
School of Parallel Programming & Parallel

Architecture for HPC

ICTP

October, 2014

Parallel I/O for HPC
Instructor: Ekpe Okorafor

2

Topics

• Introduction

• Distributed File Systems (NFS)

• Parallel File Systems: Introduction

• Parallel File Systems (PVFS2)

• Parallel File Systems (Lustre)

• Additional Parallel File Systems (GPFS)

• POSIX I/O API

3

Topics

• Introduction

• Distributed File Systems (NFS)

• Parallel File Systems: Introduction

• Parallel File Systems (PVFS2)

• Parallel File Systems (Lustre)

• Additional Parallel File Systems (GPFS)

• POSIX I/O API

I/O Needs on Parallel Computers

• High Performance

– Take advantage of parallel I/O paths (where available)

– Support application-level data access and throughput needs

– Scalable with systems size and user number/needs

• Data Integrity

– Sanely deal with hardware and power failures

• Single Namespace

– All nodes and users “see” the same file systems

– Equal access from anywhere on the resource

• Ease of Use

– Whenever possible, a storage system should be accessible

in consistent way, in the same ways as a traditional UNIX-

style file systems

4

Related Topics

• Hardware-based solutions

– RAID

• File systems commonly used in parallel computing

– NFS

– PVFS2

– Lustre

– GPFS

• Software I/O libraries

– POSIX I/O

– MPI-IO

– NetCDF

– HDF5

5

6

Topics

• Introduction

• RAID

• Distributed File Systems (NFS)

• Parallel File Systems: Introduction

• Parallel File Systems (PVFS2)

• Parallel File Systems (Lustre)

• Additional Parallel File Systems (GPFS)

• POSIX I/O API

RAID: Key Concepts

• RAID stands for Redundant Array of
Inexpensive (or: Independent) Disks - term
coined by David Patterson, Garth Gibson and
Randy Katz

• Aims to achieve greater levels of performance,
reliability, and/or larger volume sizes

• Several basic architectures, ranging from RAID 0
through RAID 6

• Groups of two or more disks are treated effectively
as single large disks; performance of multiple disks
is better than that of individual disks due to
bandwidth aggregation and overlap of multiple
accesses

• Using multiple disks helps store data in multiple
places (redundancy), allowing the system to
continue functioning in case of failures

• Both software (OS managed) and hardware
(dedicated I/O cards) raid solutions available

– Hardware solutions are more expensive, but provide better
performance without CPU overhead

– Software solutions provide better flexibility, but have
associated computational overhead

7

RAID 0

• Simple disk striping without fault tolerance
(single failure destroys the array)

• Data are striped across multiple disks

• The result of striping is a logical storage
device that has the capacity of each disk
times the number of disks present in the
raid array

• Both read and write performances are
accelerated

• Each byte of data can be read from multiple
locations, so interleaving reads between
disks can help double read performance

• High transfer rates

• High request rates

8

http://www.drivesolutions.com/datarecovery/raid.shtml

RAID 1

• Called disk mirroring

• Frequently implemented with only two drives

• Complete copies of data are stored in multiple

locations; no parities computed

• Has the highest spatial overhead for redundant

data of all RAID types

• Usable capacity is equivalent to a single

component disk capacity

• Read performance is accelerated due to

availability of concurrent seek operations

• Writes are somewhat slowed down, as new

data have to be written to multiple storage

devices (concurrency depends on the

controller)

• Continues functioning as long as least one

drive is working correctly

9

http://www.drivesolutions.com/datarecovery/raid.shtml

RAID 5

• Striped set with distributed parity

• Requires at least 3 disks per array

• Similarly to RAID 0, data are distributed

across all the disks

• Parity information for each stripe is also

distributed across the disks, eliminating the

bottleneck of a single parity disk (RAID 4)

and equalizing the load across components

• Tolerates single disk failures; the missing

data block may be recomputed based on the

contents of the parity block and the data

blocks of the remaining disks in the same

stripe

• Write performance of RAID 5 is reduced due

to parity computation for every physical write

operation

10

http://www.drivesolutions.com/datarecovery/raid.shtml

RAID 6

• Striped set with distributed dual

parity

• Requires at least 4 disks per array

• Similar to RAID 5, but with two parity

blocks per each stripe computed

using different algorithms

• Frequently utilized in large-volume

secondary storage, where high

availability is of concern

• Can tolerate double simultaneous

disk failures; it is practical in large

volume sets, in which the rebuild of

an array with one failed disk may not

complete before the occurrence of a

second failure

11

http://www.drivesolutions.com/datarecovery/raid.shtml

Nested RAID Levels

• Hybrid arrangement of different
level RAID arrays in the same
storage subsystem

• Combines redundancy schemes of
RAID 1, 5 or 6 with the
performance of RAID 0

• Typically require an additional
increase in minimal number of
disks per array over the minimum
for any of the component RAID
levels

• Simpler hybrids are frequently
supported directly by I/O chipsets
available on motherboards (RAID
0+1, 10, etc.)

