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Hadoop - Why ? 

• Need to process huge datasets on large clusters of 

computers 

• Very expensive to build reliability into each 

application 

• Nodes fail every day 

– Failure is expected, rather than exceptional 

– The number of nodes in a cluster is not constant 

• Need a common infrastructure 

– Efficient, reliable, easy to use 

– Open Source, Apache Licence 



Who uses Hadoop? 

• Amazon/A9 

• Facebook 

• Google 

• New York Times 

• Veoh 

• Yahoo! 

• …. many more 



Hadoop Infrastructure 

Original Slides by 

Ekpe Okorafor, TJ Glazier, Justin Lowe 

Big Data Academy, Digital Analytics, Accenture 



Hadoop Infrastructure Overview 

Master Server Daemons 

Namenode 

Secondary Namenode 

Jobtracker 

Slave Server Daemons 

Datanode 

Tasktracker 

Clients 
Makes the requests to the hadoop 

cluster to store or retrieve files . 

Sends the job requests to process the 

data stored in the cluster 

Masters control the operations that take 

place in the cluster 

• Namenode tracks all of the block 

locations of data in the cluster 

• Secondary Namenode does all of the 

housekeeping for the namenode 

• Jobtrack tracks the mapreduce jobs 

submitted to the cluster 

Slaves process and store the data 

• Datanodes are tasked with holding all 

of the data blocks in hadoop, data is 

stored nowhere else 

• Tasktrackers run the jobs on the 

cluster and report back to the 

Jobtracker 6 



CLIENTS 

NAMENODE 

SECONDARY NAMENODE 

JOBTRACKER 

DATANODES/TASKTRACKERS 

Tracks all files in HDFS 

Responsible for data replication 

Handles Datanode failures 

Runs all jobs on the cluster 

Handles tasktracker failures 

Job Queue management 

Holds the HDFS file system & process all jobs on behalf of the client 

Submits jobs to the cluster, 

can also store & retrieve 

data 

7 



CLIENTS 

NAMENODE 

SECONDARY NAMENODE 

JOBTRACKER 

DATANODES/TASKTRACKERS 

JOBTRACKER = FAILS 

Unable to run jobs until the 

jobtracker is restored or 

replaced 

HDFS is still in-tact! 8 



CLIENTS 

NAMENODE 

SECONDARY NAMENODE 

JOBTRACKER 

DATANODES/TASKTRACKERS 

SECONDARY NAMENODE = FAILS 

HDFS is addressable however catastrophic failure is 

imminent as the NAMENODE housekeeping server is down 

HDFS is still in-tact! 9 



CLIENTS 

NAMENODE 

SECONDARY NAMENODE 

JOBTRACKER 

DATANODES/TASKTRACKERS 

NAMENODE = FAILS 

Master file of block metadata lost, 

extremely high potential for lost data 

HDFS is *NOT* addressable 10 



NAMENODE 

• Stores the file metadata of every block 

in HDFS 

• This information is stored on the 

LOCAL hard disk of the NAMENODE 

SECONDARY NAMENODE 

• Does the housekeeping for the 

NAMENODE 

• Is NOT a backup for the NAMENODE 

• Will periodically retrieve the block 

location list and build a new image for 

the NAMENODE 

Namenode & Secondary Namenode 
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Hadoop High Availability removes the Single Point of Failure 

by offloading the block metadata from the local hard drive 

onto 3 “JOURNAL NODES” 

SPOF! 

