
School of Parallel Programming & Parallel

Architecture for HPC

ICTP

October, 2014

Hadoop for HPC
Instructor: Ekpe Okorafor

Outline

• Hadoop – Basics

• Hadoop Infrastructure

• HDFS

• MapReduce

• Hadoop & HPC

Hadoop - Why ?

• Need to process huge datasets on large clusters of

computers

• Very expensive to build reliability into each

application

• Nodes fail every day

– Failure is expected, rather than exceptional

– The number of nodes in a cluster is not constant

• Need a common infrastructure

– Efficient, reliable, easy to use

– Open Source, Apache Licence

Who uses Hadoop?

• Amazon/A9

• Facebook

• Google

• New York Times

• Veoh

• Yahoo!

• …. many more

Hadoop Infrastructure

Original Slides by

Ekpe Okorafor, TJ Glazier, Justin Lowe

Big Data Academy, Digital Analytics, Accenture

Hadoop Infrastructure Overview

Master Server Daemons

Namenode

Secondary Namenode

Jobtracker

Slave Server Daemons

Datanode

Tasktracker

Clients
Makes the requests to the hadoop

cluster to store or retrieve files .

Sends the job requests to process the

data stored in the cluster

Masters control the operations that take

place in the cluster

• Namenode tracks all of the block

locations of data in the cluster

• Secondary Namenode does all of the

housekeeping for the namenode

• Jobtrack tracks the mapreduce jobs

submitted to the cluster

Slaves process and store the data

• Datanodes are tasked with holding all

of the data blocks in hadoop, data is

stored nowhere else

• Tasktrackers run the jobs on the

cluster and report back to the

Jobtracker 6

CLIENTS

NAMENODE

SECONDARY NAMENODE

JOBTRACKER

DATANODES/TASKTRACKERS

Tracks all files in HDFS

Responsible for data replication

Handles Datanode failures

Runs all jobs on the cluster

Handles tasktracker failures

Job Queue management

Holds the HDFS file system & process all jobs on behalf of the client

Submits jobs to the cluster,

can also store & retrieve

data

7

CLIENTS

NAMENODE

SECONDARY NAMENODE

JOBTRACKER

DATANODES/TASKTRACKERS

JOBTRACKER = FAILS

Unable to run jobs until the

jobtracker is restored or

replaced

HDFS is still in-tact! 8

CLIENTS

NAMENODE

SECONDARY NAMENODE

JOBTRACKER

DATANODES/TASKTRACKERS

SECONDARY NAMENODE = FAILS

HDFS is addressable however catastrophic failure is

imminent as the NAMENODE housekeeping server is down

HDFS is still in-tact! 9

CLIENTS

NAMENODE

SECONDARY NAMENODE

JOBTRACKER

DATANODES/TASKTRACKERS

NAMENODE = FAILS

Master file of block metadata lost,

extremely high potential for lost data

HDFS is *NOT* addressable 10

NAMENODE

• Stores the file metadata of every block

in HDFS

• This information is stored on the

LOCAL hard disk of the NAMENODE

SECONDARY NAMENODE

• Does the housekeeping for the

NAMENODE

• Is NOT a backup for the NAMENODE

• Will periodically retrieve the block

location list and build a new image for

the NAMENODE

Namenode & Secondary Namenode

11

Hadoop High Availability removes the Single Point of Failure

by offloading the block metadata from the local hard drive

onto 3 “JOURNAL NODES”

SPOF!

Single

Point

Of

Failure

Hadoop: High Availability

12

STANDBY

JOURNALNODES

Hadoop: High Availability

13

STANDBY

JOURNALNODES

Zookeeper

Failover Daemon
Zookeeper

Failover Daemon

ZOOKEEPER QUORUM

Hadoop: High Availability

14

HDFS is this easy*

15

Client File Write into HDFS

16

17

Rack Awareness

18

Hadoop Distributed File System (HDFS)