• Can have more than two levels
(e.g., RAID 100), with top levels
typically implemented in software

12

Example: RAID 0+1 (mirror of stripes)

13

Topics

• Introduction

• RAID

• Distributed File Systems (NFS)

• Parallel File Systems: Introduction

• Parallel File Systems (PVFS2)

• Parallel File Systems (Lustre)

• Additional Parallel File Systems (GPFS)

• POSIX I/O API

Distributed File Systems

• A distributed file system is a file system that is stored locally on one system

(server) but is accessible by processes on many systems (clients)

• Multiple processes access multiple files simultaneously

• Other attributes of a DFS may include:

– Access control lists (ACLs)

– Client-side file replication

– Server- and client- side caching

• Some examples of DFSes:

– NFS (Sun)

– AFS (CMU)

– DCE/DFS (Transarc / IBM)

– CIFS (Microsoft)

• Distributed file systems can be used by parallel programs, but they have

significant disadvantages:

– The network bandwidth of the server system is a limiting factor on performance

– To retain UNIX-style file consistency, the DFS software must implement some form

of locking which has significant performance implications

14

Distributed File System: NFS

• Popular means for accessing remote file
systems in a local area network

• Based on the client-server model, the
remote file systems may be “mounted” via
NFS and accessed through the Linux
Virtual File System (VFS) layer

• NFS clients cache file data, periodically
checking with the original file for any
changes

• The loosely-synchronous model makes for
convenient, low-latency access to shared
spaces

• NFS avoids the common locking systems
used to implement POSIX semantics

• Most client implementations are open-
source; many servers remain proprietary

15

NFS support via

VFS layer in Linux

Why NFS is bad for Parallel I/O

• Clients can cache data indiscriminately, and tend to do that at

arbitrary block boundaries

• When nearby regions of a file are written by different processes on

different clients, the result is undefined due to lack of consistency

control

• All file operations are remote operations; extensive file locking is

required to implement sequential consistency

• Communication between client and server typically uses relatively

slow communication channels, adding to performance degradation

• Inefficient specification (e.g., a read operation involves two RPCs;

one for look-up of file handle and second for reading of file data)

16

17

Topics

• Introduction

• RAID

• Distributed File Systems (NFS)

• Parallel File Systems: Introduction

• Parallel File Systems (PVFS2)

• Parallel File Systems (Lustre)

• Additional Parallel File Systems (GPFS)

• POSIX I/O API

Parallel File Systems

• Parallel File System is one in which there are multiple servers as

well as clients for a given file system, equivalent of RAID across

several file systems.

• Multiple processes can access the same file simultaneously

• Parallel File Systems are usually optimized for high performance

rather than general purpose use, common optimization criterion

being :

– Large block sizes (≥ 64kB)

– Relatively slow metadata operations (eg. fstat()) compared to reads

and writes

– Special APIs for direct access and additional optimizations

• Examples of Parallel file systems include :

– GPFS (IBM)

– Lustre (Cluster File Systems/Sun)

– PVFS2 (Clemson/ANL)

18

Characteristics of Parallel File Systems

• Three Key Characteristics:

– Various hardware I/O data storage resources

– Multiple connections between these hardware

devices and compute resources

– High-performance, concurrent access to these I/O

resources

• Multiple physical I/O devices and paths ensure

sufficient bandwidth for the high performance

desired

• Parallel I/O systems include both the hardware

and number of layers of software

19

Storage Hardware

Parallel File System

Parallel I/O (MPI I/O)

High-Level I/O Library

Parallel File Systems: Hardware Layer

• I/O Hardware is usually comprised of disks, controllers,

and interconnects for data movement

• Hardware determines the maximum raw bandwidth and

the minimum latency of the system

• Bisection bandwidth of the underlying transport

determines the aggregate bandwidth of the resulting

parallel I/O system

• At the hardware level, data is accessed at the

granularity of blocks, either physical disk blocks or

logical blocks spread across multiple physical devices

such as in a RAID array

• Parallel File Systems :

