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Outline
• Basic mechanisms for ionization/fluorescence process

• Primary XRF Intensity 

• Indirect enhancement processes of XRF intensity

• XRF analysis in the real world:
- Non-parallel exciting beams
- Influence of surface topography
- Geometrical considerations
- Particle size effects
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Interaction of X-rays with atoms
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Photon ICS from 
“Elam database”
Elam W.T. et al., 
Radiat. Phys. 
Chem, 63, 
(2002), 121
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X-ray Scattering Interactions with atoms

Ei=E0 : Coherent (Rayleigh),
mostly with inner atomic 

electrons

Ei < E0: Incoherent 
(Compton), mostly with 
outer, less bound 
electrons

E0>>Binding Energy
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Scattering probabilities: Unpolarized excitation

Coherent 
scattering

Z WF 
(%)

Al 8.4

Si 26.7

Ca 9.3

Fe 9.8
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Scattering probabilities: Unpolarized excitation

Coherent 
scattering
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scattering
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Scattering probabilities: Polarized radiation

Scattering probability ~ sin2α
α=angle between electric field 
vector of the incident radiation 
with the propagation direction of 
the scattered radiation

Gangadhar et al. JAAS, 2014
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Κ L M
Nucleus

E0

Kα

Electron

Working principle: X-Ray Fluorescence Analysis

Working principle:

1) Photo-Ionization
of atomic bound
electrons 
(K, L, M) 
/Photoelectric 
absorption 

2) Electronic transition 
amd emission 
of element 
‘characteristic’
fluorescence radiation

Incident 
photon 
Energy E0
should be 
adequate to 
ionize the 
atomic 
bound 
electrons
>=
Atomic shell
Binding 
energy
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Fluorescence
emission

De-excitation of atoms: Competitive processes

: Coster-Cronig (intra-shell) 
transition probabilities from 
the i to the j L subshell

Lijf
K :  K-shell fluorescence yield
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Emission of element ‘characteristic’ x-rays

Each element has a unique set of emission energies 

L3 to K shell EKα1 = UK- UL3

K - alpha lines:  L shell e-
transition to fill vacancy in K 
shell.  Most frequent transition, 
hence most intense peak

K - beta lines: M shell e-
transitions to fill vacancy in K 
shell.

L - alpha lines: M shell e-
transition to fill vacancy in L 
shell.

L - beta lines:  N shell e- transition 
to fill vacancy in L shell.
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KXKoKoKX FEE   )()(

XRF cross sections: K- Emission

)( oK E

XRF K-shell fluorescence cross section, 

K

KXf

: K-shell photoelectric cross section (cm2/g or barns/atom)

: K-shell fluorescence yield

: Transition probability for Kα emission

)( oKX E
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Lijf

)()()()( 1111 iXLiLoLoXL ZfZEE  

XRF cross sections: L- Emission

: Coster-Cronig (intra-shell) transition probabilities from the i to the j L subshell

Example: Incident energy Eo>UL1

)()()()( 2112122 iXLiLLLLoXL ZfZfE  

)()()()( 331311223233 iXLiLLLLLLLoXL ZfZfffE  
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XRF cross sections: L- Emission

L1M3(Au)

L2M4(Au)

L3M5(Au)

KL3(Fe)

Partial photoelectric cross 
sections versus  jump ratio 
approximation
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XRF cross sections: L- Emission

Honicke et al, PRL 113, 163001 (2014)



A.G. Karydas, ICTP-IAEA School, Trieste, 18th November 2014

Cr
os

s 
se

ct
io

n 
(b

)

Atomic Number
20 60 8030 5040

Fluorescence Kα, Lα cross sections

Optimization of 
the exciting 
beam 
energy for 
maximizing the 
characteristic X-
ray intensity 
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• D.K.G. de Boer, XRS, 19(1990) 145
• M. Mantler, in Handbook of Practical 

XRFA, Edited by B. Beckhoff et al. 

Primary Fluorescence intensity: Assumptions

• Parallel incident beam 
• Infinite surface for sample 
• Beam cross section infinite
• Homogenous sample 
• Flat surface of the sample
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Primary Fluorescence intensity
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Primary Fluorescence intensity: Calibration
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Different approaches are followed depending on how well the set-up 
geometry and incident beam intensity are characterized:
 Sensitivity calibration: certified pure element/compound targets
 Solid angle calibration: Normalized beam intensity, detector 

efficiency known, well certified pure element/compound targets
 Standard-less XRFA: Calibrated apertures, distances, detector 

response function versus energy, incident beam intensity

),( ioi EESSensitivity
Thick target 
approximation

Thin target
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Indirect  Enhancement Processes in 
Fluorescence Emission