Original Slides by

Dhruba Borthakur

Apache Hadoop Project Management Committee

19

Goals of HDFS

• Very Large Distributed File System

– 10K nodes, 100 million files, 10PB

• Assumes Commodity Hardware

– Files are replicated to handle hardware failure

– Detect failures and recover from them

• Optimized for Batch Processing

– Data locations exposed so that computations can move to

where data resides

– Provides very high aggregate bandwidth

20

Distributed File System

• Single Namespace for entire cluster

• Data Coherency

– Write-once-read-many access model

– Client can only append to existing files

• Files are broken up into blocks

– Typically 64MB block size

– Each block replicated on multiple DataNodes

• Intelligent Client

– Client can find location of blocks

– Client accesses data directly from DataNode

21

HDFS Architecture

22

Functions of a NameNode

• Manages File System Namespace

– Maps a file name to a set of blocks

– Maps a block to the DataNodes where it resides

• Cluster Configuration Management

• Replication Engine for Blocks

23

NameNode Metadata

• Metadata in Memory

– The entire metadata is in main memory

– No demand paging of metadata

• Types of metadata

– List of files

– List of Blocks for each file

– List of DataNodes for each block

– File attributes, e.g. creation time, replication factor

• A Transaction Log

– Records file creations, file deletions etc

24

DataNode

• A Block Server

– Stores data in the local file system (e.g. ext3)

– Stores metadata of a block (e.g. CRC)

– Serves data and metadata to Clients

• Block Report

– Periodically sends a report of all existing blocks to the

NameNode

• Facilitates Pipelining of Data

– Forwards data to other specified DataNodes

25

Block Placement

• Current Strategy

– One replica on local node

– Second replica on a remote rack

– Third replica on same remote rack

– Additional replicas are randomly placed

• Clients read from nearest replicas

• Would like to make this policy pluggable

26

Heartbeats

• DataNodes send hearbeat to the NameNode

– Once every 3 seconds

• NameNode uses heartbeats to detect DataNode

failure

27

Replication Engine

• NameNode detects DataNode failures

– Chooses new DataNodes for new replicas

– Balances disk usage

– Balances communication traffic to DataNodes

28

Data Correctness

• Use Checksums to validate data

– Use CRC32

• File Creation

– Client computes checksum per 512 bytes

– DataNode stores the checksum

• File access

– Client retrieves the data and checksum from DataNode

– If Validation fails, Client tries other replicas

29

NameNode Failure

• A single point of failure

• Transaction Log stored in multiple directories

– A directory on the local file system

– A directory on a remote file system (NFS/CIFS)

• Need to develop a real HA solution

30

Data Pipelining

• Client retrieves a list of DataNodes on which to place

replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the next

node in the Pipeline

• When all replicas are written, the Client moves on to

write the next block in file

31

Rebalancer

• Goal: % disk full on DataNodes should be similar

– Usually run when new DataNodes are added

– Cluster is online when Rebalancer is active

– Rebalancer is throttled to avoid network congestion

– Command line tool

32

Secondary NameNode

• Copies FsImage and Transaction Log from

Namenode to a temporary directory

• Merges FSImage and Transaction Log into a new

FSImage in temporary directory

• Uploads new FSImage to the NameNode

– Transaction Log on NameNode is purged

33

User Interface

• Commads for HDFS User:

– hadoop dfs -mkdir /foodir

– hadoop dfs -cat /foodir/myfile.txt

– hadoop dfs -rm /foodir/myfile.txt

• Commands for HDFS Administrator

– hadoop dfsadmin -report

– hadoop dfsadmin -decommision datanodename

• Web Interface

– http://host:port/dfshealth.jsp

34

MapReduce

Original Slides by

Owen O’Malley (Yahoo!)

&
Christophe Bisciglia, Aaron Kimball & Sierra Michells-Slettvet

35

MapReduce - What?

• MapReduce is a programming model for efficient
distributed computing

• It works like a Unix pipeline
– cat input | grep | sort | uniq -c | cat > output

– Input | Map | Shuffle & Sort | Reduce | Output

• Efficiency from
– Streaming through data, reducing seeks

– Pipelining

• A good fit for a lot of applications
– Log processing

– Web index building

36

MapReduce - Dataflow

37

MapReduce - Features

• Fine grained Map and Reduce tasks
– Improved load balancing

– Faster recovery from failed tasks

• Automatic re-execution on failure
– In a large cluster, some nodes are always slow or flaky

– Framework re-executes failed tasks

• Locality optimizations
– With large data, bandwidth to data is a problem

– Map-Reduce + HDFS is a very effective solution

– Map-Reduce queries HDFS for locations of input data

– Map tasks are scheduled close to the inputs when possible

38

Word Count Example

• Mapper
– Input: value: lines of text of input

– Output: key: word, value: 1

• Reducer
– Input: key: word, value: set of counts

– Output: key: word, value: sum

• Launching program
– Defines this job

– Submits job to cluster

39

Word Count Dataflow

40

Word Count Mapper

public static class Map extends MapReduceBase implements
Mapper<LongWritable,Text,Text,IntWritable> {

 private static final IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public static void map(LongWritable key, Text value,
OutputCollector<Text,IntWritable> output, Reporter reporter) throws
IOException {

