
Introduction to OpenMP

Ekpe Okorafor
School of Parallel Programming & Parallel Architecture for HPC

ICTP

October, 2014

A little about me!

• PhD Computer Engineering – Texas A&M

University

• Computer Science Faculty

– Texas A&M University

– University of Texas at Dallas

– Addis Ababa University, Ethiopia

– African University of Science & Technology,

Abuja, Nigeria

• Big Data Academy, Accenture Digital

(Analytics) - USA

2

Topics

• Overview of OpenMP

• Basic Constructs

• Shared Data

• Parallel Flow Control

• Synchronization

• Reduction

• Synopsis of Commands

3

Intro (1)

• OpenMP is :
– an API (Application Programming Interface)

– NOT a programming language

– A set of compiler directives that help the application

developer to parallelize their workload.

– A collection of the directives, environment variables and

the library routines

4

Intro (2)

• OpenMP:
– For shared memory systems

– Add parallelism to functioning serial code

– http://openmp.org

– Compiler run-time does a lot of work for us

– Divides up work

– But we have to tell it how to use variables, where to run in

parallel

– Parallel regions need to be marked

• Works by adding compiler directives to the code (This is invisible to

non-openMP compilers)

5

http://openmp.org/

Intro (3)

• OpenMP continues to evolve, with new constructs and features being

added over time.

• Initially, the API specifications were released separately for C and

Fortran. Since 2005, they have been released together.

• The table below chronicles the OpenMP API release history:

6

Month/Year Version

Oct 1997 Fortran 1.0

Oct 1998 C/C++ 1.0

Nov 1999 Fortran 1.1

Nov 2000 Fortran 2.0

Mar 2002 C/C++ 2.0

May 2005 OpenMP 2.5

May 2008 OpenMP 3.0

Jul 2011 OpenMP 3.1

Jul 2013 OpenMP 4.0

A Programmer’s View of OpenMP

• OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax

• Exact behavior depends on OpenMP implementation!
• Requires compiler support (C or Fortran)

• OpenMP will:

• Allow a programmer to separate a program into serial regions
and parallel regions, rather than T concurrently-executing
threads.

• Hide stack management
• Provide synchronization constructs

• OpenMP will not:
• Parallelize automatically
• Guarantee speedup
• Provide freedom from data races

7

Components of OpenMP

Environment variables

(13)

Number of threads

Scheduling type

Dynamic thread

adjustment

Nested Parallelism

8

Directives (44)

Parallel regions

Work sharing

Synchronization

Data scope

attributes:

• private

• first private

• last private

• shared

• reduction

Orphaning

Runtime library routines

(35)

Number of threads

Thread ID

Dynamic thread adjustment

Nested Parallelism

Timers

API for locking

OpenMP Architecture

9

Operating System level Threads

OpenMP Runtime Library

Application

Environment

Variables

User

Compiler

Directives

Inspired by OpenMp.org introductory slides

Topics

• Overview of OpenMP

• Basic Constructs

• Shared Data

• Parallel Flow Control

• Synchronization

• Reduction

• Synopsis of Commands

10

OpenMP : Basic Constructs

C / C++ :

#pragma omp parallel {

 parallel block

} /* omp end parallel */
11

OpenMP Execution Model:

Sequential Part (master thread)

Parallel Region (group of threads)

Sequential Part (master thread)

Parallel Region (group of threads)

Sequential Part (master thread)

To invoke library routines in C/C++ add

 #include <omp.h>

near the top of your code

OpenMP : Basic Constructs

12

 int main() {

 // Do this part in parallel

 {

 printf("Hello, World!\n");

 }

 return 0;

 }

OpenMP : Basic Constructs

13

 int main() {

 // Do this part in parallel

 #pragma omp parallel

 {

 printf("Hello, World!\n");

 }

 return 0;

 }

OpenMP : Basic Constructs

14

 int main() {

 omp_set_num_threads(16);

 // Do this part in parallel

 #pragma omp parallel

 {

 printf("Hello, World!\n");

 }

 return 0;

 }

OpenMP : Runtime Library

Function: omp_get_num_threads()

C/ C++ int omp_get_num_threads(void);

Fortran integer function omp_get_num_threads()

Description:

Returns the total number of threads currently in the group executing the parallel

block from where it is called.

