
From Source Code to ExecutableFrom Source Code to Executable

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Computational Science

Assistant Vice President for High-Performance Computing

Temple University
Philadelphia PA, USA

a.kohlmeyer@temple.edu

2

Pre-process / Compile / Link

● Creating an executable includes multiple steps
● The “compiler” (gcc) is a wrapper for several

commands that are executed in succession
● The “compiler flags” similarly fall into categories

and are handed down to the respective tools
● The “wrapper” selects the compiler language

from source file name, but links “its” runtime
● We will look into a C example first, since this is

the language the OS is (mostly) written in

3

● Consider the minimal C program 'hello.c':
#include <stdio.h>
int main(int argc, char **argv)
{
 printf(“hello world\n”);
 return 0;
}

● i.e.: what happens, if we do:
> gcc -o hello hello.c
(try: gcc -v -o hello hello.c)

A simple C Example

4

Step 1: Pre-processing

● Pre-processing is mandatory in C (and C++)
● Pre-processing will handle '#' directives

● File inclusion with support for nested inclusion
● Conditional compilation and Macro expansion

● In this case: /usr/include/stdio.h
- and all files are included by it - are inserted
and the contained macros expanded

● Use -E flag to stop after pre-processing:
> cc -E -o hello.pp.c hello.c

5

Step 2: Compilation

● Compiler converts a high-level language into
the specific instruction set of the target CPU

● Individual steps:
● Parse text (lexical + syntactical analysis)
● Do language specific transformations
● Translate to internal representation units (IRs)
● Optimization (reorder, merge, eliminate)
● Replace IRs with pieces of assembler language

● Try:> gcc -S hello.c (produces hello.s)

6

Compilation cont'd
 .file "hello.c"
 .section .rodata
.LC0:
 .string "hello, world!"
 .text
.globl main
 .type main, @function
main:
 pushl %ebp
 movl %esp, %ebp
 andl $-16, %esp
 subl $16, %esp
 movl $.LC0, (%esp)
 call puts
 movl $0, %eax
 leave
 ret
 .size main, .-main
 .ident "GCC: (GNU) 4.5.1 20100924 (Red Hat 4.5.1-4)"
 .section .note.GNU-stack,"",@progbits

#include <stdio.h>
int main(int argc,
 char **argv)
{
 printf(“hello world\n”);
 return 0;
}

gcc replaced printf with puts

try: gcc -fno-builtin -S hello.c

7

Step 3: Assembler / Step 4: Linker

● Assembler (as) translates assembly to binary
● Creates so-called object files (in ELF format)

Try: > gcc -c hello.c
Try: > nm hello.o
00000000 T main
 U puts

● Linker (ld) puts binary together with startup
code and required libraries

● Final step, result is executable.
Try: > gcc -o hello hello.o

8

Adding Libraries
● Example 2: exp.c
#include <math.h>
#include <stdio.h>
int main(int argc, char **argv)
{ double a=2.0;
 printf("exp(2.0)=%f\n", exp(a));
 return 0;
}
● > gcc -o exp exp.c

Fails with “undefined reference to 'exp'”. Add: -lm

● > gcc -O3 -o exp exp.c
Works due to inlining at high optimization level.

9

Symbols in Object Files & Visibility

● Compiled object files have multiple sections
and a symbol table describing their entries:
● “Text”: this is executable code
● “Data”: pre-allocated variables storage
● “Constants”: read-only data
● “Undefined”: symbols that are used but not defined
● “Debug”: debugger information (e.g. line numbers)

● Entries in the object files can be inspected with
either the “nm” tool or the “readelf” command

10

Example File: visbility.c
static const int val1 = -5;
const int val2 = 10;
static int val3 = -20;
int val4 = -15;
extern int errno;

static int add_abs(const int v1, const int v2) {
 return abs(v1)+abs(v2);
}

int main(int argc, char **argv) {
 int val5 = 20;
 printf("%d / %d / %d\n",
 add_abs(val1,val2),
 add_abs(val3,val4),
 add_abs(val1,val5));
 return 0;
}

nm visibility.o:
00000000 t add_abs
 U errno
00000024 T main
 U printf
00000000 r val1
00000004 R val2
00000000 d val3
00000004 D val4

11

What Happens During Linking?

