
School of Parallel Programming & Parallel 

Architecture for HPC 

ICTP 

October, 2014 

Parallel I/O for HPC  
Instructor: Ekpe Okorafor 



2 

Topics 

• Introduction  

• Distributed File Systems (NFS) 

• Parallel File Systems: Introduction 

• Parallel File Systems (PVFS2) 

• Parallel File Systems (Lustre) 

• Additional Parallel File Systems (GPFS) 

• POSIX I/O API 

 

 



3 

Topics 

• Introduction  

• Distributed File Systems (NFS) 

• Parallel File Systems: Introduction 

• Parallel File Systems (PVFS2) 

• Parallel File Systems (Lustre) 

• Additional Parallel File Systems (GPFS) 

• POSIX I/O API 

 



I/O Needs on Parallel Computers 

• High Performance 

– Take advantage of parallel I/O paths (where available)  

– Support application-level data access and throughput needs 

– Scalable with systems size and user number/needs 

• Data Integrity 

– Sanely deal with hardware and power failures  

• Single Namespace 

– All nodes and users “see” the same file systems 

– Equal access from anywhere on the resource 

• Ease of Use  

– Whenever possible, a storage system should be accessible 

in consistent way, in the same ways as a traditional UNIX-

style file systems 
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Related Topics 

• Hardware-based solutions 

– RAID 

• File systems commonly used in parallel computing 

– NFS 

– PVFS2 

– Lustre 

– GPFS 

• Software I/O libraries  

– POSIX I/O 

– MPI-IO 

– NetCDF 

– HDF5 
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RAID: Key Concepts 

• RAID stands for Redundant Array of 
Inexpensive (or: Independent) Disks - term 
coined by David Patterson, Garth Gibson and 
Randy Katz 

• Aims to achieve greater levels of performance, 
reliability, and/or larger volume sizes 

• Several basic architectures, ranging from RAID 0 
through RAID 6 

• Groups of two or more disks are treated effectively 
as single large disks; performance of multiple disks 
is better than that of individual disks due to 
bandwidth aggregation and overlap of multiple 
accesses 

• Using multiple disks helps store data in multiple 
places (redundancy), allowing the system to 
continue functioning in case of failures 

• Both software (OS managed) and hardware 
(dedicated I/O cards) raid solutions available 

– Hardware solutions are more expensive, but provide better 
performance without CPU overhead 

– Software solutions provide better flexibility, but have 
associated computational overhead 
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RAID 0 

• Simple disk striping without fault tolerance 
(single failure destroys the array) 

• Data are striped across multiple disks 

• The result of striping is a logical storage 
device that has the capacity of each disk 
times the number of disks present in the 
raid array 

• Both read and write performances are 
accelerated 

• Each byte of data can be read from multiple 
locations, so interleaving reads between 
disks can help double read performance 

• High transfer rates 

• High request rates  
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http://www.drivesolutions.com/datarecovery/raid.shtml 



RAID 1 

• Called disk mirroring 

• Frequently implemented with only two drives 

• Complete copies of data are stored in multiple 

locations; no parities computed 

• Has the highest spatial overhead for redundant 

data of all RAID types 

• Usable capacity is equivalent to a single 

component disk capacity 

• Read performance is accelerated due to 

availability of concurrent seek operations 

• Writes are somewhat slowed down, as new 

data have to be written to multiple storage 

devices (concurrency depends on the 

controller) 

• Continues functioning as long as least one 

drive is working correctly 
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RAID 5 

• Striped set with distributed parity 

• Requires at least 3 disks per array 

• Similarly to RAID 0, data are distributed 

across all the disks 

• Parity information for each stripe is also 

distributed across the disks, eliminating the 

bottleneck of a single parity disk (RAID 4) 

and equalizing the load across components 

• Tolerates single disk failures; the missing 

data block may be recomputed based on the 

contents of the parity block and the data 

blocks of the remaining disks in the same 

stripe 

• Write performance of RAID 5 is reduced due 

to parity computation for every physical write 

operation 
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RAID 6 

• Striped set with distributed dual 

parity 

• Requires at least 4 disks per array 

• Similar to RAID 5, but with two parity 

blocks per each stripe computed 

using different algorithms 

• Frequently utilized in large-volume 

secondary storage, where high 

availability is of concern 

• Can tolerate double simultaneous 

disk failures; it is practical in large 

volume sets, in which the rebuild of 

an array with one failed disk may not 

complete before the occurrence of a 

second failure 
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Nested RAID Levels 

• Hybrid arrangement of different 
level RAID arrays in the same 
storage subsystem 

• Combines redundancy schemes of 
RAID 1, 5 or 6 with the 
performance of RAID 0 

• Typically require an additional 
increase in minimal number of 
disks per array over the minimum 
for any of the component RAID 
levels 

• Simpler hybrids are frequently 
supported directly by I/O chipsets 
available on motherboards (RAID 
0+1, 10, etc.) 