15

Function: omp_get_thread_num()

C/ C++ int omp_get_thread_num(void);

Fortran integer function omp_get_thread_num()

Description:

For the master thread, this function returns zero. For the child nodes the call returns

an integer between 1 and omp_get_num_threads()-1 inclusive.

HelloWorld in OpenMP

16

#include <omp.h>

main ()
{
 int nthreads, tid;
 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);
 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 }
}

Code segment that

will be executed in

parallel

OpenMP directive

to indicate START

segment to be

parallelized

OpenMP directive

to indicate END

segment to be

parallelized

Compiling OpenMP Programs

Fortran :

• Case insensitive directives

• Syntax :

– !$OMP directive [clause[[,] clause]…] (free format)

– !OMP / COMP / *$OMP directive [clause[[,] clause]…] (free format)

• Compiling OpenMP source code :

– (IBM xlf compiler) : xlf_r -q64 -O2 -qsmp=omp file_name.f –o exe_file_name

– (Linux Fortran compiler) : gfort -o exe_file_name –openmp file_name.f

17

C :

• Case sensitive directives

• Syntax :

– #pragma omp directive [clause [clause]..]

• Compiling OpenMP source code :

– (IBM xlc compiler) : xlc_r -q64 -O2 -qsmp=omp file_name.c –o exe_file_name

– (Linux C compiler) : gcc –o exe_file_name –openmp file_name.c

OpenMP: Environment Variables

18

Environment

Variable:

OMP_NUM_THREADS

Usage :

bash/sh/ksh:

csh/tcsh

OMP_NUM_THREADS n

export OMP_NUM_THREADS=8

setenv OMP_NUM_THREADS=8

Description:

Sets the number of threads to be used by the OpenMP program during execution.

Environment

Variable:

OMP_DYNAMIC

Usage :

bash/sh/ksh:

csh/tcsh

OMP_DYNAMIC {TRUE|FALSE}

export OMP_DYNAMIC=TRUE

setenv OMP_DYNAMIC=“TRUE”

Description:

When this environment variable is set to TRUE the maximum number of threads

available for use by the OpenMP program is $OMP_NUM_THREADS.

OpenMP: Environment Variables

19

Environment

Variable:

OMP_SCHEDULE

Usage :

bash/sh/ksh:

csh/tcsh

OMP_SCHEDULE “schedule,[chunk]”

export OMP_SCHEDULE static,N/P

setenv OMP_SCHEDULE=“GUIDED,4”

Description:

Only applies to for and parallel for directives. This environment variable sets the

schedule type and chunk size for all such loops. The chunk size can be provided as

an integer number, the default being 1.

Environment

Variable:

OMP_NESTED

Usage :

bash/sh/ksh:

csh/tcsh

OMP_NESTED {TRUE|FALSE}

export OMP_NESTED FALSE

setenv OMP_NESTED=“FALSE”

Description:

Setting this environment variable to TRUE enables multi-threaded execution of inner

parallel regions in nested parallel regions.

OpenMP under the hood

Execution of an open MP based code :

• On encountering the C construct #pragma omp parallel{ or the Fortran

equivalent !$omp parallel, n extra threads are created

• omp_get_num_threads() returns the number of execution threads that

can be utilized. The value returned by this call is between 0 to

(OMP_NUM_THREADS – 1) for our convenience lets call this variable

nthreads

• Code after the parallel directive is executed independently on each of the

nthreads.

• On encountering the C construct } (corresponding to #pragma omp

parallel{) or the corresponding Fortran equivalent !$omp end parallel,

indicates the end of parallel execution of the code segment, the n extra

threads are deactivated and normal sequential execution begins.