J. Fernandez et al., X-Ray Spectrom. 2013, 42, 189–196
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Indirect  Enhancement Processes in 
Fluorescence Emission

J. Fernandez et al., X-Ray Spectrom. 2013, 42, 189–196
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j
i

sample

Secondary Fluorescence Enhancement

X-ray Detector

Exciting x-ray 
beam

Element j characteristic x-ray(s) can excite element i
characteristic x-rays within the sample volume

Εο

Εj

Εi

Energy condition:
Εj>Ux,ii

Sample

Εi
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Secondary enhancement calculation: Example
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Sokaras et al, Anal. Chem. 2009, 81, 4946

Topology of secondary fluorescence

13 keV, excitation, SiO2 matrix, 5% Cu, 5% Fe

100 um
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j

k

sample

Tertiary Fluorescence Enhancement

X-ray Detector
Exciting x-ray 
beam

The element j characteristic x-ray(s) can excite element’s k characteristic 
x-ray(s) which consequently can also excite element’s i characteristic x-
rays

Εο

Εj

Εi

Energy conditions:Εj>Ux,k and Εk>Ux,i

i

Sample i
Εk

ΕiΕο
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Type of 
Sample

Secondary Fluorescence 
Mechanism

Am-241 
(59.6 keV)
Source*

Filtered Rh-
tube 

excitation*

Ag:   92.5%
Cu:    7.5 %

Ag-K  to Cu 1.57 0.29

Au:   88.3 %
Ag:    8.5 %
Cu:     3.1 %

(Ag-K+Au-L) to Cu 0.82 0.55

Ag-K to Au 6.6e-2 1.4e-2

Cu:    80 %
Pb:     10 %
Sn:     10 %

(Sn-K + Pb-L) to Cu 0.22 7.8e-2

Sn-K to Pb 0.11 1.6e-2

* Including ternary contribution

SF Enhancement in Poly-Energetic excitation
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i
i

sample

Self-element SF Enhancement (special case)

X-ray Detector

Exciting x-ray 
beam

Εο

Εj

Εi

Energy condition:
Εj>UX,ii

Sample

Element i characteristic x-ray(s) can excite different series of  characteristic X-rays 
of the same element i within the sample volume; for example K to L, L to M lines
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Self-element SF Enhancement (special case)

A.G. Karydas et al., X-Ray Spectrom. 2005; 34: 426–431
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Self-element SF Enhancement (special case)

A.G. Karydas et al., X-Ray Spectrom. 2005; 34: 426–431
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Self-element SF Enhancement (special case)

A.G. Karydas et al., X-Ray Spectrom. 2005; 34: 426–431
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i

sample

Secondary Scattering Enhancement (Beam)

X-ray Detector

Exciting x-ray 
beam

Εο

Εs

Εi

Energy condition:
Εs>Ux,ii

Sample

Incident beam after encountering elastic/inelastic scattering at one produces 
photoionization of an element i in another sample position volume

Εi
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i

sample

Secondary Scattering Enhancement (Fluo)

X-ray Detector

Exciting x-ray 
beam

Element a characteristic x-ray after elastic/inelastic scattering 
within the sample volume are directed to the detector

Εο

Εi,s

i

Sample

Εi
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Secondary Enhancement due to Scattering

Karydas, Paradellis, X-Ray Spectrom. 1993; 22: 208
Tirao, Stutz, X-Ray Spectrom. 2003; 32: 13–24
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Secondary Enhancement due to Scattering

Karydas, Paradellis, X-Ray Spectrom. 1993; 22: 208
Tirao, Stutz, X-Ray Spectrom. 2003; 32: 13–24
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Secondary Enhancement due to Scattering

Karydas, Paradellis, X-Ray Spectrom. 1993; 22: 208
Tirao, Stutz, X-Ray Spectrom. 2003; 32: 13–24

Effect on
spectrum!
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i

sample

Photo-/Auger/Compton e- Indirect 
Fluorescence Enhancement

X-ray Detector

Exciting x-ray 
beam

Ejected electrons from the atoms of element j can ionize an 
inner shell of element i

Εο

Εi

Energy conditions:
Te, EΑ>Ux,b

i

Sample
j e-

Electron spectrum:
Discrete: Photo-e, Auger
Continuous: Compton

Εi
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Ionization induced by electrons 

Green and Cosslett expression for the  number 
of photons emitted by interaction with a single 
electron of initial kinetic energy Eo

Qi(E) and dE/ds are the inner shell ionization cross-
section and the stopping power (energy loss 
function), respectively, of electrons in a material

Love et al. expression for stopping power 
of electrons

the mean ionization potential
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Stochastic movement of electrons (20 keV on Fe)
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Photo e- Fluorescence Enhancement

N. Kawahara in Handbook of Practical X-Ray 
Fluorescence Analysis, by B. Beckhoff B. 
Kanngiesser, N. Langhoff, R.Wedell, H.Wolff, (Eds.)

