Practical No. 1

Title: Interactive installation of operating system (Centos) on the master node

Aim: To familiarize the participants on how to install Linux operating system from scratch

Requirements:

Centos 6.5 DVD

System unit

Introduction

A default installation with graphical interface will be installed on the master node. This node is serving as a gateway for the computing nodes in the cluster as result we have to make sure that we removed unused services for a security reason.

Procedure:

- 1. Change the boot sequence (BIOS), make sure it is starting from DVD drive
- 2. Perform interactive installation

Exercise

1. Observe available services

chkconfig --list | grep 5:on

2. The following are likely to be unneeded services

anacron	haldaemon	messagebus
apmd	hidd	microcode ctl
autofs`	hplip*	pcscd
avahi-daemon*	isdn	readahead_early
bluetooth	kdump	readahead later
cups*	kudzu	rhnsd*
firstboot	mcstrans	setroubleshoot
qpm	mdmonitor	xfs

3. Remove the unneeded services with command like this,

for i in anacron apmd autofs avahi-daemon bluetooth cups firstboot gpm halddaemon hidd hplip isdn kdump kundzu mcstrans mdmonitor messagebus microcode_ctl readahead_early readahead_later ; do service \$i stop; chkconfig --del \$i; done

Practical No. 2

Title: Configuring private network

Aim: To familiarize the participants on how to configure a private network

Requirements:

A system unit with the CentOS 6.5 running

And NIC is functioning properly (for internal network)

Introduction

Configuring a private network is essential for setting up linux cluster since we don't want the computing nodes to be accessed directly. It is the master node that is serving as a gateway for the computing nodes.

Procedure:

- 1. Edit the ifcfg-eth0 file
- 2. Modify the rules for iptables

Exercise

1. Edit the /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

IPADDR=10.1.0.1

BROADCAST=10.1.255.255

NETMASK=255.255.0.0

BOOTPROTO=static

ONBOOT=yes

2. Restart the network service

service network restart or,

ifup eth0

3. Add a rule that allows all traffic for the private network

iptables -I INPUT -i eth0 -j ACCEPT

service iptables save

Practical No. 3

Title: Setup the local package repository and install required packages

Aim: To familiarize the participants on how to setup local repository

Requirements:

A system unit with the CentOS 6.5 running

And NIC is functioning properly

Introduction

The master node can be configured as the local repository for the nodes in the cluster. Later we will use this repository to install operating system on computing nodes.

Procedure:

- 1. Create a repository file in /etc/yum.repos.d/
- 2. Mount to /distro/centos director
- 3. Install packages like tftp, dhcp and syslinux

Exercise

1. Create /etc/yum.repos.d/local.repo file

[base]

```
name=CentOS-$releasever - Local
```

baseurl=file:///distro/centos

gpgcheck=0

enabled=1

Then move the existing repository files to backup folder(mkdir backup)

mv Cent* backup/

2. Mount the image and update the repository(the location depends where you put the iso file)

mkdir -p /distro/centos

mount -o loop /data/CentOS-6.5-x86_64-bin-DVD1.iso /distro/centos/

yum clean all

yum makecache

3. Install the missing packages that we are going to use them to configure DHCP and TFTP server as well as the Network Bootstrap Program (pxelinux.0)

yum install tftp tftp-server dhcp syslinux

Practical No. 4

Title: Configure DHCP server and create static name mapping file

Aim: To familiarize the participants on how to setup name resolution and dynamic ip assignment on local network

Requirements:

A system unit with the CentOS running

An installed DHCP server

Introduction

The master node can be configured to the local repository for the nodes in the cluster. Later we will use this repository to install operating system on computing nodes.

Procedure:

- 1. Edit /etc/hosts file
- 2. Create the configuration file for the DHCP server

Exercise

1. Add the following lines to /etc/hosts file

127.0.0.1	localhost.localdomain localhost	
10.1.0.1	master.mycluster	masternode
10.1.1.1	node1.mycluster	node1
10.1.1.2	node2.mycluster	node2

2. Create the configuration file for the DHCP, /etc/dhcp/dhcpd.conf

ddns-update-style none;

ddns-updates off;

authoritative;

subnet 10.1.0.0 netmask 255.255.0.0 {

option domain-name "clusterXY";

option domain-name-servers 10.1.0.1; option ntp-servers 10.1.0.1; option subnet-mask 255.255.0.0; option broadcast-address 10.1.255.255; filename "/pxe/pxelinux.0"; next-server 10.1.0.1;