20

DEMO : Hello World

[griduser@localhost openMP]$ gcc -o helloc -openmp hello.c

hello.c(6) : (col. 4) remark: OpenMP DEFINED REGION WAS PARALLELIZED.

[griduser@localhost openMP]$ export OMP_NUM_THREADS=8

[griduser@localhost openMP]$./helloc

Hello World from thread = 0

Number of threads = 8

Hello World from thread = 1

Hello World from thread = 2

Hello World from thread = 3

Hello World from thread = 4

Hello World from thread = 5

Hello World from thread = 6

Hello World from thread = 7

[griduser@localhost openMP]$

21

Topics

• Overview of OpenMP

• Basic Constructs

• Shared Data

• Parallel Flow Control

• Synchronization

• Reduction

• Synopsis of Commands

22

OpenMP: Data Environment … 1

• OpenMP program always begins with a single thread of control –

master thread

• Context associated with the master thread is also known as Data

Environment.

• Context is comprised of :

– Global variables

– Automatic variables

– Dynamically allocated variables

• Context of the master thread remains valid throughout the execution of

the program

• The OpenMP parallel construct may be used to either share a single

copy of the context with all the threads or provide each of the threads

with a private copy of the context.

• The sharing of Context can be performed at various levels of

granularity

• Select variables from a context can be shared while keeping the

context private etc.

 23

OpenMP: Data Environment … 2
• OpenMP data scoping clauses allows programmer to decide whether a variable’s

execution context i.e. should the variable be shared or private.

• 3 main data scoping clauses in OpenMP (Shared, Private, Reduction) :

• Shared :

– A variable will have a single storage location in memory for the duration of the parallel

construct, i.e. references to a variable by different threads access the same memory

location.

– That part of the memory is shared among the threads involved, hence modifications to

the variable can be made using simple read/write operations

– Modifications to the variable by different threads is managed by underlying shared

memory mechanisms

• Private :

– A variable will have a separate storage location in memory for each of the threads

involved for the duration of the parallel construct.

– All read/write operations by the thread will affect the thread’s private copy of the

variable .

• Reduction :

– Exhibit both shared and private storage behavior. Usually used on objects that are the

target of arithmetic reduction.

– Example : summation of local variables at the end of a parallel construct 24

OpenMP: Reduction clause

• performs reduction on shared variables in list based on the operator provided.

• for C/C++ operator can be any one of :

• +, *, -, ^, |, ||, & or &&

• At the end of a reduction, the shared variable contains the result obtained

upon combination of the list of variables processed using the operator

specified.

25

sum = 0.0

#pragma omp parallel for reduction(+:sum)

 for (i=0; i < 20; i++)

 sum = sum + (a[i] * b[i]);

sum=0

i=0,4 i=5,9 i=10,14 i=15,19

sum=.. sum=.. sum=.. sum=..

∑sum

sum=0

Topics

• Introduction

• Overview of OpenMP

• Basic Constructs

• Shared Data

• Parallel Flow Control

• Synchronization

• Reduction

• Synopsis of Commands

26

OpenMP: Work-Sharing Directives

• Work sharing construct divide the execution of the enclosed

block of code among the group of threads.

• They do not launch new threads.

• No implied barrier on entry

• Implicit barrier at the end of work-sharing construct

• Commonly used Work Sharing constructs :

– for directive (C/C++ ; equivalent DO construct available in

Fortran but will not be covered here) : shares iterations of a

loop across a group of threads

– sections directive : breaks work into separate sections

between the group of threads; such that each thread

independently executes a section of the work.

– single directive: serializes a section of code

• We will take a look at for and sections directives

27

OpenMP: Schedule clause

• The schedule clause defines how the iterations of a loop are divided

among a group of threads

• static : iterations are divided into pieces of size chunk and are

statically assigned to each of the threads in a round robin fashion

• dynamic : iterations divided into pieces of size chunk and

dynamically assigned to a group of threads. After a thread finishes

processing a chunk, it is dynamically assigned the next set of

iterations.

