
Floating-Point Math and AccuracyFloating-Point Math and Accuracy

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Computational Science

Assistant Vice President for High-Performance Computing

Temple University
Philadelphia PA, USA

a.kohlmeyer@temple.edu

2Floating Point and Accuracy

Errors in Scientific Computing

● Before computations:
– Modeling: neglecting certain properties
– Empirical data: not every input is known perfectly
– Previous computations: data may be taken from other

(error-prone) numerical methods
– Sloppy programming (e.g. inconsistent conversions)

● During computations:
– Truncation: a numerical method approximates a

continuous solution
– Rounding: computers offer only finite precision in

representing real numbers

3Floating Point and Accuracy

Example

● Computing the surface of the earth using

● This involves several approximations:
● Modeling: the earth is not exactly a sphere
● Measurement: earth's radius is an empirical number
● Truncation: the value of π is truncated
● Rounding: all numbers used are rounded due to

arithmetic operations in the computer

● Total error is the sum of all errors, but one of
them is often the dominant error

A=4 r2

4Floating Point and Accuracy

Representing Numbers (1)

● 'Real' numbers have unlimited accuracy
● Yet computers “think” digital, i.e. in integer math

=> only a fixed range of numbers can be
 represented by a fixed number of bits
=> distance between two integers is 1

● We can reduce the distance through fractions
(= fixed point), but that also reduces the range

16-bit 32-bit 64-bit 28-bit / 4-bit 22-bit / 10-bit

Min. -32768 -2147483648 ~ -9.2233 * 10-18 -16777216.0000 -2048.000000

Max. 32767 2147483647 ~ 9.2233 * 10-18 16777215.9375 ~ 2047.999023

Dist. 1 1 1 0.0635 0.0009765625

5Floating Point and Accuracy

Representing Numbers (2)

● Need a way to represent a wider range of
numbers with a same number of bits

● Need a way to represent numbers with a
reasonable amount of precision (distance)

● Same relative precision often sufficient:

=> Scientific notation:
 +/-(mantissa) * (base) +/-(exponent)

Mantissa -> integer fraction
Base -> 2
Exponent -> a small integer

6Floating Point and Accuracy

IEEE 754 Floating-point Numbers

● The IEEE 754 standard defines: storage format,
result of operations, special values (infinity,
overflow, invalid number), error handling
=> portability of compute kernels ensured

● Numbers are defined as bit patterns with a sign
bit, an exponential field, and a fraction field

– Single precision:
8-bit exponent
23-bit fraction

– Double precision:
11-bit exponent
52-bit fraction

7Floating Point and Accuracy

Values of Floating-Point Numbers

● Value: (1 – (mantissa)/(2(fraction bits)) * 2(exponent-bias)

1.0 ≤ (mantissa) < 2.0, (exponent) ≥ 0
● Special case: 0.0 is all bits set to zero

Special case: -0.0 is like 0.0 but sign bit is set
More special cases: Inf, -Inf, NaN, -NaN

● Single precision: ~±1.2*10-38 < x < ~±3.4*1038

actual precision: ~7 decimal digits
● Double precision: ~±2.2*10-308 < x < ~±1.8*10308

actual precision: ~15 decimal digits

8Floating Point and Accuracy

Density of Floating-point Numbers

● How can we represent so many more numbers
in floating point than in integer? We don't!

● The number of unique bit patterns has to be the
same as with integers of the same “bitness”

● There are 8,388,607 single precision numbers in
1.0< x <2.0, but only 8191 in 1023.0< x <1024.0

=> absolute precision depends on the magnitude

=> some numbers have no exact representation

=> approximated using rounding mode (nearest)

9Floating Point and Accuracy

Math with Floating Point Numbers

Addition:
– Right bitshift mantissa and increment exponent of smaller

number until both exponents are the same
– Add mantissa of both numbers and bitshift until mantissa is

between 1.0 and 2.0 again
– Only if both numbers have the same sign and the same

exponent precision is preserved

Multiplication:
– Add exponents and multiply mantissa of both numbers
– Bitshift mantissa until its value is between 1.0 and 2.0
– No loss of precision; error is larger error of either number

10Floating Point and Accuracy

Floating-Point Math Pitfalls

● Floating point math is commutative,
but not associative! Example (single precision):
1.0 + (1.5*1038 + (- 1.5*1038)) = 1.0
(1.0 + 1.5*1038) + (- 1.5*1038) = 0.0

● => the result of a summation depends on the
order of how the numbers are summed up

● => results may change significantly, if a compiler
changes the order of operations for optimization

● => prefer adding numbers of same magnitude
=> avoid subtracting very similar numbers

11Floating Point and Accuracy

How To Reduce Errors

● Use double precision unless you can be sure of
error cancellation or using an imprecise model
=> collides with vectorization and GPU/MIC

● When summing numbers of different magnitude
● Sort first and sum in ascending order
● Sum in blocks (pairs) and then sum the sums
● Use integer fraction, if range and precision allow it

● NOTE: summing numbers in parallel may give
different results depending on parallelization

12Floating Point and Accuracy

Floating Point Comparison

● Floating-point results are usually inexact
=> comparing for equality is dangerous
Example: don't use a floating point number for
controlling a loop count. Integers are made for it

● It is OK to use exact comparison:
● When results have to be bitwise identical
● To prevent division by zero errors

● => compare against expected absolute error
● => don't expect higher accuracy than possible

13Floating Point and Accuracy

Floating Point vs. Math Library

● libm is part of standard C, thus it is ubiquitous
● Provides a large variety of mathematical

functions / operations on floating-point numbers
but not many alternatives for x86/x86_64 exist

● Focus is typically put on standard compliance
● The x86 floating point unit contains most of the

functionality internally, but most as firmware;
SSE and AVX do not provide these

● The x86 FPU log() is slower than GNU libm

14Floating Point and Accuracy

Test Examples (1)

● inverse: computes y=1/x and z=x*y and
checks if the result is exactly 1.0.
Compare compilation using gfortran -O2
and gfortran -O2 -ffast-math

● loop: advance x from 0.0 to 1.0 in increments
of 0.01. Compare looping over integer and real

● epsilon: determine the floating-point precision
through searching for the largest epsilon for
which 1.0 + ε == 1.0. Start with ε = 1.0 and
repeatedly dividing by 2.0

15Floating Point and Accuracy

Test Examples (2)

● sum_number: compare summing accuracy
depending on ascending or descending order.
Find the smallest N where the sums differ

● paranoia: IEEE-754 compliance test
=> use make to compile with different compiler
flags for optimization and math accuracy

● mathopt: compute windowed average with a
two and three numbers wide window. Compare:
=> speed of division by 2 vs division by 3
=> impact of compiler flags vs. code rewrite

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