• Can have more than two levels 
(e.g., RAID 100), with top levels 
typically implemented in software 
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Example: RAID 0+1 (mirror of stripes) 



13 

Topics 

• Introduction  

• RAID 

• Distributed File Systems (NFS) 

• Parallel File Systems: Introduction 

• Parallel File Systems (PVFS2) 

• Parallel File Systems (Lustre) 

• Additional Parallel File Systems (GPFS) 

• POSIX I/O API 

 



Distributed File Systems 

• A distributed file system is a file system that is stored locally on one system 

(server) but is accessible by processes on many systems (clients) 

• Multiple processes access multiple files simultaneously 

• Other attributes of a DFS may include: 

– Access control lists (ACLs) 

– Client-side file replication 

– Server- and client- side caching  

• Some examples of DFSes: 

– NFS (Sun) 

– AFS (CMU) 

– DCE/DFS (Transarc / IBM) 

– CIFS (Microsoft) 

• Distributed file systems can be used by parallel programs, but they have 

significant disadvantages: 

– The network bandwidth of the server system is a limiting factor on performance 

– To retain UNIX-style file consistency, the DFS software must implement some form 

of locking which has significant performance implications 
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Distributed File System: NFS 

• Popular means for accessing remote file 
systems in a local area network 

• Based on the client-server model, the 
remote file systems may be “mounted” via 
NFS and accessed through the Linux 
Virtual File System (VFS) layer 

• NFS clients cache file data, periodically 
checking with the original file  for any 
changes  

• The loosely-synchronous model makes for 
convenient, low-latency access to shared 
spaces 

• NFS avoids the common locking systems 
used to implement POSIX semantics 

• Most client implementations are open-
source; many servers remain proprietary 
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NFS support via 

VFS layer in Linux 



Why NFS is bad for Parallel I/O 

• Clients can cache data indiscriminately, and tend to do that at 

arbitrary block boundaries 

• When nearby regions of a file are written by different processes on 

different clients, the result is undefined due to lack of consistency 

control 

• All file operations are remote operations; extensive file locking is 

required to implement sequential consistency 

• Communication between client and server typically uses relatively 

slow communication channels, adding to performance degradation 

• Inefficient specification (e.g., a read operation involves two RPCs; 

one for look-up of file handle and second for reading of file data) 
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Parallel File Systems 

• Parallel File System is one in which there are multiple servers as 

well as clients for a given file system, equivalent of RAID across 

several file systems.  

• Multiple processes can access the same file simultaneously 

• Parallel File Systems are usually optimized for high performance 

rather than general purpose use, common optimization criterion 

being :  

– Large block sizes (≥ 64kB) 

– Relatively slow metadata operations (eg. fstat()) compared to reads 

and writes 

– Special APIs for direct access and additional optimizations 

• Examples of Parallel file systems include :  

– GPFS (IBM)  

– Lustre (Cluster File Systems/Sun) 

– PVFS2 (Clemson/ANL) 
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Characteristics of Parallel File Systems 

• Three Key Characteristics: 

– Various hardware I/O data storage resources 

– Multiple connections between these hardware 

devices and compute resources 

– High-performance, concurrent access to these I/O 

resources 

• Multiple physical I/O devices and paths ensure 

sufficient bandwidth for the high performance 

desired 

• Parallel I/O systems include both the hardware 

and number of layers of software 
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Parallel File Systems: Hardware Layer 

• I/O Hardware is usually comprised of disks, controllers, 

and interconnects for data movement 

• Hardware  determines the maximum raw bandwidth and 

the minimum latency of the system 

• Bisection bandwidth of the underlying transport 

determines the aggregate bandwidth of the resulting 

parallel I/O system 

• At the hardware level, data is accessed at the 

granularity of blocks, either physical disk blocks or 

logical blocks spread across multiple physical devices 

such as in a RAID array 

• Parallel File Systems : 