• guided : For a chunk of size 1, the size of each chunk is proportional

to the number of unassigned iterations divided by the number of

threads, decreasing to 1. For a chunk with value k, the same

algorithm is used in determining the chunk size with the constraint

that no chunk should have less than k chunks except the last chunk.

• Default schedule is implementation specific while the default chunk

size is usually 1

28

OpenMP for directive
• for directive helps share iterations of a loop

between a group of threads

• If nowait is specified then the threads do not

wait for synchronization at the end of a parallel

loop

• The schedule clause describes how iterations

of a loop are divided among the threads in the

team (discussed in detail in the next few

slides)

29

#pragma omp parallel private (p)

{

 p=5;

 #pragma omp for

 for (i=0; i<24; i++)

 x[i]=y[i]+p*(i+3)

 …

 …

} /* omp end parallel */

p=5

i =

0,4

p=5

i=

5,9

p=5

i=

20,24

fork

join

do / for loop

…

…

x[i]=

y[i]+

…

x[i]=

y[i]+

…

x[i]=

y[i]+

…

…

Simple Loop Parallelization

#pragma omp parallel for

 for (i=0; i<n; i++)

z(i) = a*x(i)+y

30

Master thread executing

serial portion of the code

Master thread encounters parallel

for loop and creates worker threads

Master and worker threads divide

iterations of the for loop and execute

them concurrently

Implicit barrier: wait for all threads to

finish their executions

Master thread executing serial

portion of the code resumes and

slave threads are discarded

Example: OpenMP work sharing Constructs

31

#include <omp.h>
#define N 16
main ()
{
int i, chunk;
float a[N], b[N], c[N];
for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
chunk = 4;
printf("a[i] + b[i] = c[i] \n");
#pragma omp parallel shared(a,b,c,chunk) private(i)
 {
 #pragma omp for schedule(dynamic,chunk) nowait
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of parallel section */
for (i=0; i < N; i++)
 printf(" %f + %f = %f \n",a[i],b[i],c[i]);
}

Initializing the vectors a[i], b[i]

Instructing the runtime environment

that a,b,c,chunk are shared variables

and I is a private variable

Load balancing the threads using a DYNAMIC

policy where array is divided into chunks of 4

and assigned to the threads

The nowait ensures that the child

threads donot synchronize once their

work is completed

DEMO : Work Sharing Constructs

Shared / Private / Schedule

32

• Vector addition problem to be used

• Two vectors a[i] + b[i] = c[i]
 a[i] + b[i] = c[i]

 0.000000 + 0.000000 = 0.000000

 1.000000 + 1.000000 = 2.000000

 2.000000 + 2.000000 = 4.000000

 3.000000 + 3.000000 = 6.000000

 4.000000 + 4.000000 = 8.000000

 5.000000 + 5.000000 = 10.000000

 6.000000 + 6.000000 = 12.000000

 7.000000 + 7.000000 = 14.000000

 8.000000 + 8.000000 = 16.000000

 9.000000 + 9.000000 = 18.000000

 10.000000 + 10.000000 = 20.000000

 11.000000 + 11.000000 = 22.000000

 12.000000 + 12.000000 = 24.000000

 13.000000 + 13.000000 = 26.000000

 14.000000 + 14.000000 = 28.000000

 15.000000 + 15.000000 = 30.000000

OpenMP sections directive
• sections directive is a non iterative work

sharing construct.

• Independent section of code are nested within

a sections directive

• It specifies enclosed section of codes between

different threads

• Code enclosed within a section directive is

executed once by a thread in the team

33

#pragma omp parallel private(p)

{

#pragma omp sections

{{ a=…;

 b=…;}

 #pragma omp section

 { p=…;

 q=…;}

 #pragma omp section

 { x=…;

 y=…;}

 } /* omp end sections */

} /* omp end parallel */

a =

b =

p =

q =

x =

y =

fork

join

Understanding variables in

OpenMP

• Shared variable z is modified by multiple threads

• Each iteration reads the scalar variables a and y

and the array element x[i]

• a,y,x can be read concurrently as their values

remain unchanged.