– manage data on the storage hardware,

– present this data as a directory hierarchy,

– coordinate access to files and directories in a consistent

manner

• File systems usually provide a UNIX like interface,

allowing users to access contiguous regions of files

 20

Storage Hardware

Parallel I/O (MPI I/O)

High-Level I/O Library

Parallel File System

Parallel File Systems: Other Layers

• Lower level interfaces may be provided by the

file system for higher-performance access

• Above the parallel file systems are the parallel

I/O layers provided in the form of libraries such

as MPI-IO

• The parallel I/O layer provides a low level

interface and operations such as collective I/O

• Scientific applications work with structured data

for which a higher level API written on top of

MPI-IO such as HDF5 or parallel netCDF are

used

• HDF5 and parallel netCDF allow the scientists

to represent the data sets in terms closer to

those used in their applications, and in a

portable manner

21

Storage Hardware

Parallel I/O (MPI I/O)

Parallel File System

High-Level I/O Library

22

Topics

• Introduction

• RAID

• Distributed File Systems (NFS)

• Parallel File Systems: Introduction

• Parallel File Systems (PVFS2)

• Parallel File Systems (Lustre)

• Additional Parallel File Systems (GPFS)

• POSIX I/O API

Parallel File Systems: PVFS2

• PVFS2 designed to provide:

– modular networking and storage subsystems

– structured data request format modeled after MPI datatypes

– flexible and extensible data distribution models

– distributed metadata

– tunable consistency semantics

– support for data redundancy

• Supports variety of network technologies including Myrinet, Quadrics,

and Infiniband

• Also supports variety of storage devices including locally attached

hardware, SANs and iSCSI

• Key abstractions include:

– Buffered Message Interface (BMI): non-blocking network interface

– Trove: non-blocking storage interface

– Flows: mechanism to specify a flow of data between network and storage

23

PVFS2 Software Architecture

• Buffered Messaging Interface (BMI)

– Non blocking interface that can be used with

many High performance network fabrics

– Currently TCP/IP and Myrinet (GM) networks

exist

• Trove:

– Non blocking interface that can be used with

a number of underlying storage mechanisms

– Trove storage objects consist of stream of

bytes (data) and keyword/value pair space

– Keyword/value pairs are convenient for

arbitrary metadata storage and directory

entries

24

Network Disk

Client API Request Processing

Job Sched

BMI Flo-
ws

Dist

Job Sched

BMI Flo-
ws
Dist

Tro-
ve

Client Server

PVFS2 Software Architecture

• Flows:

– Combine network and storage

subsystems by providing mechanism

to describe flow of data between

network and storage

– Provide a point for optimization to

optimize data movement between a

particular network and storage pair to

exploit fast paths

• The job scheduling layer provides a

common interface to interact with

BMI, Flows, and Trove and checks on

their completion

• The job scheduler is tightly integrated

with a state machine that is used to

track operations in progress

25

Network Disk

Client API Request Processing

Job Sched

BMI Flo-
ws

Dist

Job Sched

BMI Flo-
ws
Dist

Tro-
ve

Client Server

The PVFS2 Components

• The four major components to a

PVFS system are:

– Metadata Server (mgr)

– I/O Server (iod)

– PVFS native API (libpvfs)

– PVFS Linux kernel support

• Metadata Server (mgr):

– manages all the file metadata for PVFS

files, using a daemon which atomically

operates on the file metadata

– PVFS avoids the pitfalls of many storage

area network approaches, which have to

implement complex locking schemes to

ensure that metadata stays consistent in

the face of multiple accesses

26
metadata access

The PVFS2 Components

• I/O daemon:

– handles storing and retrieving

file data stored on local disks

connected to a node using

traditional read(), write(), etc for

access to these files

• PVFS native API provides

user-space access to the

PVFS servers

• The library handles the

operations necessary to

move data between user

buffers and PVFS servers

27

metadata access data access
http://csi.unmsm.edu.pe/paralelo/pvfs/desc.html

28

Topics

• Introduction

• RAID

• Distributed File Systems (NFS)

• Parallel File Systems: Introduction

• Parallel File Systems (PVFS2)