– manage data on the storage hardware, 

– present this data as a directory hierarchy,  

– coordinate access to files and directories in a consistent 

manner 

• File systems usually provide a UNIX like interface, 

allowing users to access contiguous regions of files 
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Parallel File Systems: Other Layers 

• Lower level interfaces may be provided by the 

file system for higher-performance access 

• Above the parallel file systems are the parallel 

I/O layers provided in the form of libraries such 

as MPI-IO 

• The parallel I/O layer provides a low level 

interface and operations such as collective I/O  

• Scientific applications work with structured data 

for which a higher level API written on top of 

MPI-IO  such as HDF5 or parallel netCDF are 

used 

• HDF5 and parallel netCDF allow the scientists 

to represent the data sets in terms closer to 

those used in their applications, and in a 

portable manner 
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Parallel File Systems: PVFS2 

• PVFS2 designed to provide: 

– modular networking and storage subsystems 

– structured data request format modeled after MPI datatypes 

– flexible and extensible data distribution models 

– distributed metadata 

– tunable consistency semantics 

– support for data redundancy 

• Supports variety of network technologies including Myrinet, Quadrics, 

and Infiniband 

• Also supports variety of storage devices including locally attached 

hardware, SANs and iSCSI 

• Key abstractions include: 

– Buffered Message Interface (BMI): non-blocking network interface 

– Trove: non-blocking storage interface 

– Flows: mechanism to specify a flow of data between network and storage 
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PVFS2 Software Architecture  

• Buffered Messaging Interface (BMI) 

– Non blocking interface that can be used with 

many High performance network fabrics 

– Currently TCP/IP and Myrinet (GM) networks 

exist 

• Trove: 

– Non blocking interface that can be used with 

a number of underlying storage mechanisms  

– Trove storage objects consist of stream of 

bytes (data) and keyword/value pair space 

– Keyword/value pairs are convenient for 

arbitrary metadata storage and directory 

entries 
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PVFS2 Software Architecture 

• Flows: 

– Combine network and storage 

subsystems by providing mechanism 

to describe flow of data between 

network and storage 

– Provide a point for optimization to 

optimize data movement between a 

particular network and storage pair to 

exploit fast paths 

• The job scheduling layer provides a 

common interface to interact with 

BMI, Flows, and Trove and checks on 

their completion 

• The job scheduler is tightly integrated 

with a state machine that is used to 

track operations in progress 
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The PVFS2 Components 

• The four major components to a 

PVFS system are:  

– Metadata Server (mgr) 

– I/O Server (iod) 

– PVFS native API (libpvfs) 

– PVFS Linux kernel support 

• Metadata Server (mgr):  

– manages all the file metadata for PVFS 

files, using a daemon which atomically 

operates on the file metadata 

– PVFS avoids the pitfalls of many storage 

area network approaches, which have to 

implement complex locking schemes to 

ensure that metadata stays consistent in 

the face of multiple accesses 
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The PVFS2 Components 

• I/O daemon:  

– handles storing and retrieving 

file data stored on local disks 

connected to a node using 

traditional read(), write(), etc for 

access to these files 

• PVFS native API provides 

user-space access to the 

PVFS servers 

• The library handles the 

operations necessary to 

move data between user 

buffers and PVFS servers 

27 
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Parallel File Systems: Lustre 
• Name loosely derived from “Linux” and “cluster” 

• Originally developed by Cluster File Systems Inc., which was acquired by Sun in Oct. 2007 
– Sun’s intention was to bring the benefits of the technology to its native ZFS and Solaris 

• Scalable, secure and highly-available file system for clusters 

• Targets clusters with 10,000s of nodes, petabytes of storage, and is capable of providing 
100’s of GB/s data bandwidth 

• Multiplatform: Linux/Solaris clusters (Intel 32/64-bit), BG/L (PowerPC) 

• Supports a wide variety of networks (TCP/IP, Quadrics, InfiniBand, Myrinet GM) 
– Remote DMA where available 

– OS bypass for parallel I/O 

– Vector I/O for efficient bulk data movement 

• High-performance 
– Separate data manipulation and metadata operations 

– Intelligent serialization 

– Distributed lock management for metadata journaling 

– Intent-based locking (combines lock acquisition with the associated target operation) 

