
Python for System Admistration

Python brings the full convenience of a programming language to
solve problems in system administration. We will look at some
libraries in the python standard library.

By Michael Atambo



Interface with the OS:

These modules provide various interfaces to os resources, like file
manipulation, searching, reading and writting, executing other
programs, obtaining the ‘os’ state information

1. "os" module

2. "subprocess" modules & psutil & stat



Excercise on OS modules

In the provided code, please complete the provided code named
1 os* - 4 os* to do the following:

I 1 ospath.py : Print the absolute path to a file on the system
(already done)

I 2 os creating dirs.py : This should create a directory with the
name passed as a parameter

I 3 os creating files.py : same as above, for a normal file
I 4 os search dirs.py : This should search for a file in a location,

both file and location are passed in as parameters

Provided code is at : Github repo: Link

https://github.com/mikeatm/pythontutorial.git


Excercise fingerprinting an OS:

Use the sys, psutil, and (or) platform modules to characterise
the systems specific information:

Complete these:

I 5 psutil.py : Use psutil to get these system parameters
normally reported in ganglia:

I cpu percent (per CPU), number of physical CPUs,

I available virtual memory, and total swap size

I print out all the disk partitions and their mountpoints, the
disk space usage on the first partition reported

I 7 platfm.py : Use the platform module to find out this
information on the system you are logged into:

I machine type (i386, x86 64), node name, processor ,
python version, platform version,

Lower level access can be provided using pyudev

https://pyudev.readthedocs.org/en/latest/


Standard Library utilities:

Exercise: Common compressed files can be handled by the tarfile
and zipfile utilities:

Download the python source in zip and tar.gz format, we will use
those here:

I 9 handle tarfile.py: List all the files, in the tar file, find
the number of files

I 10 handle zipfile.py: Without extracting the zipfile, take
out the installation instruction text file.



Log parsing:

Text processing in python is extensively supported, from reading
and writting to perl compatible regular expressions, and dedicated
modules.

12 parsing logs.py : By reading the provided log file, find out the
error the application is having.



virtualenv, pip,

A python virtualenv is an isolated copy of python on your system
that gives you the ability to work with a particular environement
without interference with the systemwide python installation. Live

Demo: we will go through the process of setting up isolated
environments.

I Creating isolated python environements with virtualenv.py



User Management:

User management can be achieved from the library libuser (in need
root priviledges), we will skip this for now.



Ganglia module: Excercise

I Ganglia is used extensively to monitor distributed
environments,

I It provides a way to extend the metrics that are collected
using python

I The api consists of just about three methods that NEED to
be implemented.

I Create a module that reports the:

I cpu temperature

I disk usage

I uptime

I logins

A refrence can be found here: ref

http://sourceforge.net/p/ganglia/code/HEAD/tree/branches/monitor-core-3.1/gmond/modules/python/


Backup and restore:

We always need backups, of configuration, user data. . . We can
write modules to periodically take care of backups (compress if
neccessary..) and restore them again. Or we can use readymade
utilities like bakthat which will by default back up to s3.

https://pypi.python.org/pypi/bakthat/0.6.0


Tools for managing machines:

These tools support command excution and automation as well as
configuration management in the case of salt.

1. Fabric

2. salt

3. ansible



Fabric

What is Fabric? in the authors words:

Fabric is a Python (2.5-2.7) library and command-line
tool for streamlining the use of SSH for application
deployment or systems administration tasks.

What can you do with it?

I Automating tasks
I Local and remote execution.



Fabric Excercise:

Starting simple: Helloworld! in Fabric: Place the following in a file
named fabfile.py

def hello(name="world"):

print("Hello world")

and run it with:

$ fab hello

Hello world

Fabric will import the function and run the command you instruct.



Fabric Exercise II.

Create a file named fabfile.py and in it, create functions to

I Copy the /var/log/messages log to the current directory
I Querry and save the uptime in a file in the current directory
I do this for both the head and the slave nodes.