• Each iteration writes to a distinct element of z[i]

over the index range. Hence write operations can

be carried out concurrently with each iteration

writing to a distinct array index and memory

location

• The parallel for directive in OpenMP ensure that the

for loop index value (i in this case) is private to

each thread.

34

i i i i

z[] a x[] y n i

#pragma omp parallel for

 for (i=0; i<n; i++)

z[i] = a*x[i]+y

Example : OpenMP Sections
#include <omp.h>
#define N 16
main (){
int i;
float a[N], b[N], c[N], d[N];
for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.5;
#pragma omp parallel shared(a,b,c,d) private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 #pragma omp section
 for (i=0; i < N; i++)
 d[i] = a[i] * b[i];
 } /* end of sections */
 } /* end of parallel section */
…

Section : that computes the

sum of the 2 vectors

Section : that computes the

product of the 2 vectors

Sections construct that

encloses the section calls

DEMO : OpenMP Sections

36

[user@addishpc]$./sections
 a[i] b[i] a[i]+b[i] a[i]*b[i]
 0.000000 0.000000 0.000000 0.000000
 1.500000 1.500000 3.000000 2.250000
 3.000000 3.000000 6.000000 9.000000
 4.500000 4.500000 9.000000 20.250000
 6.000000 6.000000 12.000000 36.000000
 7.500000 7.500000 15.000000 56.250000
 9.000000 9.000000 18.000000 81.000000
 10.500000 10.500000 21.000000 110.250000
 12.000000 12.000000 24.000000 144.000000
 13.500000 13.500000 27.000000 182.250000
 15.000000 15.000000 30.000000 225.000000
 16.500000 16.500000 33.000000 272.250000
 18.000000 18.000000 36.000000 324.000000
 19.500000 19.500000 39.000000 380.250000
 21.000000 21.000000 42.000000 441.000000
 22.500000 22.500000 45.000000 506.250000

Topics

• Overview of OpenMP

• Basic Constructs

• Shared Data

• Parallel Flow Control

• Synchronization

• Reduction

• Synopsis of Commands

37

Synchronization

• “communication” mainly through read write operations on shared

variables

• Synchronization defines the mechanisms that help in coordinating

execution of multiple threads (that use a shared context) in a parallel

program.

• Without synchronization, multiple threads accessing shared memory

location may cause conflicts by :

– Simultaneously attempting to modify the same location

– One thread attempting to read a memory location while another thread is

updating the same location.

• Synchronization helps by providing explicit coordination between

multiple threads.

• Two main forms of synchronization :

– Implicit event synchronization

– Explicit synchronization – critical, master directives in OpenMP

38

Basic Types of Synchronization
• Explicit Synchronization via mutual exclusion

– Controls access to the shared variable by providing a thread

exclusive access to the memory location for the duration of its

construct.

– Requiring multiple threads to acquiring access to a shared variable

before modifying the memory location helps ensure integrity of the

shared variable.

– Critical directive of OpenMP provides mutual exclusion

• Event Synchronization

– Signals occurrence of an event across multiple threads.

– Barrier directives in OpenMP provide the simplest form of event

synchronization

– The barrier directive defines a point in a parallel program where each

thread waits for all other threads to arrive. This helps to ensure that all

threads have executed the same code in parallel upto the barrier.

– Once all threads arrive at the point, the threads can continue

execution past the barrier.

• Additional synchronization mechanisms available in OpenMP 39

OpenMP Synchronization : master

• The master directive in OpenMP marks a block of code that gets

executed on a single thread.

• The rest of the treads in the group ignore the portion of code

marked by the master directive

• Example

#pragma omp master
structured block

40

Race Condition :

 Two asynchronous threads access the same shared variable and

atleast one modifies the variable and the sequence of operations

is undefined . Result of these asynchronous operations depends

on detailed timing of the individual threads of the group.

OpenMP critical directive :

Explicit Synchronization
• Race conditions can be avoided by controlling access to shared variables by

allowing threads to have exclusive access to the variables

• Exclusive access to shared variables allows the thread to atomically perform

read, modify and update operations on the variable.