 String line = value.toString();

 StringTokenizer = new StringTokenizer(line);

 while(tokenizer.hasNext()) {

 word.set(tokenizer.nextToken());

 output.collect(word,one);

 }

 }

 }

41

Word Count Reducer

public static class Reduce extends MapReduceBase implements
Reducer<Text,IntWritable,Text,IntWritable> {

public static void map(Text key, Iterator<IntWritable> values,
OutputCollector<Text,IntWritable> output, Reporter reporter) throws
IOException {

 int sum = 0;

 while(values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

 }

42

Word Count Example

• Jobs are controlled by configuring JobConfs

• JobConfs are maps from attribute names to string values

• The framework defines attributes to control how the job is
executed
– conf.set(“mapred.job.name”, “MyApp”);

• Applications can add arbitrary values to the JobConf
– conf.set(“my.string”, “foo”);

– conf.set(“my.integer”, 12);

• JobConf is available to all tasks

Putting it all together

• Create a launching program for your application

• The launching program configures:
– The Mapper and Reducer to use

– The output key and value types (input types are inferred from the
InputFormat)

– The locations for your input and output

• The launching program then submits the job and typically
waits for it to complete

44

Putting it all together

JobConf conf = new JobConf(WordCount.class);

conf.setJobName(“wordcount”);

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setCombinerClass(Reduce.class);

conf.setReducer(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

Conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

45

Input and Output Formats

• A Map/Reduce may specify how it’s input is to be read
by specifying an InputFormat to be used

• A Map/Reduce may specify how it’s output is to be
written by specifying an OutputFormat to be used

• These default to TextInputFormat and
TextOutputFormat, which process line-based text data

• Another common choice is SequenceFileInputFormat
and SequenceFileOutputFormat for binary data

• These are file-based, but they are not required to be

How many Maps and Reduces

• Maps
– Usually as many as the number of HDFS blocks being

processed, this is the default

– Else the number of maps can be specified as a hint

– The number of maps can also be controlled by specifying the
minimum split size

– The actual sizes of the map inputs are computed by:

• max(min(block_size,data/#maps), min_split_size

• Reduces
– Unless the amount of data being processed is small

• 0.95*num_nodes*mapred.tasktracker.tasks.maximum

Finding the Shortest Path

• A common graph search
application is finding the
shortest path from a start node
to one or more target nodes

• Commonly done on a single
machine with Dijkstra’s
Algorithm

• Can we use BFS (breadth first
search) to find the shortest
path via MapReduce?

Finding the Shortest Path: Intuition

• We can define the solution to this problem inductively
– DistanceTo(startNode) = 0

– For all nodes n directly reachable from startNode, DistanceTo(n) =
1

– For all nodes n reachable from some other set of nodes S,

DistanceTo(n) = 1 + min(DistanceTo(m), m  S)

From Intuition to Algorithm

• A map task receives a node n as a key, and (D, points-
to) as its value
– D is the distance to the node from the start

– points-to is a list of nodes reachable from n

• p  points-to, emit (p, D+1)

• Reduces task gathers possible distances to a given p
and selects the minimum one

What This Gives Us

• This MapReduce task can advance the known frontier
by one hop

• To perform the whole BFS, a non-MapReduce
component then feeds the output of this step back into
the MapReduce task for another iteration
– Problem: Where’d the points-to list go?

– Solution: Mapper emits (n, points-to) as well

Blow-up and Termination

• This algorithm starts from one node

• Subsequent iterations include many more nodes of the
graph as the frontier advances

• Does this ever terminate?
– Yes! Eventually, routes between nodes will stop being

discovered and no better distances will be found. When
distance is the same, we stop

– Mapper should emit (n,D) to ensure that “current distance” is
carried into the reducer

Hadoop Related Subprojects

• Pig

– High-level language for data analysis

• HBase

– Table storage for semi-structured data

• Zookeeper

– Coordinating distributed applications

• Hive

– SQL-like Query language and Metastore

• Mahout

– Machine learning

Hadoop & HPC

54

Hadoop and HPC

• PROBLEM: domain scientists/researchers aren't using

Hadoop“

– Hadoop is commonly used in the data analytics

industry but not so common in domain science

academic areas.“

– Java is not always high-performance“

– Hurdles for domain scientists to learn Java, Hadoop

tools.