• Parallel File Systems (Lustre)

• Additional Parallel File Systems (GPFS)

• POSIX I/O API

Parallel File Systems: Lustre
• Name loosely derived from “Linux” and “cluster”

• Originally developed by Cluster File Systems Inc., which was acquired by Sun in Oct. 2007
– Sun’s intention was to bring the benefits of the technology to its native ZFS and Solaris

• Scalable, secure and highly-available file system for clusters

• Targets clusters with 10,000s of nodes, petabytes of storage, and is capable of providing
100’s of GB/s data bandwidth

• Multiplatform: Linux/Solaris clusters (Intel 32/64-bit), BG/L (PowerPC)

• Supports a wide variety of networks (TCP/IP, Quadrics, InfiniBand, Myrinet GM)
– Remote DMA where available

– OS bypass for parallel I/O

– Vector I/O for efficient bulk data movement

• High-performance
– Separate data manipulation and metadata operations

– Intelligent serialization

– Distributed lock management for metadata journaling

– Intent-based locking (combines lock acquisition with the associated target operation)

• High-reliability
– No single point of failure (organizes servers in active-active failover pairs)

– Permits live cluster upgrades

– “Just-mount” configuration, based on aggregation of server devices

• Supports POSIX semantics

• Open source

• Deployed in systems at LLNL, ORNL, PNNL, LANL, TI Tech (Japan), CEA (Europe), and
locally on LONI resources (Queen Bee, Eric, Oliver, Louie)

29

Recent Lustre Datasheet

• Fraction of raw bandwidth utilized by file I/O: >90%

• Achieved single OSS (server) I/O: >2.5 GB/s

• Achieved single client I/O: >2 GB/s

• Single GigE end-to-end throughput: 118 MB/s

• Achieved aggregate I/O: 130 GB/s

• Metadata transaction rate: 15,000 ops/s

• Maximum clients supported: 25,000

• Maximum file size: 1.25 PB

• Maximum file system size: >32 PB

30

Key Components of Lustre FS

• Clients
– Generate data I/O and metadata requests

– No internal storage

• Object Storage Servers (OSS)
– Uses partitioned storage, with optional LVM (Logical Volume Management)

– Responsible for reading, writing and modifying data in format imposed by the underlying file
system(s)

– Balance bandwidth between the network and attached storage to prevent bottlenecks

– May use attached external storage arrays (via Fiber Channel or SAS), including RAID

– Can handle multiple Object Storage Targets (OSTs), up to 8 TB each; one OST required for
each volume

– Total capacity of Lustre FS is the sum of capacities of all targets

• Metadata Servers (MDS)
– Similarly to OSSs, responsible for managing the local storage in the native file system format

– Require low latency access (fast seeks) rather than throughput due to small size of metadata
requests (FC and SAS coupled with RAID 0+1 are the recommended storage types for that
purpose, and may be different than those used by OSSs)

– Placing journal on a separate device frequently improves performance (up to 20%)

– At least four processing cores per MDS recommended

31

Lustre Architecture

32

Lustre Component Characteristics

• Clients

– 1 - 100,000 per system

– Data bandwidth up to few GB/s; 1000’s of metadata ops/s

– No particular hardware or attached storage characteristics required

• Object Storage Servers (OSS)

– 1 - 1000 per system

– 500 MB/s..2.5 GB/s I/O bandwidth

– Require good network bandwidth and adequate local storage

capacity coupled with sufficient number of OSSs in the system

• Metadata Servers (MDS)

– 2 (in the future: 2 - 100) per system

– 3,000 - 15,000 metadata ops/s

– Utilize 1 – 2% of total file system capacity

– Require memory-rich nodes with lots of CPU processing power

33

Lustre Configuration

34

A simple Lustre System

…and its configuration

Lustre High-Availability Features
• Transparently handles server reboots and failures

– The only client-visible effect is increase in request processing delay

• Supports rolling software updates
– Updated server is taken off-line, upgraded and restarted without taking the system down

– Alternatively, it may be failed over to the standby server with a new software

• MDSs are configured in active-passive pairs
– One standby MDS can be used as active MDS for another Lustre FS, minimizing the number

of idle nodes in the cluster

• OSSs are configured in active-active pairs to provide redundancy without the
extra overhead

• In worst case, a file system checking tool (lfsck) is provided for disaster recovery

