
Introduction to MPI

Ekpe Okorafor
School of Parallel Programming & Parallel Architecture for HPC

ICTP

October, 2014

2

Topics

• Introduction

• MPI Model and Basic Calls

• MPI Communication

• Summary

3

Topics

• Introduction

• MPI-1.x Model and Basic Calls

• MPI Communication

• Summary

Parallel Programming Models

4

Single Program Multiple Data

5

Shared Memory Programming:

OpenMP

6

Distributed Memory Programming:

MPI

7

Opening Remarks

• Context: distributed memory parallel computers

• We have communicating sequential processes, each

with their own memory, and no access to another

process’s memory

– A fairly common scenario from the mid 1980s (Intel

Hypercube) to today

– Processes interact (exchange data, synchronize) through

message passing

– Initially, each computer vendor had its own library and calls

– First standardization was PVM

• Started in 1989, first public release in 1991

• Worked well on distributed machines

• A library, not an API

– Next was MPI

Message Passing Interface (MPI)

• What is it?

– An open standard library interface for message passing,

ratified by the MPI Forum

– Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)

– Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)

– Version: 3.0 (2012)

• MPI Implementations

– OpenMPI (www.open-mpi.org)

• OpenMPI 1.4.x, 1.6.x

– MPICH2 (www.mpich.org)

• MPICH2, MVAPICH2, IntelMPI

http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.mpich.org/

Message Passing Interface (MPI)

• MPI is a Library for Message-Passing

– Not built in to compiler

– Function calls that can be made from any compiler, many

languages

– Just link to it

– Wrappers: mpicc, mpif77

• MPI is a Library for Message-Passing

– Communication/coordination between tasks done by sending

and receiving messages.

– Each message involves a function call from each of the

programs.

– Three basic sets of functionality

• Pairwise or point-to-point communication via messages

• Collective operations via messages

• Efficient routines for getting data from memory into messages and vice

versa

Size of MPI Library

• Many, many functions (>200)

• Not nearly so many concepts

• You will probably use 10 – 12 for now, use more as

needed.

• Below are the most frequently used

MPI_Init ()

MPI_Comm_size()

MPI_Comm_rank()

MPI_Send()

MPI_Recv()

MPI_Finalize()

12

Topics

• Introduction

• MPI Model and Basic Calls

• MPI Communication

• Summary

MPI : Basics

• Every MPI program must contain the preprocessor directive

• The mpi.h file contains the definitions and declarations necessary for

compiling an MPI program.

• mpi.h is usually found in the “include” directory of most MPI

installations.

13

#include <mpi.h>

...

#include <mpi.h>
...

MPI_Init(&Argc,&Argv);

...

...

MPI_Finalize();

...

14

MPI: Initializing MPI Environment

Function: MPI_init()

int MPI_Init(int *argc, char **argv)

Description:
Initializes the MPI execution environment. MPI_init() must be called before any other
MPI functions can be called and it should be called only once. It allows systems to
do any special setup so that MPI Library can be used. argc is a pointer to the
number of arguments and argv is a pointer to the argument vector. On exit from this
routine, all processes will have a copy of the argument list.

...

#include “mpi.h”

...

MPI_Init(&argc,&argv);
...

...

MPI_Finalize();

...

http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Init.html

15

MPI: Terminating MPI Environment

Function: MPI_Finalize()

int MPI_Finalize()

Description:
Terminates MPI execution environment. All MPI processes must call this routine
before exiting. MPI_Finalize() need not be the last executable statement or even in
main; it must be called at some point following the last call to any other MPI
function.

...

#include ”mpi.h”

...

MPI_Init(&argc,&argv);

...

...

MPI_Finalize();
...

http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Finalize.html

MPI Hello World

• C source file for a simple MPI Hello World

16

#include <iostream>

#include <mpi.h>

int main(int argc, char **argv)

{

 int err;

 err = MPI_Init(&argc,&argv);

 std::cout << "Hello World!\n";

 err = MPI_Finalize();

 return 0;

}

Include header files

Initialize MPI Context

Finalize MPI Context

Building an MPI Executable

• Not specified in the standard

– Two normal options, dependent on implementation

– Library version

 g++ -Iheaderdir -Llibdir mpicode.cc -lmpich

• User knows where header file and library are, and tells compiler

– Wrapper version

 mpi++ -o executable mpicode.cc

• Does the same thing, but hides the details from the user

– You can do either one, but don't try to do both!

Building an MPI Executable

Mpic++ -o hello hello.cc

g++ -m64 -O2 -fPIC -Wl,-z,noexecstack -o hello
hello.cc -I/usr/include/mpich2-x86_64
-L/usr/lib64/mpich2/lib -L/usr/lib64/mpich2/lib
-Wl,-rpath,/usr/lib64/mpich2/lib -lmpich -lopa
-lpthread -lrt

OR

• Library version

• Wrapper version

Running an MPI Executable

• What mpirun does

– Launches n processes, assigns each an MPI rank

and starts the program

– For multinode run, has a list of nodes, ssh’s to each

node and launches the program

hello

hello

hello

hello

ssh node 2

Running an MPI Executable

• Number of processes

– Number of processes to use is always equal to the

number of processors

– But not necessarily

– On your nodes what happens when you run this?

