Introduction to MPI

Ekpe Okorafor

School of Parallel Programming & Parallel Architecture for HPC

ICTP
October, 2014

Topics

Introduction

MPI| Model and Basic Calls
MPI Communication
Summary

Topics

Introduction

Parallel Programming Models

* Data Parallelism

— Each processor performs the same task on
different data

* Task Parallelism

— Each processor performs a different task on the
same data

* Most applications fall between these two

Single Program Multiple Data

* SPMD: dominant programming model for shared and
distributed memory machines.

— One source code is written

— Code can have conditional execution based on which processor is
executing the copy

— All copies of code start simultaneously and communicate and sync
with each other periodically

* MPMD: more general, and possible in hardware, but no
system/programming software enables it

Shared Memory Programming:
OpenMP

* Shared memory systems (SMPs, cc-NUMAs) have a single
address space:

— applications can be developed in which loop iterations (with no
dependencies) are executed by different processors

— shared memory codes are mostly data parallel, ‘SPMD’ kinds of
codes

— OpenMP is the standard for shared memory programming
(compiler directives)

— Vendors offer native compiler directives

Distributed Memory Programming:
MPI

* Distributed memory systems have separate address spaces
for each processor

— Local memory accessed faster than remote memory

— Data must be manually decomposed

— MPI is the standard for distributed memory programming
(library of subprogram calls)

— Older message passing libraries include PVM and P4; all vendors
have native libraries such as SHMEM (T3E) and LAPI (IBM)

Opening Remarks

Context: distributed memory parallel computers

We have communicating seguential processes, each
with their own memory, and no access to another
process’s memory

— A fairly common scenario from the mid 1980s (Intel
Hypercube) to today

— Processes interact (exchange data, synchronize) through
message passing
— Initially, each computer vendor had its own library and calls
— First standardization was PVM
« Started in 1989, first public release in 1991
» Worked well on distributed machines
* Alibrary, not an API

— Next was MPI

Message Passing Interface (MPI)

What is it?
— An open standard library interface for message passing,
ratified by the MPI Forum
— Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)
— Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)
— Version: 3.0 (2012)

MPI Implementations
— OpenMPI (www.open-mpi.org)
« OpenMPI 1.4.x, 1.6.X

— MPICH2 (www.mpich.orqg)
« MPICH2, MVAPICH2, InteIMP]

http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.mpich.org/

Message Passing Interface (MPI)

 MPIis a Library for Message-Passing
— Not built in to compiler
— Function calls that can be made from any compiler, many
languages
— Justlink to it
— Wrappers: mpicc, mpif77
» MPIlis a Library for Message-Passing

— Communication/coordination between tasks done by sending
and receiving messages.

— Each message involves a function call from each of the
programs.

— Three basic sets of functionality
« Pairwise or point-to-point communication via messages
» Collective operations via messages

« Efficient routines for getting data from memory into messages and vice
versa

Size of MPI Library

Many, many functions (>200)
Not nearly so many concepts

You will probably use 10 — 12 for now, use more as
needed.

Below are the most frequently used

MPI Init ()
MPI Comm size ()
MPI Comm rank ()
MPI Send()
MPI Recv ()
MPI Finalize ()

Topics

MPI| Model and Basic Calls

12

MPI : Basics

Every MPI program must contain the preprocessor directive

#finclude <mpi.h>

The mpi.h file contains the definitions and declarations necessary for
compiling an MPI program.

mpi.h is usually found in the “include” directory of most MPI
installations.

#include <mp1i.h>

MPI Init (&Argc, &Argv) ;

MPI Finalize();

MPI: Initializing MPI| Environment

Function: MPI_init()

int MP1_Init(int *argc, char **argv)

Description:

Initializes the MPI execution environment. MPI_init() must be called before any other
MPI functions can be called and it should be called only once. It allows systems to
do any special setup so that MPI Library can be used. argc is a pointer to the
number of arguments and argv is a pointer to the argument vector. On exit from this
routine, all processes will have a copy of the argument list.