• High-reliability 
– No single point of failure (organizes servers in active-active failover pairs) 

– Permits live cluster upgrades 

– “Just-mount” configuration, based on aggregation of server devices 

• Supports POSIX semantics 

• Open source 

• Deployed in systems at LLNL, ORNL, PNNL, LANL, TI Tech (Japan), CEA (Europe), and 
locally on LONI resources (Queen Bee, Eric, Oliver, Louie) 
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Recent Lustre Datasheet 

• Fraction of raw bandwidth utilized by file I/O: >90% 

• Achieved single OSS (server) I/O: >2.5 GB/s 

• Achieved single client I/O: >2 GB/s 

• Single GigE end-to-end throughput: 118 MB/s 

• Achieved aggregate I/O: 130 GB/s 

• Metadata transaction rate: 15,000 ops/s 

• Maximum clients supported: 25,000 

• Maximum file size: 1.25 PB 

• Maximum file system size: >32 PB 
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Key Components of Lustre FS 

• Clients 
– Generate data I/O and metadata requests 

– No internal storage 

• Object Storage Servers (OSS) 
– Uses partitioned storage, with optional LVM (Logical Volume Management) 

– Responsible for reading, writing and modifying data in format imposed by the underlying file 
system(s) 

– Balance bandwidth between the network and attached storage to prevent bottlenecks 

– May use attached external storage arrays (via Fiber Channel or SAS), including RAID 

– Can handle multiple Object Storage Targets (OSTs), up to 8 TB each; one OST required for 
each volume 

– Total capacity of Lustre FS is the sum of capacities of all targets 

• Metadata Servers (MDS) 
– Similarly to OSSs, responsible for managing the local storage in the native file system format 

– Require low latency access (fast seeks) rather than throughput due to small size of metadata 
requests (FC and SAS coupled with RAID 0+1 are the recommended storage types for that 
purpose, and may be different than those used by OSSs) 

– Placing journal on a separate device frequently improves performance (up to 20%) 

– At least four processing cores per MDS recommended 
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Lustre Architecture 
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Lustre Component Characteristics 

• Clients 

– 1 - 100,000 per system 

– Data bandwidth up to few GB/s; 1000’s of metadata ops/s 

– No particular hardware or attached storage characteristics required 

• Object Storage Servers (OSS) 

– 1 - 1000 per system 

– 500 MB/s..2.5 GB/s I/O bandwidth 

– Require good network bandwidth and adequate local storage 

capacity coupled with sufficient number of OSSs in the system 

• Metadata Servers (MDS) 

– 2 (in the future: 2 - 100) per system 

– 3,000 - 15,000 metadata ops/s 

– Utilize 1 – 2% of total file system capacity 

– Require memory-rich nodes with lots of CPU processing power 
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Lustre Configuration 

34 

A simple Lustre System 

…and its configuration 



Lustre High-Availability Features 
• Transparently handles server reboots and failures 

– The only client-visible effect is increase in request processing delay 

• Supports rolling software updates 
– Updated server is taken off-line, upgraded and restarted without taking the system down 

– Alternatively, it may be failed over to the standby server with a new software 

• MDSs are configured in active-passive pairs 
– One standby MDS can be used as active MDS for another Lustre FS, minimizing the number 

of idle nodes in the cluster 

• OSSs are configured in active-active pairs to provide redundancy without the 
extra overhead 

• In worst case, a file system checking tool (lfsck) is provided for disaster recovery 
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Lustre File Layout 

• One inode per file 

• Instead of pointing directly at data blocks, MDT inodes point to one or 
more objects associated with files 

• Striping is achieved by associating multiple objects with an MDS inode 

• The objects are implemented as files on OST file systems and contain 
actual file data 
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Lustre File Operations 

• File open: 

– Request is send to appropriate MDS 

– Related object pointers are returned to client 

• File data access 

– Object pointer is used to access directly the OSS nodes where 
the file data are stored 
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Advanced Features of Lustre 

• Interoperability 
– Multiple CPU architectures supported within single system (clients and servers are 

interoperable) 

– Software-level interoperability exists between adjacent releases 

• Support for POSIX Access Control Lists (ACL) 

• Quotas for both users and groups 

• OSS (and OST) addition to increase the total file system capacity may be 
accomplished without interrupting the operation 

• Flexible control of striping parameters (stripe count and stripe size) 
– Default settings at format time 