• Mutual exclusion synchronization is provided by the critical directive of

OpenMP

• Code block within the critical region defined by critical /end critical directives

can be executed only by one thread at a time.

• Other threads in the group must wait until the current thread exits the critical

region. Thus only one thread can manipulate values in the critical region.

41

fork

join

- critical region

int x

x=0;

#pragma omp parallel shared(x)

{

 #pragma omp critical

 x = 2*x + 1;

} /* omp end parallel */

Simple Example : critical

42

cnt = 0;

f = 7;

#pragma omp parallel

{

 #pragma omp for

 for (i=0;i<20;i++){

 if(b[i] == 0){

 #pragma omp critical

 cnt ++;

 } /* end if */

 a[i]=b[i]+f*(i+1);

 } /* end for */

} /* omp end parallel */

cnt=0

f=7

i =0,4 i=5,9 i= 20,24 i= 10,14

if …
if …

if … i= 20,24

cnt++

cnt++

cnt++

cnt++ a[i]=b

[i]+…

a[i]=b

[i]+…

a[i]=b[i]

+…

a[i]=b[i]

+…

Topics

• Introduction

• Overview of OpenMP

• Basic Constructs

• Shared Data

• Parallel Flow Control

• Synchronization

• Reduction

• Synopsis of Commands

43

OpenMP : Reduction

• performs reduction on shared variables in list based on the operator provided.

• for C/C++ operator can be any one of :

– +, *, -, ^, |, ||, & or &&

– At the end of a reduction, the shared variable contains the result obtained upon

combination of the list of variables processed using the operator specified.

44

sum = 0.0

#pragma omp parallel for reduction(+:sum)

 for (i=0; i < 20; i++)

 sum = sum + (a[i] * b[i]);

sum=0

i=0,4 i=5,9 i=10,14 i=15,19

sum=.. sum=.. sum=.. sum=..

∑sum

sum=0

Example: Reduction

45

#include <omp.h>
main () {
int i, n, chunk;
float a[16], b[16], result;
n = 16;
chunk = 4;
result = 0.0;
for (i=0; i < n; i++)
 {
 a[i] = i * 1.0;
 b[i] = i * 2.0;
 }
#pragma omp parallel for default(shared) private(i) \
 schedule(static,chunk) reduction(+:result)
 for (i=0; i < n; i++)
 result = result + (a[i] * b[i]);
printf("Final result= %f\n",result);
}

Reduction example with summation where the

result of the reduction operation stores the

dotproduct of two vectors

 ∑a[i]*b[i]

Demo: Dot Product using

Reduction

46

[user@addishpc]$./reduction
 a[i] b[i] a[i]*b[i]
 0.000000 0.000000 0.000000
 1.000000 2.000000 2.000000
 2.000000 4.000000 8.000000
 3.000000 6.000000 18.000000
 4.000000 8.000000 32.000000
 5.000000 10.000000 50.000000
 6.000000 12.000000 72.000000
 7.000000 14.000000 98.000000
 8.000000 16.000000 128.000000
 9.000000 18.000000 162.000000
 10.000000 20.000000 200.000000
 11.000000 22.000000 242.000000
 12.000000 24.000000 288.000000
 13.000000 26.000000 338.000000
 14.000000 28.000000 392.000000
 15.000000 30.000000 450.000000
Final result= 2480.000000

Topics

• Overview of OpenMP

• Basic Constructs

• Shared Data

• Parallel Flow Control

• Synchronization

• Reduction

• Synopsis of Commands

47

Synopsis of Commands

• How to invoke OpenMP runtime systems #pragma omp parallel

• The interplay between OpenMP environment variables and

runtime system (omp_get_num_threads(),

omp_get_thread_num())

• Shared data directives such as shared, private and reduction

• Basic flow control using sections, for

• Fundamentals of synchronization using critical directive and

critical section.

• And directives used for the OpenMP programming part of the

problem set.

48

