
School of Parallel Programming & Parallel 

Architecture for HPC 

ICTP 

October, 2014 

Intro to HPC Architecture 
Instructor: Ekpe Okorafor 



A little about me! 

• PhD Computer Engineering – Texas A&M 

University 

• Computer Science Faculty 

– Texas A&M University 

– University of Texas at Dallas 

– Addis Ababa University, Ethiopia 

– African University of Science & Technology, Abuja, 

Nigeria 

• Big Data Academy, Accenture Digital 

(Analytics) – USA 

 

2 



Outline 

• Overview  

– What is Parallel Computing?  

– Why Use Parallel Computing?  

– Who is Using Parallel Computing?  

• Theoretical Background 

• Concepts and Terminology  

– Von Neumann Computer Architecture  

– Flynn's Classical Taxonomy  

– Some General Parallel Terminology  

– Limits and Costs of Parallel Programming  

• Parallel Computer Memory Architectures  

– Shared Memory  

– Distributed Memory  

– Hybrid Distributed-Shared Memory 

 

 

3 



Acknowledgements 

• Blaise Barney 

– Lawrence Livermore National Laboratory, 

“Introduction to Parallel Computing” 

 

• Jim Demmel 

– Parallel Computing Lab at UC Berkeley, 

“Parallel Computing” 

4 



5 

Overview 



What is parallel computing? 

• Traditionally, software has been written for 

serial computation:  

– A problem is broken into a discrete series of 

instructions  

– Instructions are executed sequentially one 

after another  

– Executed on a single processor  

– Only one instruction may execute at any 

moment in time 

 

6 



What is parallel computing? 

7 

    
For example:  

    



What is parallel computing? 

• Parallel computing is the simultaneous use 

of multiple compute resources to solve a 

computational problem: 

 
– This is accomplished by breaking the problem into 

discrete parts so that each processing element can 

execute its part of the algorithm simultaneously with 

other processors 

8 



What is parallel computing? 

For example 

9 



What is parallel computing? 

10 

• The computational problem should be able to:  

– Be solved in less time with multiple compute 

resources than with a single compute resource.  

 

• The compute resources are typically:  

– A single computer with multiple processors/cores  

– Several networked computers 

– A combination of both 

 

 



What is parallel computing? 

11 

• LLNL parallel computer cluster: 
– Each compute node is a multi-processor parallel computer   

– Multiple compute nodes are networked together with an 

Infiniband network  

 



Uses for parallel computing? 

12 

• The Real World is Massively Parallel:  
– In the natural world, many complex, 

interrelated events are happening at the same 

time, yet within a temporal sequence.  

– Compared to serial computing, parallel 

computing is much better suited for modeling, 

simulating and understanding complex, real 

world phenomena 

 

 

 



Uses for parallel computing? 

13 



Uses for parallel computing 

• Science and Engineering 

– Historically, parallel computing has been used to model difficult 

problems in many areas of science and engineering:  
• Atmosphere, Earth, Environment, Physics, Bioscience, Biotechnology, Genetics, 

Chemistry, Molecular Sciences, Geology, Seismology, Mechanical Engineering, 

Electrical Engineering, Circuit Design, Microelectronics, Computer Science, 

Mathematics, Defense, Weapons 

 

14 



Uses for parallel computing 

• Industrial and Commercial:  

– Today, commercial applications provide an equal or greater 

driving force in the development of faster computers.  
• Big Data, Analytics, Databases, Oil exploration, Web search engines, Medical imaging 

and diagnosis, Pharmaceutical design, Financial and economic modeling, Advanced 

graphics and virtual reality, Networked video and multi-media technologies, 

Collaborative work environments   

 
 

15 



Why use parallel computing? 

• Save time and/or money:  

• In theory, throwing more resources at a task will shorten its time 

to completion, with potential cost savings.  

• Parallel computers can be built from cheap, commodity 

components.  

 
 

16 



Why use parallel computing? 

• Solve larger / more complex problems:  

• Many problems are so large and/or complex that it is impractical 

or impossible to solve them on a single computer, especially 

given limited computer memory.  

• Example: "Grand Challenge Problems" 

(en.wikipedia.org/wiki/Grand_Challenge) requiring PetaFLOPS 

and PetaBytes of computing resources.  

• Example: Web search engines/databases processing millions of 

transactions per second 

 
 

17 

http://en.wikipedia.org/wiki/Grand_Challenge
http://en.wikipedia.org/wiki/Grand_Challenge


Why use parallel computing? 