– Through directory (and subdirectory) attributes 

– Defined by user library calls at file creation time 

• Snapshots of all volumes attached to server nodes may be created using LVM 
utilities, and later grouped in a snapshot file mountable within the Lustre file 
system 

• Backup tools: 
– Fast file scanner, detecting files modified since given time stamp; its output (list of files) can 

be used directly and in parallel by standard backup clients (e.g. rsync) 

– Modified version of star utility to backup and restore Lustre stripe information 
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Parallel File Systems Comparison 
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General Parallel File System (GPFS) 
• Brief history: 

– Based on the Tiger Shark parallel file system developed at the IBM Almaden Research Center in 

1993 for AIX 

• Originally targeted at dedicated video servers 

• The multimedia orientation influenced GPFS command names: they all contain “mm” 

– First commercial release was GPFS V1.1 in 1998 

– Linux port released in 2001; Linux-AIX interoperability supported since V2.2 in 2004 

• Highly scalable 
– Distributed metadata management 

– Permits incremental scaling 

• High-performance 
– Large block size with wide striping 

– Parallel access to files from multiple nodes 

– Deep prefetching 

– Adaptable mechanism for recognizing access patterns 

– Multithreaded daemon 

• Highly available and fault tolerant 
– Data protection through journaling, replication, mirroring and shadowing 

– Ability to recover from multiple disk, node and connectivity failures (heartbeat mechanism) 

– Recovery mechanism implemented in all layers 
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GPFS Features (I) 

42 

Source: http://www-03.ibm.com/systems/clusters/software/gpfs.pdf 

http://www-03.ibm.com/systems/clusters/software/gpfs.pdf
http://www-03.ibm.com/systems/clusters/software/gpfs.pdf
http://www-03.ibm.com/systems/clusters/software/gpfs.pdf


GPFS Features (II) 
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GPFS Architecture 
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Source: http://www.redbooks.ibm.com/redbooks/pdfs/sg245610.pdf  

http://www.redbooks.ibm.com/redbooks/pdfs/sg245610.pdf


Components Internal to GPFS 

Daemon 
• Configuration Manager (CfgMgr) 

– Selects the node acting as Stripe Group Manager for each file system 

– Checks for the quorum of nodes required for the file system usage to continue 

– Appoints successor node in case of failure 

– Initiates and controls recovery procedure 

• Stripe Group Manager (FSMgr, aka File System Manager) 
– Strictly one per each GPFS file system 

– Maintains availability information of disks comprising the file system (physical storage) 

– Processes modifications (disk removals and additions) 

– Repairs file system and coordinates data migration when required 

• Metanode 
– Manages metadata (directory block updates) 

– Its location may change (e.g. a node obtaining access to the file may become the metanode) 

• Token Manager Server 
– Synchronizes concurrent access to files and ensures consistency among caches 

– Manages tokens, or per-object locks 

• Mediates token migration when another node requests token conflicting with the existing token (token 

stealing) 

– Always located on the same node as Stripe Group Manager 
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GPFS Management Functions & Their 

Dependencies 
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Source: http://www.redbooks.ibm.com/redbooks/pdfs/sg246700.pdf  

http://www.redbooks.ibm.com/redbooks/pdfs/sg245610.pdf


Components External to GPFS 

Daemon 

• Virtual Shared Disk (VSD, aka logical volume) 
– Enables nodes in one SP system partition to share disks with the other nodes in the same 

system partition 

– VSD node can be a client, a server (owning a  number of VSDs, and performing data reads 

and writes requested by client nodes), or both at the same time 

• Recoverable Virtual Shared Disk (RVSD) 
– Used together with VSD to provide high availability against node failures reported by Group 

Services 

– Runs recovery scripts and notifies client applications 

• Switch (interconnect) Subsystem 
– Starts switch daemon, responsible for initializing and monitoring the switch 

– Discovers and reacts to topology changes; reports and services status/error packets 

• Group Services 
– Fault-tolerant, highly available and partition-sensitive service monitoring and coordinating 

changes related to another subsystem operating in the partition 

– Operates on each node within the partition, plus the control workstation for the partition 

• System Data Repository (RSD) 
– Location where the configuration data are stored 
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Read Operation Flow in GPFS 
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Write Operation Flow in GPFS 
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Token Management in GPFS 

50 

• First lock request for an object requires a message from node N1 to the token manager 