#host node1 { hardware ethernet; fixed-address 10.1.1.1 ; option host-name "node1" ; }
#host node2 { hardware ethernet; fixed-address 10.1.1.2 ; option host-name "node2" ; }

3. Restart the dhcp service

}

service dhcpd start

4. Make it permanent (automatically start at the next reboot)

chkconfig --add dhcpd

chkconfig dhcpd on

 In order to force the daemon to listen only on a specific interface, set the interface name on the DHCPDARGS variable by editing the file /etc/sysconfig/dhcpd

DHCPDARGS="eth0"

Practical No. 5

Title: Setup TFTP server and configure PXE booting

Aim: To familiarize the participants on how to setup PXE booting and TFTP server

Requirements:

A system unit with the CentOS running

And NIC is functioning properly

Introduction

In order to use network booting(PXE), one need to setup a boot server which will allow client systems to Request an IP address(through DHCP) and download a kernel (through TFTP). TFTP is a very simple file-transfer protocol, which is very similar to FTP but which doesn't use any kind of authentication.

Procedure:

- 1. Modify the /etc/xinetd.d/tftp file
- 2. Populate the TFTP tree
- 3. Copy the kernel and the initial ramdisk from the installation media
- 4. Create a "default" configuration file for the clients with the local boot as default target (and therefore avoid unwanted installations)
- 5. Create the PXE configuration files for the computing nodes

Exercise

 Modify the /etc/xinetd.d/tftp file and enable the service in order to be invoked by xinetd (disabled = no). Enable also the verbose logging (-vvv). The service can also be enabled by using chkconfig tftp on.

> service xinetd restart chkconfig --add xinetd chkconfig xinetd on

2. Figure out where the PXE files are located and copy the files to the TFTP tree

mkdir -p /tftpboot/pxe/pxelinux.cfg

locate pxelinux.0

cp -a /usr/lib/syslinux/pxelinux.0 /tftpboot/pxe/

3. Copy the kernel and the initial ramdisk from the installation media

cp -a /distro/centos/images/pxeboot/{initrd.img,vmlinuz} /tftpboot/pxe/

4. Create /tftpboot/pxe/pxelinux.cfg/default file

prompt 1

timeout 100

default local

label local

LOCALBOOT 0

label install

kernel vmlinuz

append initrd=initrd.img network ip=dhcp $\$

ksdevice=eth0 ks=nfs:10.1.0.1:/distro/ks/ks.cfg $\$

load_ramdisk=1 prompt_ramdisk=0 ramdisk_size=16384 \

vga=normal selinux=0

5. Create the PXE configuration files for the computing nodes and change the default target to install

gethostip node1

node1 10.1.1.1 0A010101

cp -a /tftpboot/pxe/pxelinux.cfg/default /tftpboot/pxe/pxelinux.cfg/0A010101

edit /tftpboot/pxe/pxelinux.cfg/0A010101 # local->install

cp -a /tftpboot/pxe/pxelinux.cfg/0A010101 /tftpboot/pxe/pxelinux.cfg/0A010102

chmod a+w /tftpboot/pxe/pxelinux.cfg/0A01010*

Practical No. 6

Title: Setup NFS and create kickstart file

Aim: To familiarize the participants on how to export file system and create a kickstart file

Requirements:

A system unit with the CentOS running

Operating system image is mounted

Services like TFTP and DHCP are running

Introduction

Network File System (NFS) is allowing client computers to access files over a network in the same way as local storage is accessed. Kickstart files are used for an automated installation since they can contain answers to all the questions that would normally be asked during a typical installation

Procedure:

- 1. Create the kickstart file
- 2. Edit /etc/exports
- 3. Start the NFS service

Exercise

1. Create kickstart file in /distro/ks

mkdir -p /distro/ks

cp -a /root/ks.cfg /distro/ks

Append the following lines to /distro/ks/ks.cfg file

tftp	
openssh-server	
openssh	
xorg-x11-xauth	
xterm	
mc	

strace

-cups

-cups-libs

-bluez-utils

-bluez-libs

-bluez-gnome

-rp-pppoe

-ppp

%post

MASTER=10.1.0.1

tftp_get() { tftp \$MASTER -v -c get \$1 \$2 2>&1 ; }

```
tftp_put() { tftp $MASTER -v -c put $1 $2 2>&1 ; }
```

ip_to_hex()