#include “mpi.h”

MPI Init(&argc, &argv) ;

MPI Finalize();

http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Init.html

MPI. Terminating MPI| Environment

Function: MPI_Finalize()

int MPI_Finalize()

Description:

Terminates MPI execution environment. All MPI processes must call this routine
before exiting. MPI_Finalize() need not be the last executable statement or even in
main; it must be called at some point following the last call to any other MPI
function.

#include "mpi.h”

MPI Init (&argc, &argv) ;

MPI Finalize();

http://www-unix.mcs.anl.gov/mpi/www/www3/MPI_Finalize.html

MPI Hello World

» C source file for a simple MPI Hello World

#include <iostream>
#include <mpi .h> Include header files
int main(int argc, char **argv)

{

Initialize MPI Context

int err;
err = MPI Init(&argc, &argv);
std: :cout << "Hello World'\n";
err = MPI Finalize();

return 0;

Finalize MPI Context

16

Building an MPI Executable

* Not specified in the standard
— Two normal options, dependent on implementation

— Library version
g++ -lheaderdir -Llibdir mpicode.cc -Impich
» User knows where header file and library are, and tells compiler

— Wrapper version
mpi++ -0 executable mpicode.cc
» Does the same thing, but hides the details from the user

— You can do either one, but don't try to do both!

Building an MPI Executable

* Library version

OR

* Wrapper version

g++ -m64 -02 -fPIC -W1,-z,noexecstack -o hello
hello.cc -I/usr/include/mpich2-x86 64
-L/usr/1ib64/mpich2/1ib -L/usr/1ib64/mpich2/1ib
-W1, -rpath, /usr/1ib64/mpich2/1ib -1lmpich -lopa
-lpthread -1rt

Mpic++ -0 hello hello.cc

Running an MPI Executable

 What mpirun does

— Launches n processes, assigns each an MPI rank
and starts the program

— For multinode run, has a list of nodes, ssh’s to each
node and launches the program

ssh node 2 helo

Running an MPI Executable

« Number of processes

— Number of processes to use is always equal to the
number of processors

— But not necessarily
— On your nodes what happens when you run this?

$ mpirun -p 24 hello

MPI Communicators

Communicator is an internal object
— MPI provides functions to interact with it

Default communicator is MPI_COMM_WORLD
— All processes are member of it

— It has a size (the number of processes)

— Each process has a rank within it

— Can think of it as an ordered list of processes

Additional communicator can co-exist

A process can belong to more than one
communicator

Within a communicator, each process has a unique
rank

A Sample MPI program (Fortran)

INCLUDE mpif.h
CALL MPI INITIALIZE (IERR)

CALL MPI COMM SIZE (MPI COMM WORLD, SIZE, IERR)
CALL MPI COMM RANK (MPI COMM WORLD, RANK, IERR)

CALL MPI FINALIZE (IERR)

A Sample MPI program (C)

#include <mpi.h>
err = MPI Init (&Argc, &Argv);

err = MPI Comm size (MPI COMM WORLD, é&size);
err = MPI Comm rank (MPI COMM WORLD, &rank):;

err = MPI_Finalize();

A Sample MPI program (C)

#include <mpi.h>
err = MPI Init (&Argc, &Argv);

err = MPI Comm size (MPI COMM WORLD, é&size);
err = MPI Comm rank(MPI COMM WORLD, &rank);

err = MPI_Finalize();

A Sample MPI program (C)

#include <mpi.h>

err = MPI Init (&Argc, &Argv);

err = MPI Comm size (MPI COMM WORLD, é&size);
err = MPI Comm rank(MPI COMM WORLD, &rank);

err = MPI_Finalize();

A Sample MPI program (C)

#include <mpi.h>

err = MPI Init (&Argc,

err = MPI_Comm_siz
err = MPI_Comm_ra

~ COMM WORLD, &size);
PI COMM WORLD, &rank);

err = MPI Finalize();