• Token server grants token to N1 (subsequent lock requests can be granted locally) 

• Node N2 requests token for the same file (lock conflict) 

• Token server detects conflicting lock request and revokes token from N1 

• If N1 was writing to file, the data is flushed to disk before the revocation is complete 

• Node N2 gets the token from N1 



GPFS Write-behind and Prefetch 

51 

• As soon as application’s write buffer is copied 

into the local pagepool, the write operation is 

complete from client’s perspective 

• GPFS daemon schedules a worker thread to 

finalize the request by issuing I/O calls to the 

device driver 

• GPFS estimates the number of blocks to read 

ahead based on disk performance and rate at 

which application is reading the data 

• Additional prefetch requests are processed 

asynchronously with the completion of the 

current read 



Some GPFS Cluster Models 
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Joined (AIX and Linux) model Mixed (NSD and direct attached) model 

Network Shared Disk (NSD) with dedicated server model Direct attached model 



Comparison of NFS and GPFS 
File-System Features  NFS  GPFS  

Introduced:  1985  1998  

Original vendor:  Sun  IBM  

Example at LC:  /nfs/tmpn  /p/gx1  

Primary role:  Share files among machines  Fast parallel I/O for large files  

Easy to scale?  No  Yes  

Network needed:  Any TCP/IP network  IBM SP "switch"  

Access control method:  UNIX permission bits (CHMOD)  UNIX permission bits (CHMOD)  

Block size:  256 byte  512 Kbyte (White)  

Stripe width:  Depends on RAID  256 Kbyte  

Maximum file size:  2 Gbyte (longer with v3)  26 Gbyte  

File consistency:  

.....uses client buffering?  Yes  Yes (see diagram)  

.....uses server buffering?  Yes (see diagram)  

.....uses locking?  No  Yes (token passing)  

.....lock granularity?  Byte range  

.....lock managed by?  Requesting compute node  

Purged at LC?  
Home, No; 

Tmp, Yes  
Yes  

Supports file quotas?  Yes  No  
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Comparison of GPFS to Other File 

Systems 

54 



55 

Topics 

• Introduction  

• RAID 

• Distributed File Systems (NFS) 

• Parallel File Systems: Introduction 

• Parallel File Systems (PVFS2) 

• Parallel File Systems (Lustre) 

• Additional Parallel File Systems (GPFS) 

• POSIX I/O API 

 



IO Problem of the day 

#include <stdio.h> 

 

int main() 

{ 

    int a = 0, b = 0; 

    char buf[10]; 

    scanf ("%d%d", a, b); 

    sprintf (buf, "%d %d"); 

    puts ("you entered: "); 

    puts (buf); 

} 

 

If the user entered 3 and 17, what‘s the generated output? 
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IO Problem of the day 

#include <stdio.h> 

 

int main() 

{ 

    int a = 0, b = 0; 

    char buf[42];          // max. 20 digits in 64bit int 

    scanf ("%d%d", &a, &b); 

    snprintf (buf, 42, "%d %d", a, b); 

    puts ("you entered: "); 

    puts (buf); 

} 
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Parallel I/O: Library Layers (Review) 

• Lower level interfaces may be provided by the 

file system for higher-performance access 

• Above the parallel file systems are the parallel 

I/O layers provided in the form of libraries such 

as MPI-IO 

• The parallel I/O layer provides a low level 

interface and operations such as collective I/O  

• Scientific applications work with structured data 

for which a higher level API written on top of 

MPI-IO  such as HDF5 or parallel netCDF are 

used 

• HDF5 and parallel netCDF allow the scientists 

to represent the data sets in terms closer to 

those used in their applications, and in a 

portable manner 
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POSIX File Access API 
• Widespread standard 

• Available on any UNIX-compliant platform 
– IBM AIX, HP HP-UX, SGI Irix, Sun Solaris, BSDi BSD/OS, Mac OS X, Linux, 

FreeBSD, OpenBSD, NetBSD, BeOS, and many others 

– Also: Windows NT, XP, Server 2003, Vista, Windows 7 (through C runtime 
libraries) 

• Simple interface: six functions from POSIX.1 (core services) provide 
practically all necessary I/O functionality 
– File open 

– File close 

– File data read 

– File data write 

– Flush buffer to disk 

– Adjust file pointer (seek) 

