
M∂βx

N .
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As usual, α′ = l2s and the D3-brane tension is

TD3 =
2π

gs(2πls)4
.

Only dimensionless combinations occur in the brane ac-

tion:

R4TD3 =
N

2π2
and 2πα′/R2 =

√
π/gsN.

General coordinate invariance allows one to choose the

static gauge

xµ(σ) = δ
µ
ασ

α.

In this gauge ϕI(σ) and Aµ(σ) become functions of xµ.
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In static gauge we obtain

S1 = − 1

2πgsk2

∫ √
− det

(
Gµν + kFµν

)
d4x

where k =
√
gsN/π andGµν = ϕ2ηµν+k

2∂µϕ
I∂νϕ

I/ϕ2.

Rescaling all fields by
√
2πgs, their normalization be-

comes canonical leaving

S1 = − 1

γ2

∫ √
− det

(
hµν + γ2∂µϕI∂νϕI/ϕ2 + γFµν

)
d4x

where γ = π−1
√
N/2 and hµν = ϕ2ηµν. Note that the

dependence on gs = g2/(4π) has disappeared!
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The Chern–Simons Term

S2 ∼
∫
C4 + χ

∫
F ∧ F

The RR four-form potential C4 has a self-dual field

strength F5 = dC4.

F5 ∼ vol(S5) + vol(AdS5)

The constant χ is the value of the RR 0-form C0. It

is proportional to a theta angle, χ = θ/(2π).
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S1 contains a “potential” term
∫
ϕ4d4x, which would

give a net force acting on the brane. It is canceled by

the
∫
C4 term in S2. The coefficients work perfectly.

The complete action for canonically normalized fields

in static gauge (aside from fermions) is

S =
1

γ2

∫
ϕ4
(
1−

√
− detMµν

)
d4x+

1

4
gsχ

∫
F ∧F,

where γ =
√

N
2π2

and

Mµν = ηµν + γ2
∂µϕ

I∂νϕ
I

ϕ4
+ γ

Fµν

ϕ2
.
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S duality

The τ → −1/τ duality of the U(N+1) theory on the

Coulomb branch has not been proved in the formulation

with W fields, but I have proved it for the D3-brane

action.

As one would expect, τ → −1/τ is accompanied by

a nonlocal field redefinition that exchanges electric and

magnetic fields. Then S1 and S2 are separately invariant.

In the S2 case gsχ and
∫
F ∧F change signs simultane-

ously.
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Solitons

For spherically symmetrical static solutions, centered

at r = 0, we require that Ei = F0i and Bi =
1
2εijkFjk

only have radial components, denotedE andB, and that

E, B, and ϕ are functions of r only. It then follows that

− det(Mµν) = − det

(
ηµν + γ2

∂µϕ∂νϕ

ϕ4
+ γ

Fµν

ϕ2

)

=

(
1 + γ2

(ϕ′)2 − E2

ϕ4

)(
1 + γ2

B2

ϕ4

)
.
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This results in the Lagrangian density

L =
1

γ2
ϕ4

1−

√(
1 + γ2

(ϕ′)2 − E2

ϕ4

)(
1 + γ2

B2

ϕ4

) .

The equation of motion for A0 is
∂
∂r(r

2D) = 0, where

D =
∂L
∂E

= E

√
1 + γ2B2/ϕ4

1 + γ2[(ϕ′)2 − E2]/ϕ4
.
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For a soliton centered at r = 0, with p units of electric

charge g and q units of magnetic charge gm, where gm =

4π/g, we have

D =
pg

4πr2
and B =

qgm
4πr2

.

Thus, D2 +B2 = Q2/r4, where (adding a θ angle)

Q =
g

4π
|p + qτ |,

and

τ =
θ

2π
+ i

4π

g2
.
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Eliminating E in favor of D gives the Hamiltonian

H = 4π
∫
Hr2dr, where H = DE − L is

H =
1

γ2

(√
(ϕ4 + γ2(ϕ′)2)(ϕ4 + γ2X2)− ϕ4

)
,

and

X =
√
D2 +B2 = Q/r2.

We want to find functions ϕ(r) that give BPS extrema

of H with ϕ → v as r → ∞. The BPS condition turns

out to require that the two factors inside the square root

are equal, which implies that H = (ϕ′)2.

18



The BPS equation (ϕ′)2 = Q2/r4, together with the

B. C. ϕ→ v as r → ∞, has two solutions

ϕ± = v ±Q/r,

where (as before) Q = g
4π|p + qτ | and H = Q2/r4.

The ϕ+ solution is similar to the flat space (R9,1) case

studied by Callan and Maldacena in 1997. It describes

a funnel-shaped protrusion of the D3-brane extending to

the boundary of AdS at ϕ = +∞. It gives infinite mass

(proportional to
∫
dr/r2) and is not the solution I am

after.
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The ϕ− solution is different. ϕ = 0 corresponds to

the horizon of the Poincaré patch of AdS5. This means

that the ϕ− solution must be cut off at

r0 = Q/v.

Thus, the masses of BPS solitons are given by

M = 4π

∫ ∞

r0

Hr2dr = 4πQ2

r0
= vg|p + qτ |.

As expected, the (p, q) = (±1, 0) solitons are W± with

mass vg and the (p, q) = (0,±1) solitons are magnetic

monopoles with mass 4πv/g (for θ = 0).
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Interpretation

The charge of the ϕ− solution is uniformly spread on

the sphere r = r0, which we call a soliton bubble. The

interior of the bubble does not contribute to the mass of

the soliton. So, how should we interpret this?

The only sensible interpretation is that the gauge the-

ory is in the ground state of the conformal phase of

U(N + 1) inside the sphere. This implies that the bub-

ble is a phase boundary.
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Multi-soliton Solutions

It is easy to derive the generalization to the case of n

solitons of equal charge. Since the forces between them

should cancel, their centers can be at arbitrary positions.

The key formula is

ϕ(x⃗) = v −Q
n∑
k=1

1

|x⃗− x⃗k|
.

The surfaces of the bubbles are given by ϕ(x⃗) = 0. The

fields D⃗ and B⃗ are then proportional to ∇⃗ϕ, with coeffi-

cients determined by the charges. This is much simpler

than the usual nonabelian multi-monopole analysis!

22



Magnetic Bags

By considering multi-monopole solutions of largemag-

netic charge in the nonabelian gauge theory on the Coulomb

branch, Bolognesi (hep-th/0512133) deduced the exis-

tence of “magnetic bags” with properties that are very

close to those of the soliton bubbles that were found here.

He also pointed out the analogy to black holes.

The analysis in terms of nonabelian gauge fields is

much more complicated, subtle, and approximate than

the analysis of the abelian effective action.
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Conclusion

The action of a probe D3-brane in AdS5 × S5 is a

candidate for the HEA of a U(1) factor on the Coulomb

branch. It incorporates all the required symmetries and

dualities, and it gives the expected BPS soliton solutions.

Even so, we have not proved that it is the HEA. If the

conjecture that the theory defined by the probe D3-brane

action is the HEA is not correct, then we have found an

interesting new theory.
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