● Historically, the linker combines a “startup
object” (crt1.o) with all compiled or listed object
files, the C library (libc) and a “finish object”
(crtn.o) into an executable (a.out)

● With current compilers it is more complicated
● The linker then “builds” the executable by

matching undefined references with available
entries in the symbol tables of the objects

● crt1.o has an undefined reference to “main”
thus C programs start at the main() function

12

Static Libraries

● Static libraries built with the “ar” command are
collections of objects with a global symbol table

● When linking to a static library, object code is
copied into the resulting executable and all
direct addresses recomputed (e.g. for “jumps”)

● Symbols are resolved “from left to right”, so
circular dependencies require to list libraries
multiple times or use a special linker flag

● When linking only the name of the symbol is
checked, not whether its argument list matches

13

Shared Libraries

● Shared libraries are more like executables that
are missing the main() function

● When linking to a shared library, a marker is
added to load the library by its “generic” name
(soname) and the list of undefined symbols

● When resolving a symbol (function) from
shared library all addresses have to be
recomputed (relocated) on the fly.

● The shared linker program is executed first and
then loads the executable and its dependencies

14

Differences When Linking

● Static libraries are fully resolved “left to right”;
circular dependencies are only resolved
between explicit objects or inside a library
-> need to specify libraries multiple times
or use: -Wl,--start-group (...) -Wl,--end-group

● Shared libraries symbols are not fully resolved
at link time, only checked for symbols required
by the object files. Full check only at runtime.

● Shared libraries may depend on other shared
libraries whose symbols will be globally visible

15

Dynamic Linker Properties

● Linux defaults to dynamic libraries:
> ldd hello
linux-gate.so.1 => (0x0049d000)
libc.so.6 => /lib/libc.so.6
(0x005a0000)
/lib/ld-linux.so.2 (0x0057b000)

● /etc/ld.so.conf, LD_LIBRARY_PATH
define where to search for shared libraries

● gcc -Wl,-rpath,/some/dir will encode
/some/dir into the binary for searching

16

Using LD_PRELOAD

● Using the LD_PRELOAD environment variable,
symbols from a shared object can be preloaded
into the global object table and will override
those in later resolved shared libraries
=> replace specific functions in a shared library

● Example: override log() with a faster version:
#include “amdlibm.h”
double log(double x) { return amd_log(x); }

gcc -shared -o fasterlog.so faster.c -lamdlibm
● LD_PRELOAD=./fasterlog.so ./myprog-with

17

Before LD_PRELOAD

18

After LD_PRELOAD

19

What is Different in Fortran?
● Basic compilation principles are the same

=> preprocess, compile, assemble, link
● In Fortran, symbols are case insensitive

=> most compilers translate them to lower case
● In Fortran symbol names may be modified to

make them different from C symbols
(e.g. append one or more underscores)

● Fortran entry point is not “main” (no arguments)
PROGRAM => MAIN__ (in gfortran)

● C-like main() provided as startup (to store args)

20

Pre-processing in C and Fortran

● Pre-processing is mandatory in C/C++
● Pre-processing is optional in Fortran
● Fortran pre-processing enabled implicitly via

file name: name.F, name.F90, name.FOR
● Legacy Fortran packages often use /lib/cpp:

 /lib/cpp -C -P -traditional -o name.f name.F
● -C : keep comments (may be legal Fortran code)
● -P : no '#line' markers (not legal Fortran syntax)
● -traditional : don't collapse whitespace

(incompatible with fixed format sources)

21

Compilers on x86

● GNU default on Linux: gcc, g++, gfortran, ...
● Free, C/C++ quite good, gfortran focus on standards
● 'native' Linux compilers
● Support for many platforms, cross-compilation

● Other free compilers: clang/LLVM, open64
● Several commercial compilers for Linux:

● Intel, PGI, Cray, NAG, Absoft, ...

