

Measuring Hardware Performance

Ivan Girotto – igirotto@ictp.it

Information & Communication Technology Section (ICTS)
International Centre for Theoretical Physics (ICTP)

The Classical Model

John Von Neumann

John Von Neumann

The Classical Model

Performance Metrics

- When all CPU component work at maximum speed that referred peak of performance
 - Tech-spec normally describe the theoretical peak
 - Benchmarks measure the real peak
 - Applications show the real performance value
- CPU performance is measured as:
 - Floating point operations per seconds GFLOP/s
- But the real performance is in many cases mostly related to the memory bandwidth (GBytes/s)

How fast is my CPU?!

- CPU power is measured in FLOPS
 - number of floating point operations x second
 - FLOPS = #cores x clock x $\frac{\text{FLOP}}{\text{cycle}}$
- FLOP/cycle is the number of multiply-add (FMA) performed per cycle
 - architectural limit
 - depend also by the instruction set supported

The CPU Memory Hierarchy

CPU Registers

CACHE

MAIN MEMORY

COMPUTATION

APPLICATION DATA

Cache Memory

Loop: load r1, A(i)
load r2, s
mult r3, r2, r1
store A(i), r2
branch => loop

 Designed for temporal/spatial locality

 Data is transferred to cache in blocks of fixed size, called cache lines.

CACHE

- Operation of LOAD/STORE can lead at two different scenario:
 - cache hit
 - cache miss

MAIN MEMORY

The CPU Memory Hierarchy

Sequential Processing

Pipelining

IAEA

Pipelining

To the Extreme - Parallel Inside

Vector Units for processing multiple data in //

Pipelined/Superscalar design: multiple functional units operate concurrently

Modern CPUs Models

The Intel Xeon E5-2665 Sandy Bridge-EP 2.4GHz

The AMD Opteron 6380 Abu Dhabi 2.5GHz

Threading and Vectorization

DGEMM

- Matrix Multiplication (MM) is used for measuring HW performance in terms of "compute power"
- The DGEMM is a Level 3 BLAS operation
- For MM the complexity (2 x N^3) is relevant compared to the transferred data (3 x N^2) => compute-bound
- FLOP/s are obtained dividing the time to solution for a DGEMM multiplication by the number of operations

DAXPY

- It is a linear combination of vectors
 - $y = \alpha x + y$
- The DAXPY is a Level 1 BLAS operation
- For DAXPY the complexity (2 x N) is equal to the transferred data (2 x N) => memory-bound
- It used to measure the memory bandwidth of a system and how it impacts on performances


```
/* $begin mountainmain */
for (size = MINBYTES; size <= MAXBYTES; size <<= 1)</pre>
   for (stride = MAXSTRIDE - 1; stride >= 1; stride -= STRIDESTRIDE) {
       printf("%.0f\t", run(size, stride, Mhz));
   printf("\n");
/* $begin mountainfuns */
void test(int elems, int stride) /* The test function */
    for (int i = 0; i < elems; i += stride)
        int result += data[i];
/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
    double cycles;
    int elems = size / sizeof(int);
    /* call test(elems, stride) */
```


Libraries

Highly-portable (included into some Linux distributions)

Freely available **Open Source Optimized**

ATLAS

Thanks for your attention!!

