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Pre-process / Compile / Link

● Creating an executable includes multiple steps
● The “compiler” (gcc) is a wrapper for several 

commands that are executed in succession
● The “compiler flags” similarly fall into categories 

and are handed down to the respective tools
● The “wrapper” selects the compiler language 

from source file name, but links “its” runtime
● We will look into a C example first, since this is 

the language the OS is (mostly) written in
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● Consider the minimal C program 'hello.c':
#include <stdio.h>
int main(int argc, char **argv)
{
      printf(“hello world\n”);
      return 0;
}

● i.e.: what happens, if we do: 
> gcc -o hello hello.c
(try: gcc -v -o hello hello.c)

A simple C Example
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Step 1: Pre-processing

● Pre-processing is mandatory in C (and C++)
● Pre-processing will handle '#' directives

● File inclusion with support for nested inclusion
● Conditional compilation and Macro expansion

● In this case: /usr/include/stdio.h 
- and all files are included by it - are inserted 
and the contained macros expanded

● Use -E flag to stop after pre-processing:
> cc -E -o hello.pp.c hello.c
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Step 2: Compilation

● Compiler converts a high-level language into 
the specific instruction set of the target CPU

● Individual steps:
● Parse text (lexical + syntactical analysis)
● Do language specific transformations
● Translate to internal representation units (IRs)
● Optimization (reorder, merge, eliminate)
● Replace IRs with pieces of assembler language

● Try:> gcc -S hello.c (produces hello.s)
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Compilation cont'd
        .file "hello.c"
        .section .rodata
.LC0:
        .string "hello, world!"
        .text
.globl main
        .type main, @function
main:
        pushl   %ebp
        movl    %esp, %ebp
        andl    $-16, %esp
        subl    $16, %esp
        movl    $.LC0, (%esp)
        call    puts
        movl    $0, %eax
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (GNU) 4.5.1 20100924 (Red Hat 4.5.1-4)"
        .section        .note.GNU-stack,"",@progbits

#include <stdio.h>
int main(int argc,
        char **argv)
{
 printf(“hello world\n”);
 return 0;
}

gcc replaced printf with puts
 

try: gcc -fno-builtin -S hello.c
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Step 3: Assembler / Step 4: Linker

● Assembler (as) translates assembly to binary
● Creates so-called object files (in ELF format)

Try: > gcc -c hello.c
Try: > nm hello.o
00000000 T main
         U puts

● Linker (ld) puts binary together with startup 
code and required libraries

● Final step, result is executable.
Try: > gcc -o hello hello.o
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Adding Libraries
● Example 2: exp.c
#include <math.h>
#include <stdio.h>
int main(int argc, char **argv)
{    double a=2.0;
     printf("exp(2.0)=%f\n", exp(a));
     return 0;
}
● > gcc -o exp exp.c

Fails with “undefined reference to 'exp'”. Add: -lm 

● > gcc -O3 -o exp exp.c 
Works due to inlining at high optimization level.



9

Symbols in Object Files & Visibility

● Compiled object files have multiple sections 
and a symbol table describing their entries:
● “Text”: this is executable code
● “Data”: pre-allocated variables storage
● “Constants”: read-only data
● “Undefined”: symbols that are used but not defined
● “Debug”: debugger information (e.g. line numbers)

● Entries in the object files can be inspected with 
either the “nm” tool or the “readelf” command 
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Example File: visbility.c
static const int val1 = -5;
const int val2 = 10;
static int val3 = -20;
int val4 = -15;
extern int errno;

static int add_abs(const int v1, const int v2) { 
    return abs(v1)+abs(v2);
}

int main(int argc, char **argv) {
     int val5 = 20;
     printf("%d / %d / %d\n",
            add_abs(val1,val2),
            add_abs(val3,val4),
            add_abs(val1,val5));
     return 0;
}

nm visibility.o:
00000000 t add_abs
         U errno
00000024 T main
         U printf
00000000 r val1
00000004 R val2
00000000 d val3
00000004 D val4
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What Happens During Linking?

● Historically, the linker combines a “startup 
object” (crt1.o) with all compiled or listed object 
files, the C library (libc) and a “finish object” 
(crtn.o) into an executable (a.out)

● With current compilers it is more complicated
● The linker then “builds” the executable by 

matching undefined references with available 
entries in the symbol tables of the objects

● crt1.o has an undefined reference to “main”
thus C programs start at the main() function
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Static Libraries

● Static libraries built with the “ar” command are 
collections of objects with a global symbol table

● When linking to a static library, object code is 
copied into the resulting executable and all 
direct addresses recomputed (e.g. for “jumps”)

● Symbols are resolved “from left to right”, so 
circular dependencies require to list libraries 
multiple times or use a special linker flag

● When linking only the name of the symbol is 
checked, not whether its argument list matches
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Shared Libraries

● Shared libraries are more like executables that 
are missing the main() function

● When linking to a shared library, a marker is 
added to load the library by its “generic” name 
(soname) and the list of undefined symbols

● When resolving a symbol (function) from 
shared library all addresses have to be 
recomputed (relocated) on the fly.

● The shared linker program is executed first and 
then loads the executable and its dependencies
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Differences When Linking

● Static libraries are fully resolved “left to right”;
circular dependencies are only resolved 
between explicit objects or inside a library
-> need to specify libraries multiple times
or use: -Wl,--start-group (...) -Wl,--end-group

● Shared libraries symbols are not fully resolved 
at link time, only checked for symbols required 
by the object files. Full check only at runtime.