Increases when exciting 
beam  energy is far away 
from absorption edge of light
elements

푁 , = 퐺 퐶
푁 퐸 휏 푛 퐸 − 퐸 , 푑퐸

휇∗
,

J. Fernandez et al., X-Ray 
Spectrometry 2013, 42, 189–196

PENELOPE (coupled electron-
photon Monte Carlo)

AlKα
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Monte Carlo calculations of phot-e enhancement:
Al (4.54μm, 2.13μm, 0.76μm) and Si (4.22μm, 1.61μm)
Casnati parameterization for electron ionization cross sections

D. Sokaras et al., unpublished 

Photo e- Fluorescence Enhancement
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• Important: When a light element analyte is embedded in 
a heavy element matrix.

• The Auger-electrons from the matrix elements can excite 
light element fluorescence. 

• Example: When carbon in steel is analyzed, a Fe KLL 
Auger-electron with a kinetic energy of 6.3 keV can excite 
multiple carbon K-shells

Auger e- Fluorescence Enhancement

푁 ,

= 퐺 퐶
푁 퐸 휏 1 − 휔 ∑ 푛 퐸 ,

휇∗
,

푑퐸
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Secondary electron induced ionizations 
Example: Thick Fe target
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1 2 3 4 5 6 7 8 9

1.90x10-6

1.90x10-5

Auger-e-

Secondary fluorescence
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Relative e- enhancement to Fe-Lα excitation 
in the case of a Fe pure target 

Sokaras et al., Phys. Review A 83, 052511 (2011)
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Thomas-Fermi model for the incoherent 
scattering function

K. Stoev, J. Phys. D: Appl. Phys. 25 (1992) 131-138

Exciting beam : 59.6 keV, Sample: Fe203 + ZnS

Eo to Fe-K to S
Eo to Zn-K to S

Eo to Zn-K to Fe-K to S

Eo–scat to S

Compton-e to S

Photo-e to S

(1): Photo-electrons 
(2), (3):  Compton electrons 
(4): Direct Compton core 
hole creation

Exciting beam : 59.6 keV, 
Sample: Pure element, Z

Compton electrons Fluorescence Enhancement

휕 휎
휕훺

=
휕 휎 퐸 ,퐸 , 휃

휕훺
훧푆 훼, 휃, 훧

푆 휈 = 1 − 푒푥푝 −4.88휈 ,

휈 =
2
3
137

훧
푎푠푖푛 휃

2

훼 =
훦
푚 푐

휕 휎
휕퐸

= 2휋훧푟
푚 푐
퐸

퐸 퐸 퐸 + 퐸
퐸 퐸 − 퐸

+ 1 −
푚 푐 퐸

퐸 퐸 − 퐸

1 − 푒푥푝 −1.11766 ×
퐸

푍

푚 푐 퐸
2퐸 퐸 − 퐸

Energy distribution of Compton electrons

Compton electrons spectrum

Karydas et al., XRS 32, 93 (2003) 
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Thomas-Fermi model for the incoherent 
scattering function
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De-excitation processes for inner-shell 
ionized atoms. Diagram L-emission

Emission of a diagram line

Photo-ionization Fluorescence
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Cascade L X-ray emission

Cascade Emission: X-ray emission due to relaxation of an indirectly
vacancy created by the relaxation of innermost shell and not due to
a direct ionization.

Satellite emission line
by a multiple ionized atom
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Fe-L cascade effect

1 2 3 4 5 6 7 8 9

1.90x10-6

1.90x10-5

x0.83

Elam + Bambynek + Rao

Present work
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Bulk metallic Fe, Unpolarized incident radiation

Sokaras et al., Phys. Review A 83, 052511 (2011)
T. Schoonjans et al, SAB, B66, (2011) 776
Fluorescence cross sections include full cascade effect due to radiative and non 
radiative probabilities
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Secondary fluorescence enhancement

Z WF 
(%)

Ipr
(%)

Isec
(%)

Iter
(%)

Iscat
(%)

Al 8.4 1 21.2 1.17 1.2

Si 26.7 1 18.1 0.64 1.23

Ca 9.3 1 13.8 - 1.64

Fe 9.8 1 - - 2.44

o4521 

)(
44.170

aKMo
keVE
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Geometrical considerations: Non-parallel x-ray 
beams

Sokaras et al., Review of Scientific Instruments 83, 123102 (2012);

θin=45.2◦ and θout=44.7◦
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Malzer, Kanngiesser, X-Ray Spectrom. 2003; 32: 106–112

The divergent angle ˛ is 20° and 
the trajectories are distributed 
isotropically

Fluorescence intensities for non-parallel x-ray 
beams

퐼
퐼

= 푝 푠⃗ 푒푥푝
−휇휌퐷
푠

푑푠⃗
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A polycapillary lens, with a divergent 
angle of 10°, pointing perpendicular 
towards the sample surface. Detector 
angle of 20°.

