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Why use Computers in Science?

● Use complex theories without a closed solution:
solve equations or problems that can only be 
solved numerically, i.e. by inserting numbers 
into expressions and analyzing the results

● Do “impossible” experiments:
study (virtual) experiments, where the boundary 
conditions are inaccessible or not controllable

● Benchmark correctness of models and theories:
the better a model/theory reproduces known 
experimental results, the better its predictions
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What is High-Performance 
Computing (HPC)?

● Definition depends on individual person:
“HPC is when I care how fast I get an answer”

● Thus HPC can happen on:
● A workstation, desktop, laptop, smartphone
● A supercomputer
● A Linux/MacOS/Windows/... cluster
● A grid or a cloud 
● Cyberinfrastructure = any combination of the above

● HPC also means High-Productivity Computing
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Parallel Workstation

● Most desktops today are parallel workstations
=> multi-core processors

● Running Linux OS (or MacOS X) allows 
programming like traditional Unix workstation

● All processors have access to all memory
● Uniform memory access (UMA):

 1 memory pool for all, same speed for all
● Non-uniform memory access (NUMA): 

multiple pools, speed depends on “distance” 
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An HPC Cluster is...

● A cluster needs:
● Several computers, often in special cases for easy 

mounting in a rack (one node ~= one mainboard)
● One or more networks (interconnects) to access the 

nodes and for inter-node communication
● Software that orchestrates communication between 

parallel processes on the nodes (e.g. MPI)
● Software that reserves resources to individual users

● A cluster is: all of those components working 
together to form one big computer
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What is Grid Computing?

● Loosely coupled network of compute resources
● Needs a “middleware” for transparent access 

for inhomogeneous resources
● Modeled after power grid

=> share resources not needed right now
● Run a global authentication framework

=> Globus, Unicore, Condor, Boinc
● Run an application specific client

=> SETI@home, Folding@home

mailto:SETI@home
mailto:Folding@home
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What is Cloud Computing?

● Simplified: “Grid computing made easy”
● Grid: use “job description” to match calculation 

request to a suitable available host, use 
“distinguished name” to uniquely identify users, 
opportunistic resource management

● Cloud: provide virtual server instance on shared 
resource as needed with custom OS image, 
commercialization (cloud service providers, 
dedicated or spare server resources), physical 
location flexible
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What is Supercomputing (SC)?

● The most visible manifestation of HPC
(=> Top500 List)

● Is “super” due to large size, extreme technology
● Desktop vs. Supercomputer in 2014 (peak):

● Desktop processor (1 core): ~25 GigaFLOP/s
● Tesla K40 GPU (2880 cores): >1.4 TeraFLOP/s
● #1 supercomputer (“Tianhe-2”): >50 PetaFLOP/s

● Sustained vs. Peak: “K” 93%, BG/Q 85%, Cray 
XK7 65%, “Tianhe-2” 61%, Cluster 65-90%
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Why would HPC matter to you?

● Scientific computing is becoming more 
important in many research disciplines

● Problems become more complex, need teams 
of researchers with diverse expertise

● Scientific (HPC) application development 
limited often limited by lack of training

● More knowledge about HPC leads to more 
effective use of HPC resources and better 
interactions with colleagues
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Research Disciplines in HPC

Molecular 
Biosciences

31%

Chemistry
17%

Physics
17%

Astronomical 
Sciences

12%

Materials Research
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Earth Sciences
3%

All 19 Others
4%

Advanced Scientific 
Computing
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Atmospheric 
Sciences
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Chemical, Thermal 
Systems

5%



11HPC Introduction

My Background
● Undergraduate training as chemist (physical & organic), 

PhD in Theoretical Chemistry, University Ulm, Germany

● Postdoctoral Research Associate, Center for Theoretical 
Chemistry, Ruhr-University Bochum, Germany

● Associate Director, Center for Molecular Modeling,
University of Pennsylvania, Philadelphia, USA

● Associate Dean for Scientific Computing, CST,
Associate Director, Inst. for Comp. Molecular Science,
Temple University, Philadelphia (2009-2012, since 2014)

● Scientific Computing Expert, International Centre for 
Theoretical Physics, (2012/13); now external consultant

● Lecturer at ICTP/SISSA International Master for HPC



12HPC Introduction

Why Would I Care About HPC?

● My problem is big

● My problem is complex

● My computer is too small and too slow
● My software is not efficient and/or not parallel

-> often scaling with system size the problem
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HPC vs. Computer Science

● Most people in HPC are not computer scientists
● Software has to be correct first and (then) 

efficient; packages can be over 30 years “old”
● Technology is a mix of “high-end” & “stone age”

(Extreme hardware, MPI, Fortran, C/C++) 
● So what skills do I need to for HPC:

● Common sense, cross-discipline perspective
● Good understanding of calculus and (some) physics
● Patience and creativity, ability to deal with “jargon”
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HPC is a Pragmatic Discipline

● Raw performance is not always what matters:
how long does it take me to get an answer?

● HPC is more like a craft than a science:
=> practical experience is most important
=> leveraging existing solutions is preferred
     over inventing new ones requiring rewrites
=> a good solution today is worth more than
     a better solution tomorrow
=> but a readable and maintainable solution
     is better than a complicated one



15HPC Introduction

How to Get My Answers Faster?

● Work harder
=> get faster hardware (get more funding)

● Work smarter
=> use optimized algorithms (libraries!)
=> write faster code (adapt to match hardware)
=> trade performance for convenience
      (e.g. compiled program vs. script program)

● Delegate parts of the work
=> parallelize code, (grid/batch computing)
=> use accelerators (GPU/MIC CUDA/OpenCL)
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HPC Cluster in 2002 / The Good
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HPC Cluster in 2002 / The Bad
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HPC Cluster in 2012
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A High-Performance Problem
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Software Optimization 

● Writing maximally efficient code is hard:
=> most of the time it will not be executed 
exactly as programmed, not even for assembly

● Maximally efficient code is not very portable:
=> cache sizes, pipeline depth, registers, 
instruction set will be different between CPUs

● Compilers are smart (but not too smart!) and 
can do the dirty work for us, but can get fooled

=> modular programming: generic code for 
most of the work plus well optimized kernels
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Two Types of Parallelism

● Functional parallelism:
different people are
performing different
tasks at the same time

● Data parallelism:
different people are
performing the same
task, but on different
equivalent and
independent objects
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How Do We Measure Performance?

● For numerical operations: FLOP/s
= Floating-Point Operations per second

● Theoretical maximum (peak) performance:
clock rate x number of double precision addition 
and/or multiplications completed per clock
=> 2.5 Ghz x 8 FLOP/clock = 20 GigaFLOP/s
=> can never be reached (data load/store)

● Real (sustained) performance:
=> very application dependent
=> Top500 uses Linpack (linear algebra)
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Performance of SC Applications

● Strong scaling: fixed data/problem set;
measure speedup with more processors

● Weak scaling: data/problem set increases with 
more processors; measure if speed is same

● Linpack benchmark: weak scaling test, more 
efficient with more memory => 50-90% peak

● Climate modeling (WRF): strong scaling test,
work distribution limited, load balancing, serial 
overhead => < 5% peak  (similar for MD)
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Strong Scaling Graph
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Weak Scaling Graph
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Performance within an Application
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Amdahl's Law vs. Real Life

● The speedup of a parallel program is limited by 
the sequential fraction of the program.

● This assumes perfect scaling and no overhead
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