Single 

Point 

Of 

Failure 

Hadoop: High Availability 
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STANDBY 

JOURNALNODES 

Hadoop: High Availability 
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STANDBY 

JOURNALNODES 

Zookeeper 

Failover Daemon 
Zookeeper 

Failover Daemon 

ZOOKEEPER QUORUM 

Hadoop: High Availability 
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HDFS is this easy* 
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Client File Write into HDFS 
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Rack Awareness 
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Hadoop Distributed File System (HDFS) 

Original Slides by 

Dhruba Borthakur 

Apache Hadoop Project Management Committee 
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Goals of HDFS 

• Very Large Distributed File System 

– 10K nodes, 100 million files, 10PB 

• Assumes Commodity Hardware 

– Files are replicated to handle hardware failure 

– Detect failures and recover from them 

• Optimized for Batch Processing 

– Data locations exposed so that computations can move to 

where data resides 

– Provides very high aggregate bandwidth 
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Distributed File System 

• Single Namespace for entire cluster 

• Data Coherency 

– Write-once-read-many access model 

– Client can only append to existing files 

• Files are broken up into blocks 

– Typically 64MB block size 

– Each block replicated on multiple DataNodes 

• Intelligent Client 

– Client can find location of blocks 

– Client accesses data directly from DataNode 
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HDFS Architecture 
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Functions of a NameNode 

• Manages File System Namespace 

– Maps a file name to a set of blocks 

– Maps a block to the DataNodes where it resides 

• Cluster Configuration Management 

• Replication Engine for Blocks 
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NameNode Metadata 

• Metadata in Memory 

– The entire metadata is in main memory 

– No demand paging of metadata 

• Types of metadata 

– List of files 

– List of Blocks for each file 

– List of DataNodes for each block 

– File attributes, e.g. creation time, replication factor 

• A Transaction Log 

– Records file creations, file deletions etc 
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DataNode 

• A Block Server 

– Stores data in the local file system (e.g. ext3) 

– Stores metadata of a block (e.g. CRC) 

– Serves data and metadata to Clients 

• Block Report 

– Periodically sends a report of all existing blocks to the 

NameNode 

• Facilitates Pipelining of Data 

– Forwards data to other specified DataNodes 
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Block Placement 

• Current Strategy 

– One replica on local node 

– Second replica on a remote rack 

– Third replica on same remote rack 

– Additional replicas are randomly placed 

• Clients read from nearest replicas 

• Would like to make this policy pluggable 
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Heartbeats 

• DataNodes send hearbeat to the NameNode 

– Once every 3 seconds 

• NameNode uses heartbeats to detect DataNode 

failure 
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Replication Engine 

• NameNode detects DataNode failures 

– Chooses new DataNodes for new replicas 

– Balances disk usage 

– Balances communication traffic to DataNodes 
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Data Correctness 

• Use Checksums to validate data 

– Use CRC32 

• File Creation 

– Client computes checksum per 512 bytes 

– DataNode stores the checksum 

• File access 

– Client retrieves the data and checksum from DataNode 

– If Validation fails, Client tries other replicas 
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NameNode Failure 

• A single point of failure 

• Transaction Log stored in multiple directories 

– A directory on the local file system 

– A directory on a remote file system (NFS/CIFS) 

• Need to develop a real HA solution 
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Data Pipelining 

• Client retrieves a list of DataNodes on which to place 

replicas of a block 

• Client writes block to the first DataNode 

• The first DataNode forwards the data to the next 

node in the Pipeline 

• When all replicas are written, the Client moves on to 

write the next block in file 

31 



Rebalancer 

• Goal: % disk full on DataNodes should be similar 

– Usually run when new DataNodes are added 

– Cluster is online when Rebalancer is active 

– Rebalancer is throttled to avoid network congestion 

– Command line tool 
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Secondary NameNode 

• Copies FsImage and Transaction Log from 

Namenode to a temporary directory 

• Merges FSImage and Transaction Log into a new 

FSImage in temporary directory 

• Uploads new FSImage to the NameNode 

– Transaction Log on NameNode is purged 
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User Interface 

• Commads for HDFS User: 

– hadoop dfs -mkdir /foodir 

– hadoop dfs -cat /foodir/myfile.txt 

– hadoop dfs -rm /foodir/myfile.txt 

• Commands for HDFS Administrator 

– hadoop dfsadmin -report 

– hadoop dfsadmin -decommision datanodename 

• Web Interface 

– http://host:port/dfshealth.jsp 
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MapReduce 

Original Slides by 

Owen O’Malley (Yahoo!) 