• Provide concurrency:  

• A single compute resource can only do one thing at a time. 

Multiple compute resources can do many things simultaneously.  

• Example: the Access Grid (www.accessgrid.org) provides a 

global collaboration network where people from around the world 

can meet and conduct work "virtually".  

 
 

18 

http://www.accessgrid.org/


Why use parallel computing? 

• Use of non-local resources:  

• Using compute resources on a wide area network, or even the 

Internet when local compute resources are scarce or insufficient.  

• Example: SETI@home (setiathome.berkeley.edu) over 1.3 

million users, 3.4 million computers in nearly every country in the 

world. Source: www.boincsynergy.com/stats/ (June, 2013).  

• Example: Folding@home (folding.stanford.edu) uses over 

320,000 computers globally (June, 2013)  

 
 

19 

http://setiathome.berkeley.edu/
http://www.boincsynergy.com/stats/
http://folding.stanford.edu/


Why use parallel computing? 

• Limits of serial computing:  

• Transmission speeds 

• The speed of a serial computer is dependent upon how fast data 

can move through hardware 

• Absolute limits are the speed of light and the transmission of copper 

wire 

• Increasing speeds necessitate increasing proximity of processing 

elements 

• Limits of miniaturization 

• Processor technology is allowing an increasing number of 

transistors to be placed on a chip 

• However, even with molecular or atomic-level components, a limit 

will be reached on how small components can be 

20 



Why use parallel computing? 

• Limits of serial computing:  

• Economic limitations 

• It is increasingly expensive to make a single processor faster 

• Using a larger number of moderately fast commodity processors to 

achieve the same or better performance is less expensive 

• Current computer architectures are increasingly relying upon 

hardware level parallelism to improve performance 

• Multiple execution units 

• Pipelined instructions 

• Multi-core 

21 



The future 

• Trends indicated by ever faster networks, distributed 

systems, and multi-processor computer architectures 

clearly show that parallelism is the future of 

computing.  

• There has been a greater that 1000x increase in 

supercomputer performance, with no end currently in 

sight 

• The race is already on for Exascale Computing! 

• 1 exaFlops = 1018, floating point operations per second 

22 



Who is using parallel computing? 

23 



Who is using parallel computing? 

24 



25 

Theoretical Background 



Speedup & parallel efficiency 

 

26 



Limits of parallel computing 

 

27 



Amdahl’s law 

 

28 

≤ 



Amdahl’s Law 

 

29 



Practical limits: Amdahl’s law vs. reality 

 

30 



Gustafson’s law 

 

31 

S(P) = P – α · (P – 1) 



Comparison of Amdahl & Gustafson 

 

32 

5.0pf

Nff
s

ps /

1




3.1
2/5.05.0

1
2 


s

6.1
4/5.05.0

1
4 


s

5.0

)1()(  ppps 

5.1)12(5.02)2( s

5.2)14(5.04)4( s



Scaling: Strong Vs. Weak 

 

33 



34 

Concepts & Terminology 



Von Neumann architecture 

• Named after the Hungarian mathematician John von 

Neumann who first authored the general requirements 

for an electronic computer in his 1945 papers.  

• Since then, virtually all computers have followed this 

basic design:  

• Comprises of four main components: 
• Memory – used to store instructions and data  

• Control Unit – fetch, decode, coordinates  

• Arithmetic Logic Unit – basic arithmetic operations 

• Input/Output – interface to the human operator 

 

 

35 



Flynn's classical taxonomy 

• There are different ways to classify parallel computers 

• One of the more widely used classifications, in use since 

1966, is called Flynn's Taxonomy. 

• Based on the number of concurrent instructions and data 

streams available in the architecture 

36 



Flynn's classical taxonomy 

37 

• Single Instruction, Single Data (SISD): 

• A serial (non-parallel) computer  

• Single Instruction: Only one instruction stream is being acted 

on by the CPU during any one clock cycle  

• Single Data: Only one data stream is being used as input 

during any one clock cycle  

• Deterministic execution  

• This is the oldest type of computer  

• Examples: older generation mainframes,  

    minicomputers, workstations and single  

    processor/core PCs.  