Fluorescence intensities for non-parallel x-ray 
beams

퐼

=
퐼 훫 푐
휇

푝 푠⃗ 푝 푑⃗
1 − 푒푥푝 −휇휌퐷 푘

푑 + 1 − 푘
푠

푘 푠푑 + 1 − 푘
푑푠⃗푑푑⃗

cos = 푠 	푎푛푑	 cos훹 = 푑

휇 = 휇 + 휇 푘 = 휇
휇

The divergent angle of the excitation is
60°, inclined to 20°. The detector again 
covers 20°, inclined to 30°. XRF and 
micro-XRF spectrometers which employ 
Bragg optics

훹



A.G. Karydas, ICTP-IAEA School, Trieste, 18th November 2014

Geometrical considerations in XRF intensities

De Boer, XRS, 18, 119, 1989
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Geometrical considerations in XRF intensities

Weblin Ll, Rev. Sci. Instrum. 83, 053114 
(2012); doi: 10.1063/1.4722495

Geometry under GI conditions

B. Beckhoff et al Anal. Chem. 2007
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Geometrical considerations in XRF intensities

Sample Volume effect in milli-
beam size XRF set-ups

Orlic et al. XRS, 16, 125-130 (1987)
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T. Trojek, J. Anal. At. Spectrom., 2011, 26, 1253

Effect of Surface Topography in XRF intensities 

훮 =
퐾 퐶

sin 휑 + 휃
휏 ,

휇 , + 휇 ,
퐼 퐸 훥훦 + 퐶 푔 휏 , 	×

휏 , 퐼 퐸 훥퐸
휇 , + 휇 ,

퐿 ,

휇 , =
휇 ,

sin 휑 + 휃 휇 , =
휇 ,

sin 휑 − 휃
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Effect of Surface Topography in XRF intensities 

E. C. Geil and R. E. Thorne, J. Synchrotron Rad. (2014), 21, 1358-1363

푛 	 푠 푏 + 푠 푑 = 0

푠 = −
푏 푛
푑 푛

푠 ≡ 푘 푠

퐼 = 휆 푒푥푝 − 휇 + 푘휇 푠 푑푠 =
휆

휇 + 푘휇

푘 = cos 푎 + tan 휃 sin 훼

훪 휃 ∝
1

1 + 휇
휇 cos 푎 + tan 휃 sin 푎

θ is the rotation of the 
surface normal around the 
z axis; θ = 0 for a surface 
parallel to the xz plane
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μf/μi = 20

The angle effect vanishes as the detector position approaches the 
incident beam, and it is maximal when the detector is perpendicular 
to the beam. CaCO3 matrix, with incident beam energy 16.5keV

Effect of Surface Topography in XRF intensities 

Hints:
The objects should 
be mounted so that 
their dominant 
surface curvature 
runs perpendicular to 
the detector–incident 
beam (x-y) plane
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Map of surface 
angle θ computed 
from the Ca − Kα 
fluorescence

Effect of Surface Topography in XRF intensities 

Rendering of the 
scanned area and 
shaded as if obliquely 
illuminated from the 
right side by a light 
source. 

Photograph of the 
scanned area, 
adjusted to enhance
contrast and 
brightness.
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Sample effects – Particle size

Example: Fe2O3

50% of 8 -12 keV from 30μm – 60μm 

90% of 8 -12 keV from 100μm – 200μm 

Information originates only from the first two layers
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Particle size correction models

 Berry et al (Adv. X-ray Anal. 12, 612 1969)
o Dependence of fluorescence intensity on:

• =2/3 diameter of sphere
• η =packing ratio, 
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Overview - Conclusions
 The quantitative XRF analysis is currently supported by a well-defined 

mathematical formalism based on the so-called fundamental 
parameters approach

 The majority of second/third order phenomena that affect the 
analyte fluorescence intensity are described by analytical formulas 

Obstacles:
 Enhancement due to electrons ionization requires verification and 

currently is not taken into account routinely
 Accuracy of fundamental parameters (soft energy region) and for L, 

M characteristic X-rays
Perspectives
Monte Caro methods it is the most comprehensive tool to account 

for all high-order phenomena and assess their contribution in 
fluorescence intensities 

 FP re-evaluation by means of metrological SR experiments
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