& 
Christophe Bisciglia, Aaron Kimball & Sierra Michells-Slettvet 
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MapReduce - What? 

• MapReduce is a programming model for efficient 
distributed computing 

• It works like a Unix pipeline 
– cat input | grep |         sort        |   uniq -c  |  cat > output 

–   Input   | Map | Shuffle & Sort | Reduce  | Output 

• Efficiency from 
– Streaming through data, reducing seeks 

– Pipelining 

• A good fit for a lot of applications 
– Log processing 

– Web index building 
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MapReduce - Dataflow 

37 



MapReduce - Features 

• Fine grained Map and Reduce tasks 
– Improved load balancing 

– Faster recovery from failed tasks 

• Automatic re-execution on failure 
– In a large cluster, some nodes are always slow or flaky 

– Framework re-executes failed tasks 

• Locality optimizations 
– With large data, bandwidth to data is a problem 

– Map-Reduce + HDFS is a very effective solution 

– Map-Reduce queries HDFS for locations of input data 

– Map tasks are scheduled close to the inputs when possible 
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Word Count Example 

• Mapper 
– Input: value: lines of text of input 

– Output: key: word, value: 1 

• Reducer 
– Input: key: word, value: set of counts 

– Output: key: word, value: sum 

• Launching program 
– Defines this job 

– Submits job to cluster 
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Word Count Dataflow 

40 



Word Count Mapper 

public static class Map extends MapReduceBase implements 
Mapper<LongWritable,Text,Text,IntWritable> { 

   private static final IntWritable one = new IntWritable(1); 

   private Text word  = new Text(); 

 

   public static void map(LongWritable key, Text value, 
OutputCollector<Text,IntWritable> output, Reporter reporter) throws 
IOException { 

      String line = value.toString(); 

      StringTokenizer = new StringTokenizer(line); 

      while(tokenizer.hasNext()) { 

         word.set(tokenizer.nextToken()); 

         output.collect(word,one); 

         } 

      } 

  } 
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Word Count Reducer 

public static class Reduce extends MapReduceBase implements 
Reducer<Text,IntWritable,Text,IntWritable> { 

public static void map(Text key, Iterator<IntWritable> values, 
OutputCollector<Text,IntWritable> output, Reporter reporter) throws 
IOException { 

         int sum = 0; 

         while(values.hasNext()) { 

            sum += values.next().get(); 

         }          

         output.collect(key, new IntWritable(sum)); 

      } 

  } 
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Word Count Example 

• Jobs are controlled by configuring JobConfs 

• JobConfs are maps from attribute names to string values 

• The framework defines attributes to control how the job is 
executed 
– conf.set(“mapred.job.name”, “MyApp”); 

• Applications can add arbitrary values to the JobConf 
– conf.set(“my.string”, “foo”); 

– conf.set(“my.integer”, 12); 

• JobConf is available to all tasks 



Putting it all together 

• Create a launching program for your application 

• The launching program configures: 
– The Mapper and Reducer to use 

– The output key and value types (input types are inferred from the 
InputFormat) 

– The locations for your input and output 

• The launching program then submits the job and typically 
waits for it to complete 
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Putting it all together 

JobConf conf = new JobConf(WordCount.class); 

conf.setJobName(“wordcount”); 

 

conf.setOutputKeyClass(Text.class); 

conf.setOutputValueClass(IntWritable.class); 

 

conf.setMapperClass(Map.class); 

conf.setCombinerClass(Reduce.class); 

conf.setReducer(Reduce.class); 

 

conf.setInputFormat(TextInputFormat.class); 

Conf.setOutputFormat(TextOutputFormat.class); 

 