35

Lustre File Layout

• One inode per file

• Instead of pointing directly at data blocks, MDT inodes point to one or
more objects associated with files

• Striping is achieved by associating multiple objects with an MDS inode

• The objects are implemented as files on OST file systems and contain
actual file data

36

Lustre File Operations

• File open:

– Request is send to appropriate MDS

– Related object pointers are returned to client

• File data access

– Object pointer is used to access directly the OSS nodes where
the file data are stored

37

Advanced Features of Lustre

• Interoperability
– Multiple CPU architectures supported within single system (clients and servers are

interoperable)

– Software-level interoperability exists between adjacent releases

• Support for POSIX Access Control Lists (ACL)

• Quotas for both users and groups

• OSS (and OST) addition to increase the total file system capacity may be
accomplished without interrupting the operation

• Flexible control of striping parameters (stripe count and stripe size)
– Default settings at format time

– Through directory (and subdirectory) attributes

– Defined by user library calls at file creation time

• Snapshots of all volumes attached to server nodes may be created using LVM
utilities, and later grouped in a snapshot file mountable within the Lustre file
system

• Backup tools:
– Fast file scanner, detecting files modified since given time stamp; its output (list of files) can

be used directly and in parallel by standard backup clients (e.g. rsync)

– Modified version of star utility to backup and restore Lustre stripe information

38

Parallel File Systems Comparison

39

40

Topics

• Introduction

• RAID

• Distributed File Systems (NFS)

• Parallel File Systems: Introduction

• Parallel File Systems (PVFS2)

• Parallel File Systems (Lustre)

• Additional Parallel File Systems (GPFS)

• POSIX I/O API

General Parallel File System (GPFS)
• Brief history:

– Based on the Tiger Shark parallel file system developed at the IBM Almaden Research Center in

1993 for AIX

• Originally targeted at dedicated video servers

• The multimedia orientation influenced GPFS command names: they all contain “mm”

– First commercial release was GPFS V1.1 in 1998

– Linux port released in 2001; Linux-AIX interoperability supported since V2.2 in 2004

• Highly scalable
– Distributed metadata management

– Permits incremental scaling

• High-performance
– Large block size with wide striping

– Parallel access to files from multiple nodes

– Deep prefetching

– Adaptable mechanism for recognizing access patterns

– Multithreaded daemon

• Highly available and fault tolerant
– Data protection through journaling, replication, mirroring and shadowing

– Ability to recover from multiple disk, node and connectivity failures (heartbeat mechanism)

– Recovery mechanism implemented in all layers

41

GPFS Features (I)

42

Source: http://www-03.ibm.com/systems/clusters/software/gpfs.pdf

http://www-03.ibm.com/systems/clusters/software/gpfs.pdf
http://www-03.ibm.com/systems/clusters/software/gpfs.pdf
http://www-03.ibm.com/systems/clusters/software/gpfs.pdf

GPFS Features (II)

43

GPFS Architecture

44

Source: http://www.redbooks.ibm.com/redbooks/pdfs/sg245610.pdf

http://www.redbooks.ibm.com/redbooks/pdfs/sg245610.pdf

Components Internal to GPFS

Daemon
• Configuration Manager (CfgMgr)

– Selects the node acting as Stripe Group Manager for each file system

– Checks for the quorum of nodes required for the file system usage to continue

– Appoints successor node in case of failure

– Initiates and controls recovery procedure

• Stripe Group Manager (FSMgr, aka File System Manager)
– Strictly one per each GPFS file system

– Maintains availability information of disks comprising the file system (physical storage)

– Processes modifications (disk removals and additions)

– Repairs file system and coordinates data migration when required

• Metanode
– Manages metadata (directory block updates)

– Its location may change (e.g. a node obtaining access to the file may become the metanode)

• Token Manager Server
– Synchronizes concurrent access to files and ensures consistency among caches

– Manages tokens, or per-object locks

• Mediates token migration when another node requests token conflicting with the existing token (token

stealing)

– Always located on the same node as Stripe Group Manager

45

GPFS Management Functions & Their

Dependencies

46

Source: http://www.redbooks.ibm.com/redbooks/pdfs/sg246700.pdf

http://www.redbooks.ibm.com/redbooks/pdfs/sg245610.pdf

Components External to GPFS

Daemon

• Virtual Shared Disk (VSD, aka logical volume)
– Enables nodes in one SP system partition to share disks with the other nodes in the same

system partition

– VSD node can be a client, a server (owning a number of VSDs, and performing data reads

and writes requested by client nodes), or both at the same time

• Recoverable Virtual Shared Disk (RVSD)
– Used together with VSD to provide high availability against node failures reported by Group