 



Flynn's classical taxonomy 

38 

• Single Instruction, Single Data (SISD): 



Flynn's classical taxonomy 

39 

• Single Instruction, Multiple Data (SIMD): 

• A type of parallel computer that exploits multiple data sets 

against a single instruction 

• Single Instruction: All processing units execute the same 

instruction at any given clock cycle  

• Multiple Data: Each processing unit can operate on a different 

data element 

 



Flynn's classical taxonomy 

40 

• Single Instruction, Multiple Data (SIMD): 

• Two varieties: Processor Arrays and Vector Pipelines 



Flynn's classical taxonomy 

41 

• Multiple Instruction, Single Data (MISD): 

• Multiple Instruction: Each processing unit operates on the 

data independently via separate instruction streams.  

• Single Data: A single data stream is fed into multiple processing 

units.  

• Some conceivable uses might be:  

• multiple cryptography algorithms attempting to crack a single coded 

message. 



Flynn's classical taxonomy 

42 

• Multiple Instruction, Mingle Data (MIMD): 

• Multiple autonomous processors simultaneously executing 

different instructions on different data 

• Multiple Instruction: Every processor may be executing a 

different instruction stream  

• Multiple Data: Every processor may be working with a different 

data stream  



Flynn's classical taxonomy 

43 

• Most current supercomputers, networked parallel 

computer clusters, grids, clouds, multi-core PCs 

• Many MIMD architectures also include SIMD execution 

sub-components 



Some general parallel terminology 

• Task  
– A logically discrete section of computational work. A task is 

typically a program or program-like set of instructions that is 
executed by a processor.  

• Parallel Task  
– A task that can be executed by multiple processors safely 

(yields correct results)  

• Serial Execution  
– Execution of a program sequentially, one statement at a 

time. In the simplest sense, this is what happens on a one 
processor machine. However, virtually all parallel tasks will 
have sections of a parallel program that must be executed 
serially.  

Like everything else, parallel computing has its own "jargon". Some of the 
more commonly used terms associated with parallel computing are listed 
below. Most of these will be discussed in more detail later. 

 

44 



Some general parallel terminology 

• Parallel Execution  
– Execution of a program by more than one task, with each task being 

able to execute the same or different statement at the same moment in 
time.  

• Shared Memory  
– From a strictly hardware point of view, describes a computer 

architecture where all processors have direct (usually bus based) 
access to common physical memory. In a programming sense, it 
describes a model where parallel tasks all have the same "picture" of 
memory and can directly address and access the same logical memory 
locations regardless of where the physical memory actually exists.  

• Distributed Memory  
– In hardware, refers to network based memory access for physical 

memory that is not common. As a programming model, tasks can only 
logically "see" local machine memory and must use communications to 
access memory on other machines where other tasks are executing.  

45 



Some general parallel terminology 

• Communications  

– Parallel tasks typically need to exchange data. There are several ways 
this can be accomplished, such as through a shared memory bus or 
over a network, however the actual event of data exchange is 
commonly referred to as communications regardless of the method 
employed.  

• Synchronization  

– The coordination of parallel tasks in real time, very often associated with 
communications. Often implemented by establishing a synchronization 
point within an application where a task may not proceed further until 
another task(s) reaches the same or logically equivalent point.  

– Synchronization usually involves waiting by at least one task, and can 
therefore cause a parallel application's wall clock execution time to 
increase.  

46 



Some general parallel terminology 

• Granularity  

– In parallel computing, granularity is a qualitative measure of the ratio of 
computation to communication.  

– Coarse: relatively large amounts of computational work are done 
between communication events  

– Fine: relatively small amounts of computational work are done between 
communication events  

• Observed Speedup  

– Observed speedup of a code which has been parallelized, defined as:  

wall-clock time of serial execution 

wall-clock time of parallel execution 

– One of the simplest and most widely used indicators for a parallel 
program's performance.  

47 



Some general parallel terminology 

• Parallel Overhead  

– The amount of time required to coordinate parallel tasks, as opposed to 

doing useful work. Parallel overhead can include factors such as:  

• Task start-up time  

• Synchronizations  

• Data communications  

• Software overhead imposed by parallel compilers, libraries, tools, operating 

system, etc.  

• Task termination time  

• Massively Parallel  

– Refers to the hardware that comprises a given parallel system - having 

many processors. The meaning of many keeps increasing, but currently 

BG/L pushes this number to 6 digits.  

