
Introduction toIntroduction to
High-Performance ComputingHigh-Performance Computing

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Computational Science

Assistant Vice President for High-Performance Computing

Temple University
Philadelphia PA, USA

a.kohlmeyer@temple.edu

2HPC Introduction

Why use Computers in Science?

● Use complex theories without a closed solution:
solve equations or problems that can only be
solved numerically, i.e. by inserting numbers
into expressions and analyzing the results

● Do “impossible” experiments:
study (virtual) experiments, where the boundary
conditions are inaccessible or not controllable

● Benchmark correctness of models and theories:
the better a model/theory reproduces known
experimental results, the better its predictions

3HPC Introduction

What is High-Performance
Computing (HPC)?

● Definition depends on individual person:
“HPC is when I care how fast I get an answer”

● Thus HPC can happen on:
● A workstation, desktop, laptop, smartphone
● A supercomputer
● A Linux/MacOS/Windows/... cluster
● A grid or a cloud
● Cyberinfrastructure = any combination of the above

● HPC also means High-Productivity Computing

4HPC Introduction

Parallel Workstation

● Most desktops today are parallel workstations
=> multi-core processors

● Running Linux OS (or MacOS X) allows
programming like traditional Unix workstation

● All processors have access to all memory
● Uniform memory access (UMA):

 1 memory pool for all, same speed for all
● Non-uniform memory access (NUMA):

multiple pools, speed depends on “distance”

5HPC Introduction

An HPC Cluster is...

● A cluster needs:
● Several computers, often in special cases for easy

mounting in a rack (one node ~= one mainboard)
● One or more networks (interconnects) to access the

nodes and for inter-node communication
● Software that orchestrates communication between

parallel processes on the nodes (e.g. MPI)
● Software that reserves resources to individual users

● A cluster is: all of those components working
together to form one big computer

6HPC Introduction

What is Grid Computing?

● Loosely coupled network of compute resources
● Needs a “middleware” for transparent access

for inhomogeneous resources
● Modeled after power grid

=> share resources not needed right now
● Run a global authentication framework

=> Globus, Unicore, Condor, Boinc
● Run an application specific client

=> SETI@home, Folding@home

mailto:SETI@home
mailto:Folding@home

7HPC Introduction

What is Cloud Computing?

● Simplified: “Grid computing made easy”
● Grid: use “job description” to match calculation

request to a suitable available host, use
“distinguished name” to uniquely identify users,
opportunistic resource management

● Cloud: provide virtual server instance on shared
resource as needed with custom OS image,
commercialization (cloud service providers,
dedicated or spare server resources), physical
location flexible

8HPC Introduction

What is Supercomputing (SC)?

● The most visible manifestation of HPC
(=> Top500 List)

● Is “super” due to large size, extreme technology
● Desktop vs. Supercomputer in 2014 (peak):

● Desktop processor (1 core): ~25 GigaFLOP/s
● Tesla K40 GPU (2880 cores): >1.4 TeraFLOP/s
● #1 supercomputer (“Tianhe-2”): >50 PetaFLOP/s

● Sustained vs. Peak: “K” 93%, BG/Q 85%, Cray
XK7 65%, “Tianhe-2” 61%, Cluster 65-90%

9HPC Introduction

Why would HPC matter to you?

● Scientific computing is becoming more
important in many research disciplines

● Problems become more complex, need teams
of researchers with diverse expertise

● Scientific (HPC) application development
limited often limited by lack of training

● More knowledge about HPC leads to more
effective use of HPC resources and better
interactions with colleagues

10HPC Introduction

Research Disciplines in HPC

Molecular
Biosciences

31%

Chemistry
17%

Physics
17%

Astronomical
Sciences

12%

Materials Research
6%

Earth Sciences
3%

All 19 Others
4%

Advanced Scientific
Computing

2%

Atmospheric
Sciences

3%

Chemical, Thermal
Systems

5%

11HPC Introduction

My Background
● Undergraduate training as chemist (physical & organic),

PhD in Theoretical Chemistry, University Ulm, Germany

● Postdoctoral Research Associate, Center for Theoretical
Chemistry, Ruhr-University Bochum, Germany

● Associate Director, Center for Molecular Modeling,
University of Pennsylvania, Philadelphia, USA

● Associate Dean for Scientific Computing, CST,
Associate Director, Inst. for Comp. Molecular Science,
Temple University, Philadelphia (2009-2012, since 2014)

● Scientific Computing Expert, International Centre for
Theoretical Physics, (2012/13); now external consultant

● Lecturer at ICTP/SISSA International Master for HPC

12HPC Introduction

Why Would I Care About HPC?

