
Mixing C, C++, and FortranMixing C, C++, and Fortran

Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Comput. Molecular Science
Assistant Vice President for High-Performance Computing

a.kohlmeyer@temple.edu

2

Symbols in Object Files & Visibility

● Compiled object files have multiple sections
and a symbol table describing their entries:
● “Text”: this is executable code
● “Data”: pre-allocated variables storage
● “Constants”: read-only data
● “Undefined”: symbols that are used but not defined
● “Debug”: debugger information (e.g. line numbers)

● Entries in the object files can be inspected with
either the “nm” tool or the “readelf” command

3

Example File: visbility.c
static const int val1 = -5;
const int val2 = 10;
static int val3 = -20;
int val4 = -15;
extern int errno;

static int add_abs(const int v1, const int v2) {
 return abs(v1)+abs(v2);
}

int main(int argc, char **argv) {
 int val5 = 20;
 printf("%d / %d / %d\n",
 add_abs(val1,val2),
 add_abs(val3,val4),
 add_abs(val1,val5));
 return 0;
}

nm visibility.o:
00000000 t add_abs
 U errno
00000024 T main
 U printf
00000000 r val1
00000004 R val2
00000000 d val3
00000004 D val4

4

Difference Between C and Fortran
● Basic compilation principles are the same

=> preprocess, compile, assemble, link
● In Fortran, symbols are case insensitive

=> most compilers translate them to lower case
● In Fortran symbol names may be modified to

make them different from C symbols
(e.g. append one or more underscores)

● Fortran entry point is not “main” (no arguments)
PROGRAM => MAIN__ (in gfortran)

● C-like main() provided as startup (to store args)

5

Fortran Symbols Example

 SUBROUTINE GREET
 PRINT*, 'HELLO, WORLD!'
END SUBROUTINE GREET

program hello
 call greet
end program

0000006d t MAIN__
 U _gfortran_set_args
 U _gfortran_set_options
 U _gfortran_st_write
 U _gfortran_st_write_done
 U _gfortran_transfer_character
00000000 T greet_
0000007a T main

- “program” becomes symbol “MAIN__” (compiler dependent)
- “subroutine” name becomes lower case with '_' appended
- several “undefineds” with '_gfortran' prefix
 => calls into the Fortran runtime library, libgfortran
- cannot link object with “gcc” alone, need to add -lgfortran
 => cannot mix and match Fortran objects from different compilers

6

Fortran 90+ Modules

● When subroutines or variables are defined
inside a module, they have to be hidden

● gfortran creates the following symbols:

module func
 integer :: val5, val6
contains
 integer function add_abs(v1,v2)
 integer, intent(in) :: v1, v2
 add_abs = iabs(v1)+iabs(v2)
 end function add_abs
end module func

00000000 T __func_MOD_add_abs
00000000 B __func_MOD_val5
00000004 B __func_MOD_val6

7

The Next Level: C++

● In C++ functions with different number or type
of arguments can be defined (overloading)
=> encode prototype into symbol name:

Example : symbol for int add_abs(int,int)
becomes: _ZL7add_absii

● Note: the return type is not encoded
● C++ symbols are no longer compatible with C

=> add 'extern “C”' qualifier to have C++ export
C style symbols (=> no overloading possible)

● C++ symbol encoding is compiler specific

8

C++ Namespaces and Classes
vs. Fortran 90 Modules

● Fortran 90 modules share functionality with
classes and namespaces in C++

● C++ namespaces are encoded in symbols
Example: int func::add_abs(int,int)
becomes: _ZN4funcL7add_absEii

● C++ classes are encoded the same way
● Figuring out which symbol to encode into the

object as undefined is the job of the compiler
● When using the gdb debugger use '::' syntax

9

Why We Need Header or Module Files

● The linker is “blind” for any language specific
properties of a symbol => checking of the
validity of the interface of a function is only
possible during compilation

● A header or module file contains the prototype
of the function (not the implementation) and the
compiler can compare it to its use

● Important: header/module has to match library
=> Problem with FFTW-2.x: cannot tell if library
was compiled for single or double precision