• Two interface variants, provide roughly equivalent functionality 
– Low-level file interface (file handles are integer descriptors) 

– C stream interface (streams are represented by FILE structure; function 
names prefixed with “f”) 

• But: no parallel I/O support 
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Function: open() 

int open(const char *path, int flags); 

int open(const char *path, int flags, 

               mode_t mode); 

Description: 
Opens the file identified by path, returning a non-

negative descriptor on success. The flags argument 

must contain one of the following access modes 

O_RDONLY, O_WRONLY, or  O_RDWR; additional 

file creation flags may be bitwise or’d: O_CREAT, 

O_EXCL, and O_TRUNC. The optional mode 

specifies access permissions when the file is 

created. 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

... 

/* create empty writable file with default access 

permissions, storing its descriptor in fd */ 

int fd = open(“test”, O_WRONLY|O_CREAT|O_TRUNC); 

if (fd < 0) {/* handle error here */} 

Function: fopen() 

FILE *fopen(const char *path,  

                     const char *mode); 

Description: 
Opens the file identified by path, associating a 

stream with it and returning non-zero pointer if 

successful. The mode string is one of: “r” (reading), 

“r+” (reading and writing), “w” (creating or truncating 

an existing file for writing), “w+” (reading and writing, 

with creation or truncating), “a” (appending: writing at 

the end of file), or “a+” (reading and appending, with 

creation if the file doesn’t exist). 

#include <stdio.h> 

... 

/* replicate open() example on the left, storing 

file handle in f */ 

FILE *f = fopen(“test”, “w”); 

if (f == NULL) {/* handle error here */} 

... 
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Function: close() 

int close(int fd); 

Description: 
Closes file descriptor fd making it available for reuse, 

returning zero on success. OS resources associated 

with the open file descriptor are freed. Note that a 

successful close does not guarantee that file data 

have been saved to the disk. 

#include <unistd.h> 

... 

/* open a file */ 

int rc; 

int fd = open(...); 

... 

/* file is accessed here */ 

... 

rc = close(fd); 

if (rc != 0) {/* handle error here */} 

Function: fclose() 

int fclose(FILE *fp); 

Description: 
Flushes the stream pointed to by fp and closes the 

underlying file descriptor returning zero on success. 

Note that buffer flush affects only data implicitly 

managed by the C library, not the kernel buffers. 

#include <stdio.h> 

... 

/* open a file */ 

int rc; 

FILE *f = fopen(...); 

... 

/* file is accessed here */ 

... 

rc = fclose(f); 

if (rc != 0) {/* handle error here */} 
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Function: read() 

int read(int fd, void *buf, size_t count); 

Description: 
Attempts to read at most count sequential bytes from 

file descriptor fd into the buffer starting at buf. 

Returns the number of bytes read (zero indicates 

end of file). On error, -1 is returned. 

#include <unistd.h> 

... 

int bytes; 

char buf[100]; 

/* open an existing file for reading */ 

int fd = open(...); 

... 

bytes = read(fd, buf, 100); 

if (bytes < 100) {/* handle EOF or error here */} 

... 

Function: fread() 

size_t fread(void *ptr, size_t size, size_t n,  

                    FILE *stream); 

Description: 
Reads n sequential elements of data, each size 

bytes long from the stream identified by *stream, 

storing them in location pointed to by ptr. Returns the 

number of items (not bytes!) successfully read. On 

error, or if end of file is reached, the return value is 

less than n. 

#include <stdio.h> 

... 

size_t items; 

char buf[100]; 

/* open an existing file for reading */ 

FILE *f = fopen(...); 

... 

items = fread(buf, 1, 100, f); 

if (items < 100) {/* handle EOF or error here */} 

... 
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Function: write() 

int write(int fd, void *buf, size_t count); 

Description: 
Writes sequentially at most count bytes from the 

buffer pointed to by buf to the file identified by 

descriptor fd. Returns the number of bytes written; if 

less than count, it means that either the underlying 

device is out of space, or an interrupt occurred. On 

error, -1 is returned. 

#include <unistd.h> 

... 

int bytes; 

char buf[100]; 

/* open a file for writing or appending */ 

int fd = open(...); 

... 

/* initialize buffer data */ 

... 

bytes = write(fd, buf, 100); 

if (bytes < 100) {/* handle short write */} 

... 