● My problem is big

● My problem is complex

● My computer is too small and too slow
● My software is not efficient and/or not parallel

-> often scaling with system size the problem

13HPC Introduction

HPC vs. Computer Science

● Most people in HPC are not computer scientists
● Software has to be correct first and (then)

efficient; packages can be over 30 years “old”
● Technology is a mix of “high-end” & “stone age”

(Extreme hardware, MPI, Fortran, C/C++)
● So what skills do I need to for HPC:

● Common sense, cross-discipline perspective
● Good understanding of calculus and (some) physics
● Patience and creativity, ability to deal with “jargon”

14HPC Introduction

HPC is a Pragmatic Discipline

● Raw performance is not always what matters:
how long does it take me to get an answer?

● HPC is more like a craft than a science:
=> practical experience is most important
=> leveraging existing solutions is preferred
 over inventing new ones requiring rewrites
=> a good solution today is worth more than
 a better solution tomorrow
=> but a readable and maintainable solution
 is better than a complicated one

15HPC Introduction

How to Get My Answers Faster?

● Work harder
=> get faster hardware (get more funding)

● Work smarter
=> use optimized algorithms (libraries!)
=> write faster code (adapt to match hardware)
=> trade performance for convenience
 (e.g. compiled program vs. script program)

● Delegate parts of the work
=> parallelize code, (grid/batch computing)
=> use accelerators (GPU/MIC CUDA/OpenCL)

16HPC Introduction

HPC Cluster in 2002 / The Good

17HPC Introduction

HPC Cluster in 2002 / The Bad

18HPC Introduction

HPC Cluster in 2012

19HPC Introduction

A High-Performance Problem

20HPC Introduction

Software Optimization

● Writing maximally efficient code is hard:
=> most of the time it will not be executed
exactly as programmed, not even for assembly

● Maximally efficient code is not very portable:
=> cache sizes, pipeline depth, registers,
instruction set will be different between CPUs

● Compilers are smart (but not too smart!) and
can do the dirty work for us, but can get fooled

=> modular programming: generic code for
most of the work plus well optimized kernels

21HPC Introduction

Two Types of Parallelism

● Functional parallelism:
different people are
performing different
tasks at the same time

● Data parallelism:
different people are
performing the same
task, but on different
equivalent and
independent objects

22HPC Introduction

How Do We Measure Performance?

● For numerical operations: FLOP/s
= Floating-Point Operations per second

● Theoretical maximum (peak) performance:
clock rate x number of double precision addition
and/or multiplications completed per clock
=> 2.5 Ghz x 8 FLOP/clock = 20 GigaFLOP/s
=> can never be reached (data load/store)

● Real (sustained) performance:
=> very application dependent
=> Top500 uses Linpack (linear algebra)

23HPC Introduction

Performance of SC Applications

● Strong scaling: fixed data/problem set;
measure speedup with more processors

● Weak scaling: data/problem set increases with
more processors; measure if speed is same

● Linpack benchmark: weak scaling test, more
efficient with more memory => 50-90% peak

● Climate modeling (WRF): strong scaling test,
work distribution limited, load balancing, serial
overhead => < 5% peak (similar for MD)

24HPC Introduction

Strong Scaling Graph

220 470 1006 2150 4596

0.1

0.15

0.24

0.39

0.61

8 Vesicles CG-System / 30,902,832 CG-Beads

Nodes

Ti
m

e
pe

r
M

D
 S

te
p

(s
ec

)

27 63 148 345 805 1878

0.04

0.08

0.17

0.36

1 Vesicle CG System / 3,862,854 CG-Beads

Nodes

Ti
m

e
pe

r M
D

 s
te

p
(s

ec
)

- double logarithmic plot
- smaller x-value better (faster)

25HPC Introduction

Weak Scaling Graph

512 1024 2048 4096

0.05

0.1

0.15

0.2

Weak Scaling: 7,544 CG-Beads/Node

12 MPI / 1 OpenMP

6 MPI / 2 OpenMP

4 MPI / 3 OpenMP

2 MPI / 6 OpenMP

2 MPI / 6 OpenMP (SP)

Nodes

Ti
m

e
 p

e
r

M
D

-S
te

p
 (

se
c)

26HPC Introduction

Performance within an Application

128 256 384 768 128 256 384 768 768

0

5

10

15

20

25

Rhodopsin Benchmark, 860k Atoms, 64 Nodes, Cray XT5

Other
Neighbor
Comm
Kspace
Bond
Pair

PE

Ti
m

e
in

 s
ec

on
ds

27HPC Introduction

Amdahl's Law vs. Real Life

● The speedup of a parallel program is limited by
the sequential fraction of the program.

● This assumes perfect scaling and no overhead

32 64 128 256 512 1024 2048 4096

0%

25%

50%

75%

100%
1 Vesicle CG-System, 2 MPI / 6 OpenMP (SP)

Other

I/O

Comm

Neighbor

Kspace

Bond

Pair

of Nodes

P
e

rc
e

n
ta

g
e

 o
f T

im
e

Introduction toIntroduction to
High-Performance ComputingHigh-Performance Computing

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Computational Science

Assistant Vice President for High-Performance Computing

Temple University
Philadelphia PA, USA

a.kohlmeyer@temple.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