Services

– Runs recovery scripts and notifies client applications

• Switch (interconnect) Subsystem
– Starts switch daemon, responsible for initializing and monitoring the switch

– Discovers and reacts to topology changes; reports and services status/error packets

• Group Services
– Fault-tolerant, highly available and partition-sensitive service monitoring and coordinating

changes related to another subsystem operating in the partition

– Operates on each node within the partition, plus the control workstation for the partition

• System Data Repository (RSD)
– Location where the configuration data are stored

47

Read Operation Flow in GPFS

48

Write Operation Flow in GPFS

49

Token Management in GPFS

50

• First lock request for an object requires a message from node N1 to the token manager

• Token server grants token to N1 (subsequent lock requests can be granted locally)

• Node N2 requests token for the same file (lock conflict)

• Token server detects conflicting lock request and revokes token from N1

• If N1 was writing to file, the data is flushed to disk before the revocation is complete

• Node N2 gets the token from N1

GPFS Write-behind and Prefetch

51

• As soon as application’s write buffer is copied

into the local pagepool, the write operation is

complete from client’s perspective

• GPFS daemon schedules a worker thread to

finalize the request by issuing I/O calls to the

device driver

• GPFS estimates the number of blocks to read

ahead based on disk performance and rate at

which application is reading the data

• Additional prefetch requests are processed

asynchronously with the completion of the

current read

Some GPFS Cluster Models

52

Joined (AIX and Linux) model Mixed (NSD and direct attached) model

Network Shared Disk (NSD) with dedicated server model Direct attached model

Comparison of NFS and GPFS
File-System Features NFS GPFS

Introduced: 1985 1998

Original vendor: Sun IBM

Example at LC: /nfs/tmpn /p/gx1

Primary role: Share files among machines Fast parallel I/O for large files

Easy to scale? No Yes

Network needed: Any TCP/IP network IBM SP "switch"

Access control method: UNIX permission bits (CHMOD) UNIX permission bits (CHMOD)

Block size: 256 byte 512 Kbyte (White)

Stripe width: Depends on RAID 256 Kbyte

Maximum file size: 2 Gbyte (longer with v3) 26 Gbyte

File consistency:

.....uses client buffering? Yes Yes (see diagram)

.....uses server buffering? Yes (see diagram)

.....uses locking? No Yes (token passing)

.....lock granularity? Byte range

.....lock managed by? Requesting compute node

Purged at LC?
Home, No;

Tmp, Yes
Yes

Supports file quotas? Yes No

53

http://www.llnl.gov/LCdocs/ioguide/index.jsp?key=gpfs-advice

Comparison of GPFS to Other File

Systems

54

55

Topics

• Introduction

• RAID

• Distributed File Systems (NFS)

• Parallel File Systems: Introduction

• Parallel File Systems (PVFS2)

• Parallel File Systems (Lustre)

• Additional Parallel File Systems (GPFS)

• POSIX I/O API

IO Problem of the day

#include <stdio.h>

int main()

{

 int a = 0, b = 0;

 char buf[10];

 scanf ("%d%d", a, b);

 sprintf (buf, "%d %d");

 puts ("you entered: ");

 puts (buf);

}

If the user entered 3 and 17, what‘s the generated output?

56

IO Problem of the day

#include <stdio.h>

int main()

{

 int a = 0, b = 0;

 char buf[42]; // max. 20 digits in 64bit int

 scanf ("%d%d", &a, &b);

 snprintf (buf, 42, "%d %d", a, b);

 puts ("you entered: ");

 puts (buf);

}

57

Parallel I/O: Library Layers (Review)

• Lower level interfaces may be provided by the

file system for higher-performance access

• Above the parallel file systems are the parallel

I/O layers provided in the form of libraries such

as MPI-IO

• The parallel I/O layer provides a low level

interface and operations such as collective I/O

• Scientific applications work with structured data

for which a higher level API written on top of

MPI-IO such as HDF5 or parallel netCDF are

used

• HDF5 and parallel netCDF allow the scientists

to represent the data sets in terms closer to

those used in their applications, and in a

portable manner

 58

Storage Hardware

Parallel I/O (MPI I/O)