$ mpirun –p 24 hello

MPI Communicators

• Communicator is an internal object

– MPI provides functions to interact with it

• Default communicator is MPI_COMM_WORLD

– All processes are member of it

– It has a size (the number of processes)

– Each process has a rank within it

– Can think of it as an ordered list of processes

• Additional communicator can co-exist

• A process can belong to more than one

communicator

• Within a communicator, each process has a unique

rank

A Sample MPI program (Fortran)

...

INCLUDE mpif.h

...

CALL MPI_INITIALIZE(IERR)

...

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, SIZE, IERR)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, RANK, IERR)

...

CALL MPI_FINALIZE(IERR)

...

A Sample MPI program (C)

...

#include <mpi.h>

...

err = MPI_Init(&Argc,&Argv);

...

err = MPI_Comm_size(MPI_COMM_WORLD, &size);

err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

err = MPI_Finalize();

...

A Sample MPI program (C)

...

#include <mpi.h>

...

err = MPI_Init(&Argc,&Argv);

...

err = MPI_Comm_size(MPI_COMM_WORLD, &size);

err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

err = MPI_Finalize();

...

• Mandatory in any MPI code

• Defines MPI-related parameters

A Sample MPI program (C)

...

#include <mpi.h>

...

err = MPI_Init(&Argc,&Argv);

...

err = MPI_Comm_size(MPI_COMM_WORLD, &size);

err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

err = MPI_Finalize();

...

• Must be called in any MPI code by

all processes once and only once

before any other MPI calls

A Sample MPI program (C)

...

#include <mpi.h>

...

err = MPI_Init(&Argc,&Argv);

...

err = MPI_Comm_size(MPI_COMM_WORLD, &size);

err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

err = MPI_Finalize();

...

• Must be called in any MPI code by

all processes once and only once

after all other MPI calls

A Sample MPI program (C)

...

#include <mpi.h>

...

err = MPI_Init(&Argc,&Argv);

...

err = MPI_Comm_size(MPI_COMM_WORLD, &size);

err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

err = MPI_Finalize();

...

• Returns the number of processes

(size) in the communicator

(MPI_COMM_WORLD)

A Sample MPI program (C)

...

#include <mpi.h>

...

err = MPI_Init(&Argc,&Argv);

...

err = MPI_Comm_size(MPI_COMM_WORLD, &size);

err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

err = MPI_Finalize();

...

• Returns the rank of this process

(rank) in the communicator

(MPI_COMM_WORLD)

• Has unique return value per process

A Complete MPI Example
#include <iostream>

#include <mpi.h>

int main(int argc, char **argv)

{

 int err, size, rank;

 err = MPI_Init(&argc, &argv); /* Initialize MPI */

 if (err != MPI_SUCCESS) {

 std::cout<<"MPI initialization failed!\n";

 return(1);

 }

 err = MPI_Comm_size(MPI_COMM_WORLD, &size);

 err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank == 0) { /* root process */

 std::cout<<"I am the root\n";

 } else {

 std::cout<<"I am not the root\n";

 }

 std::cout<<"My rank is”<<rank<<“of”<<size

 <<“\n”;

 err = MPI_Finalize();

 return(0);

}

Output (with 3 processes):

I am not the root

My rank is 2 of 3

I am the root

My rank is 0 of 3

I am not the root

My rank is 1 of 3

30

Topics

• Introduction

• MPI Model and Basic Calls

• MPI Communication

• Summary

Point-to-point Communication

• How two processes interact

• Most flexible communication in MPI

• Two basic functions

– Send and receive

• With these two functions, and the four

functions we already know, you can do

everything in MPI

– But there's probably a better way to do a lot

things, using other functions

MPI: Send & Receive

err = MPI_Send(sendptr, count, MPI_TYPE,

destination,tag, Communicator)

err = MPI_Recv(rcvptr, count, MPI_TYPE,

source, tag,Communicator, MPI_status)

• sendptr/rcvptr: pointer to message

• count: number of elements in ptr

• MPI TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT,

MPI_CHAR, etc.

• destination/source: rank of sender/reciever

• tag: unique id for message pair

• Communicator: MPI COMM WORLD or user created

• status: receiver status (error, source, tag)

Collective Communication

• How a group of processes interact

– “group” here means processes in a communicator

– A group can be as small as one or two processes

• One process communicating with itself isn't interesting

• Two processes communicating are probably better

handled through point-to-point communication

• Most efficient communication in MPI

• All collective communication is blocking

Collective Communication Types

• Three types of collective communication

– Synchronization

• Example: barrier

– Data movement

• Examples: broadcast, gather

– Reduction (computation)

• Example: reduce

• All of these could also be done with point-to-

point communications

– Collective operations give better performance and

better productivity

Collective Operations

36

Topics

• Introduction

• MPI Model and Basic Calls

• MPI Communication

• Summary

Summary

• Basic MPI Components

– #include <mpi.h> : MPI library details

– MPI Init(&argc, &argv); : MPI Initialization, must come first

– MPI Finalize(): Finalizes MPI, must come last

– err : Returns error code

• Communicator Components

– MPI_COMM_WORLD : Global Communicator

– MPI_Comm_rank(MPI_COMM_WORLD, &rank): Get current tasks

rank

– MPI_Comm_size(MPI_COMM_WORLD, &size): Get

communicator size

• MPI Communication

– Point-to-point: (Send & Receive)

– Collective: (Synchronization, Data movement & Reduction)