Function: fwrite() 

size_t fwrite(void *ptr, size_t size, size_t n,  

                    FILE *stream); 

Description: 
Writes sequentially n elements of data, each size 

bytes long to the stream identified by *stream from 

location pointed to by ptr. Returns the number of 

items successfully written. On error, or if end of file is 

reached, the return value is less than n. 

#include <stdio.h> 

... 

size_t items; 

char buf[100]; 

/* open a file for writing or appending */ 

FILE *f = fopen(...); 

... 

/* initialize buffer data */ 

... 

items = fwrite(buf, 1, 100, f); 

if (items < 100) {/* handle short write */} 

... 
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Function: lseek() 

off_t lseek(int fd, off_t offs, int whence); 

Description: 
Adjusts the offset of the open file associated with the 

descriptor fd to the argument offs in accordance to 

whence, which may assume the following values: 

SEEK_SET (sets offset to offs bytes), SEEK_CUR 

(offset is set to the current location plus offs), or 

SEEK_END (sets offset to the sizeof file plus offs). 

Returns the resultant offset value measured from the 

beginning of file, or (off_t) -1 on error. 

#include <sys/types.h> 

#include <unistd.h> 

... 

/* open file for read/write access */ 

int fd = open(“/tmp/myfile”, O_RDWR); 

... 

/* write some file data */ 

... 

/* “rewind” to the beginning of file to check  

   the written data  */ 

lseek(fd, 0, SEEK_SET); 

/* start reading... */ 

Function: fseek() 

int fseek(FILE *stream, long offs, int whence); 

Description: 
Sets the file position indicator for the stream 

identified by stream. The meaning of the offset and 

whence arguments is the same as for lseek(). 

Returns the current file offset in bytes, or -1 on error. 

#include <stdio.h> 

... 

/* open file for reading and writing */ 

FILE *f = fopen(“/tmp/myfile”, “r+”); 

... 

/* to start appending data at the end of file: */ 

fseek(f, 0, SEEK_END); 

fwrite(...); 

... 
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Function: fsync() 

int fsync(int fd); 

Description: 
Transfers all modified in-core data and metadata 

(such as file size) of the file referred to by descriptor 

fd to permanent storage device. The call blocks until 

the transfer is complete. Returns zero on success, -1 

on error. 

#include <unistd.h> 

... 

/* open file for writing */ 

int fd = open(“checkpt.dat”, O_WRONLY|O_CREAT); 

... 

/* write checkpoint data */ 

... 

/* make sure data are flushed to disk before  

   starting the next iteration */ 

fsync(fd); 

... 

Function: fflush() 

int fflush(FILE *stream); 

Description: 
Forces write of all user-space buffered data of the 

output stream identified by *stream, or all open 

output streams if stream is NULL. Returns zero on 

success, or EOF on error. 

#include <stdio.h> 

... 

/* open file for appending */ 

FILE *f = fopen(“/var/log/app.log”, “a”); 

... 

/* special event happened: output a message */ 

fprintf(f, “driver initialization failed”); 

/* make sure message reaches at least kernel  

   buffers before application crashes */ 

fflush(f); 

... 



Problems with POSIX File I/O 
• Too simplistic interface 

– Operates on anonymous sequences of bytes 

– No preservation of type or information structure 

– Cumbersome access to optimized/additional features (fcntl, ioctl) 

– Designed for sequential I/O (even regularly strided accesses require multiple calls and may 
suffer from poor performance) 

• Portability issues 
– Must use specialized reader/writer created for a particular application 

– Compatibility checks dependent on application developers (possibility of undetected failures) 

– No generic utilities to parse and interpret the contents of saved files 

– Cross platform endianness and type representation problem if saving in binary mode 

– Significant waste of storage space if text mode is used (for portability or readability of 
transferred data) 

• Permit access only to locally mounted storage, or remote storage via NFS 
(which has its share of problems) 

• Parallel and concurrent access issues 
– Lack of synchronization when accessing shared files from multiple nodes 

– Atomic access to shared files may not be enforceable, has unclear semantics, or has to rely 
on the programmer for synchronization 

– Uncoordinated access of I/O devices shared by multiple nodes may result in poor 
performance (bottlenecks) 

– Additional performance loss due to suboptimal bulk data movement (e.g., no collective I/O) 

– On the other hand, without sharing, the management of individual files (i.e. with at least one 
data file per I/O node) is complicated and tedious  
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