FileInputFormat.setInputPaths(conf, new Path(args[0])); 

FileOutputFormat.setOutputPath(conf, new Path(args[1])); 

 

JobClient.runJob(conf); 
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Input and Output Formats 

• A Map/Reduce may specify how it’s input is to be read 
by specifying an InputFormat to be used 

• A Map/Reduce may specify how it’s output is to be 
written by specifying an OutputFormat to be used 

• These default to TextInputFormat and 
TextOutputFormat, which process line-based text data 

• Another common choice is SequenceFileInputFormat 
and SequenceFileOutputFormat for binary data 

• These are file-based, but they are not required to be 



How many Maps and Reduces 

• Maps 
– Usually as many as the number of HDFS blocks being 

processed, this is the default 

– Else the number of maps can be specified as a hint 

– The number of maps can also be controlled by specifying the 
minimum split size 

– The actual sizes of the map inputs are computed by: 

• max(min(block_size,data/#maps), min_split_size 

• Reduces 
– Unless the amount of data being processed is small 

• 0.95*num_nodes*mapred.tasktracker.tasks.maximum 



Finding the Shortest Path 

• A common graph search 
application is finding the 
shortest path from a start node 
to one or more target nodes 

• Commonly done on a single 
machine with Dijkstra’s 
Algorithm 

• Can we use BFS (breadth first 
search) to find the shortest 
path via MapReduce? 



Finding the Shortest Path: Intuition 

• We can define the solution to this problem inductively 
– DistanceTo(startNode) = 0 

– For all nodes n directly reachable from startNode, DistanceTo(n) = 
1 

– For all nodes n reachable from some other set of nodes S, 

DistanceTo(n) = 1 + min(DistanceTo(m), m  S) 



From Intuition to Algorithm 

• A map task receives a node n as a key, and (D, points-
to) as its value 
– D is the distance to the node from the start 

– points-to is a list of nodes reachable from n 

• p  points-to, emit (p, D+1) 

• Reduces task gathers possible distances to a given p 
and selects the minimum one 



What This Gives Us 

• This MapReduce task can advance the known frontier 
by one hop 

• To perform the whole BFS, a non-MapReduce 
component then feeds the output of this step back into 
the MapReduce task for another iteration 
– Problem: Where’d the points-to list go? 

– Solution: Mapper emits (n, points-to) as well 



Blow-up and Termination 

• This algorithm starts from one node 

• Subsequent iterations include many more nodes of the 
graph as the frontier advances 

• Does this ever terminate? 
– Yes! Eventually, routes between nodes will stop being 

discovered and no better distances will be found. When 
distance is the same, we stop 

– Mapper should emit (n,D) to ensure that “current distance” is 
carried into the reducer 



Hadoop Related Subprojects 

• Pig 

– High-level language for data analysis 

• HBase 

– Table storage for semi-structured data 

• Zookeeper 

– Coordinating distributed applications 

• Hive 

– SQL-like Query language and Metastore 

• Mahout 

– Machine learning 



Hadoop & HPC 
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Hadoop and HPC 

• PROBLEM: domain scientists/researchers aren't using 

Hadoop“ 

– Hadoop is commonly used in the data analytics 

industry but not so common in domain science 

academic areas.“ 

– Java is not always high-performance“ 

– Hurdles for domain scientists to learn Java, Hadoop 

tools. 