48 



Some general parallel terminology 

• Scalability  

– Refers to a parallel system's (hardware and/or software) ability to 

demonstrate a proportionate increase in parallel speedup with 

the addition of more processors. Factors that contribute to 

scalability include:  

• Hardware - particularly memory-cpu bandwidths and network 

communications  

• Application algorithm  

• Parallel overhead related  

• Characteristics of your specific application and coding  

49 



50 

Parallel Computer  

Memory Architectures 



Shared memory 

• All processors access all memory as global address 

space.  

• Multiple processors can operate independently but share the 

same memory resources.  

• Changes in a memory location effected by one processor are 

visible to all other processors.  

51 



Shared memory: 

• Shared memory machines can be divided into two main 
classes based upon memory access times: UMA and 
NUMA.  

 
• Uniform Memory Access (UMA):  

 
• Most commonly represented today by Symmetric Multiprocessor 

(SMP) machines  

• Identical processors  

• Equal access and access times to memory  

• Sometimes called CC-UMA - Cache Coherent UMA.  

 
– Cache coherent means if one processor updates a location in shared 

memory, all the other processors know about the update. Cache 
coherency is accomplished at the hardware level.  

 

52 



Shared memory: 

• Non-Uniform Memory Access (NUMA):  
• Often made by physically linking two or more SMPs  

• One SMP can directly access memory of another SMP  

• Not all processors have equal access time to all memories  

• Memory access across link is slower  

• If cache coherency is maintained, then may also be called CC-
NUMA - Cache Coherent NUMA  

 

53 



Shared memory: pro and con 

• Advantages 
• Global address space provides a user-friendly programming 

perspective to memory  

• Data sharing between tasks is both fast and uniform due to the 
proximity of memory to CPUs  

 

• Disadvantages:  
• Primary disadvantage is the lack of scalability between memory 

and CPUs.  

• Adding more CPUs can geometrically increases traffic on the 
shared memory-CPU path, and for cache coherent systems, 
geometrically increase traffic associated with cache/memory 
management.  

• Programmer responsibility for synchronization constructs that 
insure "correct" access of global memory.  

 

54 



Distributed memory 

• Each processor has a local memory 
• Changes to processor’s local memory have no effect on the 

memory of other processors.  

• When a processor needs access to data in another processor, it is 
usually the task of the programmer to explicitly define how and 
when data is communicated.  

• Synchronization between tasks is likewise the programmer's 
responsibility.  

• The network "fabric" used for data transfer varies widely, though it 
can be as simple as Ethernet. 

55 



Distributed memory: pro and con 

• Advantages 

• Memory is scalable with number of processors. Increase the 
number of processors and the size of memory increases 
proportionately.  

• Each processor can rapidly access its own memory without 
interference and without the overhead incurred with trying to 
maintain cache coherency.  

• Cost effectiveness: can use commodity, off-the-shelf processors 
and networking.  

• Disadvantages 

• The programmer is responsible for many of the details 
associated with data communication between processors.  

• It may be difficult to map existing data structures, based on 
global memory, to this memory organization.  

• Non-uniform memory access (NUMA) times  

56 



Hybrid distributed-shared memory 

Comparison of Shared and Distributed Memory Architectures  

Architecture CC-UMA CC-NUMA Distributed 

Examples SMPs  

Sun Vexx  

DEC/Compaq  

SGI Challenge  

IBM POWER3  

Bull NovaScale 

SGI Origin  

Sequent  

HP Exemplar  

DEC/Compaq  

IBM POWER4 (MCM)  

Cray T3E  

Maspar  

IBM SP2 

IBM BlueGene 

Communications MPI  

Threads  

OpenMP  

shmem  

MPI  

Threads  

OpenMP  

shmem  

MPI  

Scalability  to 10s of processors to 100s of processors  to 1000s of processors  

Draw Backs Memory-CPU bandwidth  Memory-CPU bandwidth 

Non-uniform access times  

System administration  

Programming is hard to 

develop and maintain  

Software Availability many 1000s ISVs  many 1000s ISVs  100s ISVs  

Summarizing a few of the key characteristics of shared and distributed memory 

machines  

57 



Hybrid distributed-shared memory 

• The largest and fastest computers in the world today 
employ both shared and distributed memory 
architectures. 

• The shared memory component is usually a cache coherent 

SMP machine or graphics processing units.  

• The distributed memory component is the networking of multiple 
SMPs or GPU machines.  

58 



Hybrid distributed-shared memory 

• Advantages and Disadvantages:  

• Whatever is common to both shared and distributed memory 

architectures.  

• Increased scalability is an important advantage  

• Increased programmer complexity is an important disadvantage  

59 



60 

Questions? 