• SOLUTION: make Hadoop easier for HPC users“

– use existing HPC clusters and software"

– use Perl/Python/C/C++/Fortran instead of Java"

– make starting Hadoop as easy as possible

55

Compute: Traditional vs. Data-Intensive

• Traditional HPC
– CPU-bound problems

– Solution: OpenMP and

MPI-based parallelism

• Data-Intensive
– IO-bound problems

– Solution: Map/reduce

based parallelism

56

Architecture for Both Workloads

PROs

• High-speed

interconnect

• Complementary

object storage

• Fast CPUs, RAM

• Less faulty

57

CONs

• Nodes aren't

storage rich

• Transferring data

between HDFS

and object storage*

• unless using Lustre, S3, etc

backends

Hadoop & HPC

• Add Data Analysis to Existing Compute Infrastructure

58

Physical Compute

Hadoop & HPC

• Add Data Analysis to Existing Compute Infrastructure

59

Physical Compute

Resource Manager
(Torque, SLURM, SGE)

Hadoop & HPC

• Add Data Analysis to Existing Compute Infrastructure

60

Physical Compute

Resource Manager
(Torque, SLURM, SGE)

MPI Job myhadoop MPI Job myHadoop

Hadoop & HPC

• Add Data Analysis to Existing Compute Infrastructure

61

Physical Compute

Resource Manager
(Torque, SLURM, SGE)

MPI Job myhadoop MPI Job myHadoop

Hadoop 1.0
Mahout

Pig
Hbase

Hadoop 1.0
Mahout

Pig
Hbase

myHadoop: 3-step Install

1. Download Apache Hadoop 1.x and

myHadoop 0.30
– $ wget

http://apache.cs.utah.edu/hadoop/common/hadoop-

1.2.1/hadoop-1.2.1-bin.tar.gz

– $ wget

http://users.sdsc.edu/~glockwood/files/myhadoop-

0.30.tar.gz

2. Unpack both Hadoop and myHadoop!
– $ tar zxvf hadoop-1.2.1-bin.tar.gz

– $ tar zxvf myhadoop-0.30.tar.gz

3. Apply myHadoop patch to Hadoop!
– $ cd hadoop-1.2.1/conf

– $ patch < ../myhadoop-0.30/myhadoop-1.2.1.patch

62

myHadoop: 3-step Install

1. Set a few environment variables
sets HADOOP_HOME, JAVA_HOME, and PATH

$ module load hadoop

$ export HADOOP_CONF_DIR=$HOME/mycluster.conf

2. Run myhadoop-configure.sh to set up

Hadoop
$ myhadoop-configure.sh -s

/scratch/$USER/$PBS_JOBID!

3. Start cluster with Hadoop's start-all.sh
$ start-all.sh!

63

Advanced Features - Useability!

64

• System-wide default configurations
– myhadoop-0.30/conf/myhadoop.conf

– MH_SCRATCH_DIR – specify location of node-local storage for all

users"

– MH_IPOIB_TRANSFORM – specify regex to transform node

hostnames into IP over InfiniBand hostnames"

• Users can remain totally ignorant of scratch

disks and InfiniBand

• Literally define HADOOP_CONF_DIR and run

myhadoop-configure.sh with no

parameters – myHadoop figures out

everything else

Advanced Features - Useability!

65

• Parallel filesystem support!

– HDFS on Lustre via myHadoop persistent mode (-p)"

– Direct Lustre support (IDH)"

– No performance loss at smaller scales for HDFS on

Lustre"

• Resource managers supported in unified

framework:

– Torque 2.x and 4.x – Tested on SDSC Gordon"

– SLURM 2.6 – Tested on TACC Stampede"

– Grid Engine"

– Can support LSF, PBSpro, Condor easily (need

testbeds)

Scientific Computing - BioPIG

66

• Hadoop based analytic toolkit for large-scale

sequence data

• Built using Apache Hadoop MapReduce and Pig

Data Flow language.

• Benefits – reduced development time for parallel

bioinformatics apps, good scaling with data size,

portability.

• Run on systems at NERSC (Magellan), Amazon

• https://sites.google.com/a/lbl.gov/biopig/

67

Questions?