{

/sbin/ip addr show dev \$1	1\	
grep 'inet '		IV
awk '{print \$2}'	1\	
cut -f1 -d/		IV
awk -F. '{	(%02X%02	2X" , \$1 , \$2 , \$3 , \$4); }'

}

HEX=`ip_to_hex eth0`

cd /tmp

tftp_get /pxe/pxelinux.cfg/default \$HEX

tftp_put \$HEX /pxe/pxelinux.cfg/\$HEX

[base]

name=CentOS-\$releasever - Local

baseurl=file:///distro/centos

gpgcheck=0

enabled=1

2. Edit /etc/exports add the following lines

/distro	10.1.0.0/16(ro,root_squash)
/distro/centos	10.1.0.0/16(ro,root_squash)

3. Start the NFS service

Service portmap start service nfs start chkconfig --add portmap chkconfig portmap on chkconfig --add nfs chkconfig nfs on

Practical No. 7

Title: Installation of computing nodes

Aim: To familiarize the participants on how to install Os from a master node

Requirements:

A system unit with the CentOS running

Service like TFTP, NFS, DHCP should be active

PXE booting with kickstart file should be configured properly

Introduction

Here the Computing nodes will be installed from the network, non-interactively

Procedure:

- 1. Make sure that the nodes have NIC as the boot device
- 2. Get information about MAC address of the node
- 3. Start the installation

Exercise

1. Make sure that the nodes have NIC as the boot device

Go to BIOS and make the first boot device to be NIC

2. Get information about MAC address of the node and update your DHCP server with this information

tcpdump -i eth0 -n -q -t -e -p port bootpc and port bootps and ip broadcast

tail -f /var/log/messages

3. Power on one computing node and check the status of the installation from the master node

tcpdump -i eth0 -nn -qtep port bootpc or port tftp

tail -f /var/log/messages

Practical No. 8

Title: Passwordless environment

Aim: To familiarize the participants on how to setup passwordless environment among nodes

Requirements:

A system unit with the CentOS running

Service like TFTP, NFS, DHCP should be active

PXE booting with kickstart file should be configured properly

At least one installed node

Introduction

Passworldless environment is essential when the nodes are talking among themselves using c3 tools, mpi or batch management software.

Procedure:

- 1. Generate a private/public identity key
- 2. Copy the public key to authorized_keys
- 3. Copy the ssh key to other computers

Exercise

1. Generate a private/public identity key

ssh-keygen -t dsa

2. Copy the id_dsa.pub file under the name authorized_keys

cd ~/.ssh

cp id_dsa.pub authorized_keys

3. Copy the contents of the .ssh directory to the computing nodes

scp -rp ~/.ssh nodex:

4. Check if you can login from the other node without password

ssh root@nodex

5. Create a user account and repeat step 1 to 3 to configure passwordless environment for the account

useradd -n -m user1

passwd user1

Practical No. 9

Title: Installation and usage of c3 tools

Aim: To familiarize the participants on how to install and use c3 tools

Requirements:

A system unit with the CentOS running

Service like TFTP, NFS, DHCP should be active

PXE booting with kickstart file should be configured properly

At least one installed node

Password less environment is configured

Introduction

Cluster Command and Control (C3), includes tools for cluster-wide command execution, file distribution and gathering, process termination, remote shutdown and restart, and system image updates

Procedure:

- 1. Download and install C3 tools
- 2. Edit the /etc/c3.conf
- 3. Export /home directory
- 4. Update the /etc/fstab file
- 5. Disseminate user information to the nodes

Exercise

1. Download and install C3 tools

wget http://www.csm.ornl.gov/torc/C3/Software/5.1.3/c3-5.1.3.tar.gz, and install it

./configure

make

make install

2. Edit the /etc/c3.conf

cluster lab {

master:master

node[1-2]

}

Add the C3 utilities to the superuser's PATH:

echo 'export PATH=\$PATH:/opt/c3-4/' >> /root/.bashrc

3. Export /home directory

echo '/home 10.1.0.0/16(rw,no_root_squash)' >> /etc/exports

service nfs restart

4. Update the /etc/fstab file

cexec 'echo "10.1.0.1:/home /home nfs rw 0 0" >> /etc/fstab'

cexec mount /home

5. Disseminate user information to the nodes

for j in passwd shadow group ; do cpush /etc/\$j ; done

cpush /etc/hosts /etc