● Shared libraries may depend on other shared 
libraries whose symbols will be globally visible
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Dynamic Linker Properties

● Linux defaults to dynamic libraries:
> ldd hello
linux-gate.so.1 =>  (0x0049d000)
libc.so.6 => /lib/libc.so.6 
(0x005a0000)
/lib/ld-linux.so.2 (0x0057b000)

● /etc/ld.so.conf, LD_LIBRARY_PATH
define where to search for shared libraries

● gcc -Wl,-rpath,/some/dir will encode 
/some/dir into the binary for searching
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Using LD_PRELOAD

● Using the LD_PRELOAD environment variable, 
symbols from a shared object can be preloaded 
into the global object table and will override 
those in later resolved shared libraries
=> replace specific functions in a shared library

● Example: override log() with a faster version:
#include “amdlibm.h”
double log(double x) { return amd_log(x); }

gcc -shared -o fasterlog.so faster.c -lamdlibm
● LD_PRELOAD=./fasterlog.so ./myprog-with
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Before LD_PRELOAD
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After LD_PRELOAD
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What is Different in Fortran?
● Basic compilation principles are the same

=> preprocess, compile, assemble, link
● In Fortran, symbols are case insensitive

=> most compilers translate them to lower case
● In Fortran symbol names may be modified to 

make them different from C symbols
(e.g. append one or more underscores)

● Fortran entry point is not “main” (no arguments)
PROGRAM => MAIN__ (in gfortran)

● C-like main() provided as startup (to store args)
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Pre-processing in C and Fortran

● Pre-processing is mandatory in C/C++
● Pre-processing is optional in Fortran
● Fortran pre-processing enabled implicitly via

file name: name.F, name.F90, name.FOR
● Legacy Fortran packages often use /lib/cpp:

 /lib/cpp -C -P -traditional -o name.f name.F
● -C : keep comments (may be legal Fortran code)
● -P : no '#line' markers (not legal Fortran syntax)
● -traditional : don't collapse whitespace

(incompatible with fixed format sources) 
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Compilers on x86

● GNU default on Linux: gcc, g++, gfortran, ...
● Free, C/C++ quite good, gfortran focus on standards
● 'native' Linux compilers
● Support for many platforms, cross-compilation

● Other free compilers: clang/LLVM, open64 
● Several commercial compilers for Linux:

● Intel, PGI, Cray, NAG, Absoft, ... 

● MacOS: clang/LLVM (used to be GNU)
● Windows: Microsoft, Intel, GNU (Cygwin,MinGW)
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Common Compiler Flags

● Optimization: -O0, -O1, -O2, -O3, -O4, ...
● Compiler will try to rearrange generated code

so it executes faster
● Aggressive compiler optimization may not 

always execute faster or may miscompile code
● High optimization level (> 2) may alter semantics 

● Preprocessor flags: -I/some/dir -DSOM_SYS
● Linker flags: -L/some/other/dir -lm

-> search for libm.so/libm.a also in /some/dir 
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Noteworthy Compiler Flags: GNU

● -mtune=i686 -march=i386 
optimize for i686 cpu, use i386 instruction set
=> compatibility with all 32-bit x86 CPUs 

● -msse, -msse2, -mavx
enable using SSE, SSE2, AVX for FP math 

● -ffast-math
replace (some) mathematical constructs with 
faster alternatives, even if it reduces precision 

● -fopenmp
enable handling of OpenMP directives
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Makefiles: Concepts

● Simplify building 
large code projects

● Speed up re-compile
on small changes

● Consistent build 
command: make

● Platform specific
configuration via
Variable definitions
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Makefiles: Syntax

● Rules:
target: prerequisites
           command
         ^this must be a 'Tab' (|<- ->|)
● Variables:
NAME= VALUE1 VALUE2 value3
● Comments:
# this is a comment
● Special keywords:
include linux.mk
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Makefiles: Rules Examples

# first target is default:
all: hello sqrt

hello: hello.c
       cc -o hello hello.c

sqrt: sqrt.o
       f77 -o sqrt sqrt.o
sqrt.o: sqrt.f
       f77 -o sqrt.o -c sqrt.f 
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Makefiles: Variables Examples

# uncomment as needed
CC= gcc
#CC= icc -i-static
LD=$(CC)
CFLAGS= -O2

hello: hello.o
       $(LD) -o hello hello.o

hello.o: hello.c
       $(CC)-c $(CFLAGS) hello.c
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Makefiles: Automatic Variables

CC= gcc
CFLAGS= -O2

howdy: hello.o yall.o
       $(CC) -o $@ $^

hello.o: hello.c
       $(CC)-c $(CFLAGS) $<

yall.o: yall.c
       $(CC)-c $(CFLAGS) $<
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Makefiles: Pattern Rules

OBJECTS=hello.o yall.o 

howdy: $(OBJECTS)
       $(CC) -o $@ $^

hello.o: hello.c
yall.o: yall.c

.c.o:
       $(CC)-o $@ -c $(CFLAGS) $<

Rule to translate all XXX.c files to XXX.o files
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Makefiles: Special Targets

.SUFFIXES:

.SUFFIXES: .o .F

.PHONY: clean install

.F.o:
     $(CPP) $(CPPFLAGS) $< -o $*.f
     $(FC)-o $@ -c $(FFLAGS) $*.f

clean:
       rm -f *.f *.o

Clear list of all known suffixes

Register new suffixes

Tell make to not look for theses files
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Makefiles: Calling make

● Override Variables:
make CC=icc CFLAGS='-O2 -unroll'

● Dry run (don't execute):
make -n

● Don't stop at errors (dangerous):
make -i

● Parallel make (requires careful design)
make -j2

● Use alternative Makefile
make -f make.pgi
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