Parallel File System

High-Level I/O Library

POSIX File Access API
• Widespread standard

• Available on any UNIX-compliant platform
– IBM AIX, HP HP-UX, SGI Irix, Sun Solaris, BSDi BSD/OS, Mac OS X, Linux,

FreeBSD, OpenBSD, NetBSD, BeOS, and many others

– Also: Windows NT, XP, Server 2003, Vista, Windows 7 (through C runtime
libraries)

• Simple interface: six functions from POSIX.1 (core services) provide
practically all necessary I/O functionality
– File open

– File close

– File data read

– File data write

– Flush buffer to disk

– Adjust file pointer (seek)

• Two interface variants, provide roughly equivalent functionality
– Low-level file interface (file handles are integer descriptors)

– C stream interface (streams are represented by FILE structure; function
names prefixed with “f”)

• But: no parallel I/O support

59

File Open

60

Function: open()

int open(const char *path, int flags);

int open(const char *path, int flags,

 mode_t mode);

Description:
Opens the file identified by path, returning a non-

negative descriptor on success. The flags argument

must contain one of the following access modes

O_RDONLY, O_WRONLY, or O_RDWR; additional

file creation flags may be bitwise or’d: O_CREAT,

O_EXCL, and O_TRUNC. The optional mode

specifies access permissions when the file is

created.

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

...

/* create empty writable file with default access

permissions, storing its descriptor in fd */

int fd = open(“test”, O_WRONLY|O_CREAT|O_TRUNC);

if (fd < 0) {/* handle error here */}

Function: fopen()

FILE *fopen(const char *path,

 const char *mode);

Description:
Opens the file identified by path, associating a

stream with it and returning non-zero pointer if

successful. The mode string is one of: “r” (reading),

“r+” (reading and writing), “w” (creating or truncating

an existing file for writing), “w+” (reading and writing,

with creation or truncating), “a” (appending: writing at

the end of file), or “a+” (reading and appending, with

creation if the file doesn’t exist).

#include <stdio.h>

...

/* replicate open() example on the left, storing

file handle in f */

FILE *f = fopen(“test”, “w”);

if (f == NULL) {/* handle error here */}

...

File Close

61

Function: close()

int close(int fd);

Description:
Closes file descriptor fd making it available for reuse,

returning zero on success. OS resources associated

with the open file descriptor are freed. Note that a

successful close does not guarantee that file data

have been saved to the disk.

#include <unistd.h>

...

/* open a file */

int rc;

int fd = open(...);

...

/* file is accessed here */

...

rc = close(fd);

if (rc != 0) {/* handle error here */}

Function: fclose()

int fclose(FILE *fp);

Description:
Flushes the stream pointed to by fp and closes the

underlying file descriptor returning zero on success.

Note that buffer flush affects only data implicitly

managed by the C library, not the kernel buffers.

#include <stdio.h>

...

/* open a file */

int rc;

FILE *f = fopen(...);

...

/* file is accessed here */

...

rc = fclose(f);

if (rc != 0) {/* handle error here */}

File Read

62

Function: read()

int read(int fd, void *buf, size_t count);

Description:
Attempts to read at most count sequential bytes from

file descriptor fd into the buffer starting at buf.

Returns the number of bytes read (zero indicates

end of file). On error, -1 is returned.

#include <unistd.h>

...

int bytes;

char buf[100];

/* open an existing file for reading */

int fd = open(...);

...

bytes = read(fd, buf, 100);

if (bytes < 100) {/* handle EOF or error here */}

...

Function: fread()

size_t fread(void *ptr, size_t size, size_t n,

 FILE *stream);

Description:
Reads n sequential elements of data, each size

bytes long from the stream identified by *stream,

storing them in location pointed to by ptr. Returns the

number of items (not bytes!) successfully read. On

error, or if end of file is reached, the return value is

less than n.

#include <stdio.h>

...

size_t items;

char buf[100];

/* open an existing file for reading */

FILE *f = fopen(...);

...

items = fread(buf, 1, 100, f);

if (items < 100) {/* handle EOF or error here */}

...

File Write

63

Function: write()

int write(int fd, void *buf, size_t count);

Description:
Writes sequentially at most count bytes from the

buffer pointed to by buf to the file identified by

descriptor fd. Returns the number of bytes written; if

less than count, it means that either the underlying

device is out of space, or an interrupt occurred. On

error, -1 is returned.