10

Calling C from Fortran 77

● Need to make C function look like Fortran 77
● Append underscore (except on AIX, HP-UX)
● Call by reference conventions
● Best only used for “subroutine” constructs (cf. MPI)

as passing return value of functions varies a lot:
void add_abs_(int *v1,int *v2,int *res){
*res = abs(*v1)+abs(*v2);}

● Arrays are always passed as “flat” 1d arrays by
providing a pointer to the first array element

● Strings are tricky (no terminal 0, length added)

11

Calling C from Fortran 77 Example
void sum_abs_(int *in, int *num, int *out) {
 int i,sum;
 sum = 0;
 for (i=0; i < *num; ++i) { sum += abs(in[i]);}
 *out = sum;
 return;
}

/* fortran code:
 integer, parameter :: n=200
 integer :: s, data(n)

 call SUM_ABS(data, n, s)
 print*, s
*/

12

Calling Fortran 77 from C

● Inverse from previous, i.e. need to add
underscore and use lower case (usually)

● Difficult for anything but Fortran 77 style calls
since Fortran 90+ features need extra info
● Shaped arrays, optional parameters, modules

● Arrays need to be “flat”,
C-style multi-dimensional arrays are lists of
pointers to individual pieces of storage, which
may not be consecutive
=> use 1d and compute position

13

Calling Fortran 77 From C Example
subroutine sum_abs(in, num, out)
 integer, intent(in) :: num, in(num)
 integer, intent(out) :: out
 Integer :: i, sum
 sum = 0
 do i=1,num
 sum = sum + ABS(in(i))
 end do
 out = sum
end subroutine sum_abs
!! c code:
! const int n=200;
! int data[n], s;
! sum_abs_(data, &n, &s);
! printf("%d\n", s);

14

Modern Fortran vs C Interoperability

● Fortran 2003 introduces a standardized way to
tell Fortran how C functions look like and how
to make Fortran functions have a C-style ABI

● Module “iso_c_binding” provides kind definition:
e.g. C_INT, C_FLOAT, C_SIGNED_CHAR

● Subroutines can be declared with “BIND(C)”
● Arguments can be given the property “VALUE”

to indicate C-style call-by-value conventions
● String passing still tricky, add 0-terminus for C

15

Calling C from Fortran 03 Example

int sum_abs(int *in, int num) {
 int i,sum;
 for (i=0,sum=0;i<num;++i) {sum += abs(in[i]);}
 return sum;
}
/* fortran code:
 use iso_c_binding, only: c_int
 interface
 integer(c_int) function sum_abs(in, num) bind(C)
 use iso_c_binding, only: c_int
 integer(c_int), intent(in) :: in(*)
 integer(c_int), value :: num
 end function sum_abs
 end interface
 integer(c_int), parameter :: n=200
 integer(c_int) :: data(n)
 print*, SUM_ABS(data,n) */

16

Calling Fortran 03 From C Example
subroutine sum_abs(in, num, out) bind(c)
 use iso_c_binding, only : c_int
 integer(c_int), intent(in) :: num,in(num)
 integer(c_int), intent(out) :: out
 integer(c_int), :: i, sum
 sum = 0
 do i=1,num
 sum = sum + ABS(in(i))
 end do
 out = sum
end subroutine sum_abs

!! c code:
! const int n=200;
! int data[n], s;
! sum_abs(data, &n, &s);
! printf("%d\n", s);

17

Linking Multi-Language Binaries

● Inter-language calls via mutual C interface only
due to name “mangling” of C++ / Fortran 90+
=> extern “C”, ISO_C_BINDING, C wrappers

● Fortran “main” requires Fortran compiler for link
● Global static C++ objects require C++ for link

=> avoid static objects (good idea in general)
● Either language requires its runtime for link

=> GNU: -lstdc++ and -lgfortran
=> Intel: “its complicated” (use -# to find out)
more may be needed (-lgomp, -lpthread, -lm)

Mixing C, C++, and FortranMixing C, C++, and Fortran

Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Comput. Molecular Science
Assistant Vice President for High-Performance Computing

a.kohlmeyer@temple.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