• SOLUTION: make Hadoop easier for HPC users“  

– use existing HPC clusters and software" 

– use Perl/Python/C/C++/Fortran instead of Java" 

– make starting Hadoop as easy as possible 
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Compute: Traditional vs. Data-Intensive 

• Traditional HPC 
– CPU-bound problems 

– Solution: OpenMP and 

MPI-based parallelism 

 

 

• Data-Intensive 
– IO-bound problems 

– Solution: Map/reduce 

based parallelism 
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Architecture for Both Workloads 

PROs 

• High-speed 

interconnect 

• Complementary 

object storage 

• Fast CPUs, RAM 

• Less faulty 
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CONs 

• Nodes aren't 

storage rich 

• Transferring data 

between HDFS 

and object storage* 
 

• unless using Lustre, S3, etc 

backends 

 



Hadoop & HPC 

• Add Data Analysis to Existing Compute Infrastructure 

58 

Physical Compute 



Hadoop & HPC 

• Add Data Analysis to Existing Compute Infrastructure 
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Physical Compute 

Resource Manager 
(Torque, SLURM, SGE) 



Hadoop & HPC 

• Add Data Analysis to Existing Compute Infrastructure 
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Physical Compute 

Resource Manager 
(Torque, SLURM, SGE) 

MPI Job myhadoop MPI Job myHadoop 



Hadoop & HPC 

• Add Data Analysis to Existing Compute Infrastructure 
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Physical Compute 

Resource Manager 
(Torque, SLURM, SGE) 

MPI Job myhadoop MPI Job myHadoop 

Hadoop 1.0 
Mahout 

Pig 
Hbase 

Hadoop 1.0 
Mahout 

Pig 
Hbase 



myHadoop: 3-step Install 

1. Download Apache Hadoop 1.x and 

myHadoop 0.30 
– $ wget 

http://apache.cs.utah.edu/hadoop/common/hadoop-

1.2.1/hadoop-1.2.1-bin.tar.gz 

– $ wget 

http://users.sdsc.edu/~glockwood/files/myhadoop-

0.30.tar.gz 

2. Unpack both Hadoop and myHadoop! 
– $ tar zxvf hadoop-1.2.1-bin.tar.gz 

– $ tar zxvf myhadoop-0.30.tar.gz 

3. Apply myHadoop patch to Hadoop! 
– $ cd hadoop-1.2.1/conf 

– $ patch < ../myhadoop-0.30/myhadoop-1.2.1.patch 
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myHadoop: 3-step Install 

1. Set a few environment variables 
# sets HADOOP_HOME, JAVA_HOME, and PATH 

$ module load hadoop 

$ export HADOOP_CONF_DIR=$HOME/mycluster.conf 

2. Run myhadoop-configure.sh to set up 

Hadoop 
$ myhadoop-configure.sh -s 

/scratch/$USER/$PBS_JOBID! 

3. Start cluster with Hadoop's start-all.sh 
$ start-all.sh! 
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Advanced Features - Useability! 

64 

• System-wide default configurations 
– myhadoop-0.30/conf/myhadoop.conf 

– MH_SCRATCH_DIR – specify location of node-local storage for all 

users" 

– MH_IPOIB_TRANSFORM – specify regex to transform node 

hostnames into IP over InfiniBand hostnames" 

• Users can remain totally ignorant of scratch 

disks and InfiniBand 

• Literally define HADOOP_CONF_DIR and run 

myhadoop-configure.sh with no 

parameters – myHadoop figures out 

everything else 



Advanced Features - Useability! 
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• Parallel filesystem support! 

– HDFS on Lustre via myHadoop persistent mode (-p)" 

– Direct Lustre support (IDH)" 

– No performance loss at smaller scales for HDFS on 

Lustre" 

• Resource managers supported in unified 

framework: 

– Torque 2.x and 4.x – Tested on SDSC Gordon" 

– SLURM 2.6 – Tested on TACC Stampede" 

– Grid Engine" 

– Can support LSF, PBSpro, Condor easily (need 

testbeds) 



Scientific Computing - BioPIG 
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• Hadoop based analytic toolkit for large-scale 

sequence data 

• Built using Apache Hadoop MapReduce and Pig 

Data Flow language. 

• Benefits – reduced development time for parallel 

bioinformatics apps, good scaling with data size, 

portability. 

• Run on systems at NERSC (Magellan), Amazon 

• https://sites.google.com/a/lbl.gov/biopig/ 
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Questions? 