#include <unistd.h>

...

int bytes;

char buf[100];

/* open a file for writing or appending */

int fd = open(...);

...

/* initialize buffer data */

...

bytes = write(fd, buf, 100);

if (bytes < 100) {/* handle short write */}

...

Function: fwrite()

size_t fwrite(void *ptr, size_t size, size_t n,

 FILE *stream);

Description:
Writes sequentially n elements of data, each size

bytes long to the stream identified by *stream from

location pointed to by ptr. Returns the number of

items successfully written. On error, or if end of file is

reached, the return value is less than n.

#include <stdio.h>

...

size_t items;

char buf[100];

/* open a file for writing or appending */

FILE *f = fopen(...);

...

/* initialize buffer data */

...

items = fwrite(buf, 1, 100, f);

if (items < 100) {/* handle short write */}

...

File Seek

64

Function: lseek()

off_t lseek(int fd, off_t offs, int whence);

Description:
Adjusts the offset of the open file associated with the

descriptor fd to the argument offs in accordance to

whence, which may assume the following values:

SEEK_SET (sets offset to offs bytes), SEEK_CUR

(offset is set to the current location plus offs), or

SEEK_END (sets offset to the sizeof file plus offs).

Returns the resultant offset value measured from the

beginning of file, or (off_t) -1 on error.

#include <sys/types.h>

#include <unistd.h>

...

/* open file for read/write access */

int fd = open(“/tmp/myfile”, O_RDWR);

...

/* write some file data */

...

/* “rewind” to the beginning of file to check

 the written data */

lseek(fd, 0, SEEK_SET);

/* start reading... */

Function: fseek()

int fseek(FILE *stream, long offs, int whence);

Description:
Sets the file position indicator for the stream

identified by stream. The meaning of the offset and

whence arguments is the same as for lseek().

Returns the current file offset in bytes, or -1 on error.

#include <stdio.h>

...

/* open file for reading and writing */

FILE *f = fopen(“/tmp/myfile”, “r+”);

...

/* to start appending data at the end of file: */

fseek(f, 0, SEEK_END);

fwrite(...);

...

File Data Flushing

65

Function: fsync()

int fsync(int fd);

Description:
Transfers all modified in-core data and metadata

(such as file size) of the file referred to by descriptor

fd to permanent storage device. The call blocks until

the transfer is complete. Returns zero on success, -1

on error.

#include <unistd.h>

...

/* open file for writing */

int fd = open(“checkpt.dat”, O_WRONLY|O_CREAT);

...

/* write checkpoint data */

...

/* make sure data are flushed to disk before

 starting the next iteration */

fsync(fd);

...

Function: fflush()

int fflush(FILE *stream);

Description:
Forces write of all user-space buffered data of the

output stream identified by *stream, or all open

output streams if stream is NULL. Returns zero on

success, or EOF on error.

#include <stdio.h>

...

/* open file for appending */

FILE *f = fopen(“/var/log/app.log”, “a”);

...

/* special event happened: output a message */

fprintf(f, “driver initialization failed”);

/* make sure message reaches at least kernel

 buffers before application crashes */

fflush(f);

...

Problems with POSIX File I/O
• Too simplistic interface

– Operates on anonymous sequences of bytes

– No preservation of type or information structure

– Cumbersome access to optimized/additional features (fcntl, ioctl)

– Designed for sequential I/O (even regularly strided accesses require multiple calls and may
suffer from poor performance)

• Portability issues
– Must use specialized reader/writer created for a particular application

– Compatibility checks dependent on application developers (possibility of undetected failures)

– No generic utilities to parse and interpret the contents of saved files

– Cross platform endianness and type representation problem if saving in binary mode

– Significant waste of storage space if text mode is used (for portability or readability of
transferred data)

• Permit access only to locally mounted storage, or remote storage via NFS
(which has its share of problems)

• Parallel and concurrent access issues
– Lack of synchronization when accessing shared files from multiple nodes

– Atomic access to shared files may not be enforceable, has unclear semantics, or has to rely
on the programmer for synchronization

– Uncoordinated access of I/O devices shared by multiple nodes may result in poor
performance (bottlenecks)

– Additional performance loss due to suboptimal bulk data movement (e.g., no collective I/O)

– On the other hand, without sharing, the management of individual files (i.e. with at least one
data file per I/O node) is complicated and tedious

66