● MacOS: clang/LLVM (used to be GNU)
● Windows: Microsoft, Intel, GNU (Cygwin,MinGW)

22

Common Compiler Flags

● Optimization: -O0, -O1, -O2, -O3, -O4, ...
● Compiler will try to rearrange generated code

so it executes faster
● Aggressive compiler optimization may not

always execute faster or may miscompile code
● High optimization level (> 2) may alter semantics

● Preprocessor flags: -I/some/dir -DSOM_SYS
● Linker flags: -L/some/other/dir -lm

-> search for libm.so/libm.a also in /some/dir

23

Noteworthy Compiler Flags: GNU

● -mtune=i686 -march=i386
optimize for i686 cpu, use i386 instruction set
=> compatibility with all 32-bit x86 CPUs

● -msse, -msse2, -mavx
enable using SSE, SSE2, AVX for FP math

● -ffast-math
replace (some) mathematical constructs with
faster alternatives, even if it reduces precision

● -fopenmp
enable handling of OpenMP directives

24

Makefiles: Concepts

● Simplify building
large code projects

● Speed up re-compile
on small changes

● Consistent build
command: make

● Platform specific
configuration via
Variable definitions

25

Makefiles: Syntax

● Rules:
target: prerequisites
 command
 ^this must be a 'Tab' (|<- ->|)
● Variables:
NAME= VALUE1 VALUE2 value3
● Comments:
this is a comment
● Special keywords:
include linux.mk

26

Makefiles: Rules Examples

first target is default:
all: hello sqrt

hello: hello.c
 cc -o hello hello.c

sqrt: sqrt.o
 f77 -o sqrt sqrt.o
sqrt.o: sqrt.f
 f77 -o sqrt.o -c sqrt.f

27

Makefiles: Variables Examples

uncomment as needed
CC= gcc
#CC= icc -i-static
LD=$(CC)
CFLAGS= -O2

hello: hello.o
 $(LD) -o hello hello.o

hello.o: hello.c
 $(CC)-c $(CFLAGS) hello.c

28

Makefiles: Automatic Variables

CC= gcc
CFLAGS= -O2

howdy: hello.o yall.o
 $(CC) -o $@ $^

hello.o: hello.c
 $(CC)-c $(CFLAGS) $<

yall.o: yall.c
 $(CC)-c $(CFLAGS) $<

29

Makefiles: Pattern Rules

OBJECTS=hello.o yall.o

howdy: $(OBJECTS)
 $(CC) -o $@ $^

hello.o: hello.c
yall.o: yall.c

.c.o:
 $(CC)-o $@ -c $(CFLAGS) $<

Rule to translate all XXX.c files to XXX.o files

30

Makefiles: Special Targets

.SUFFIXES:

.SUFFIXES: .o .F

.PHONY: clean install

.F.o:
 $(CPP) $(CPPFLAGS) $< -o $*.f
 $(FC)-o $@ -c $(FFLAGS) $*.f

clean:
 rm -f *.f *.o

Clear list of all known suffixes

Register new suffixes

Tell make to not look for theses files

31

Makefiles: Calling make

● Override Variables:
make CC=icc CFLAGS='-O2 -unroll'

● Dry run (don't execute):
make -n

● Don't stop at errors (dangerous):
make -i

● Parallel make (requires careful design)
make -j2

● Use alternative Makefile
make -f make.pgi

From Source Code to ExecutableFrom Source Code to Executable

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Computational Science

Assistant Vice President for High-Performance Computing

Temple University
Philadelphia PA, USA

a.kohlmeyer@temple.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