A Sample MPI program (C)

#include <mpi.h>

err = MPI Init (&Argc gv) ;

err = MPI Comm size (MPI COMM WORLD, é&size);
err = MPI Comm rank(MPI COMM WORLD, &rank);

err = MPI_Finalize();

A Sample MPI program (C)

#include <mpi.h>

err = MPI Init (&Arg

err = MPI Comm sg#e (MPI COMM WORLD, é&size);
err = MPI Comm rank(MPI COMM WORLD, &rank);

err = MPI Finalize();

A Complete MPI Example

#include <iostream>

#include <mpi.h>

int main(int argc, char **argv)
{

int err, size, rank;

err = MPI Init(&argc, &argv); /* Initialize MPI */
if (err !'= MPI SUCCESS) ({
std: :cout<<"MPI initialization failed!'\n";
return (1) ;
}
err = MPI Comm size (MPI_ COMM WORLD, &size);
err = MPI Comm rank (MPI COMM WORLD, &rank);

if (rank == 0) { /* root process */
std: :cout<<"I am the root\n";
} else {

std: :cout<<"I am not the root\n";
}
std: :cout<<"My rank is”<<rank<<vof’”’<<size
<<\\ \nll ;
err = MPI Finalize();
return (0) ;

Topics

MPIl Communication

30

Point-to-point Communication

How two processes interact
Most flexible communication in MPI

Two basic functions

— Send and receive

With these two functions, and the four
functions we already know, you can do
everything in MPI

— But there's probably a better way to do a lot
things, using other functions

MPI: Send & Recelve

err = MPI Send(sendptr, count, MPI TYPE,
destination, tag, Communicator)
err = MPI_Recv(rcvptr, count, MPI TYPE,

source, tag,Communicator, MPI_status)

sendptr/rcvptr: pointer to message
count: number of elements in ptr

MPI TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT,
MPI_CHAR, etc.

destination/source: rank of sender/reciever
tag: unique id for message pair

Communicator: MP|I COMM WORLD or user created
status: receiver status (error, source, tag)

Collective Communication

 How a group of processes interact
— “group” here means processes in a communicator

— A group can be as small as one or two processes
* One process communicating with itself isn't interesting

« Two processes communicating are probably better
handled through point-to-point communication

» Most efficient communication in MPI
« All collective communication is blocking

Collective Communication Types

» Three types of collective communication

— Synchronization
« Example: barrier

— Data movement
« Examples: broadcast, gather

— Reduction (computation)
« Example: reduce
 All of these could also be done with point-to-
point communications

— Collective operations give better performance and
better productivity

PO
P1
P2
P3

PO
P1
P2
P3

PO
P1
P2
P3

Collective Operations

AlB|CID scatter A

—e | B

— |

gather

D
A AlB|C|D
B allgather A B C D

>

C AlB|C|D
D AlB|C|D
AD |A1|AZ |A3 A0|BO|CO|DO
Bo|B1|B2|B3| AlMtoall . |A1|B1]c1|D1
Co|C1|C2|C3 Az|Bz|C2|D2
Do|(D1|Dz|D3 A3|B3|C3|D3

PO
P1
P2
P3

PO |A all A'B*C'D
P1(B | reduce |amrcip
Pz |C A'‘B*'C'D
P3|D A'B'C'D
*: some operator
PO |A A
P1|B sCan A'B
>
Pz |C A'B'C
P3|D A'B'C'D
*. some operator
A0 |A1|A2]|A3| reduce |A0'B0O*CO*DO
Bo[B1]|B2[B3| @M’ |A1'B1*C1'D1
C0|C1|C2|C3 Az2'B2*C2'D2
Do|D1|D2|D3 A3'B3'C3'D3

*: some operator

Topics

Summary

36

Summary

- Basic MPlI Components
— #include <mpi.h> : MPI library details
- MPI Init(&argc, &argv) ; : MPI Initialization, must come first
— MPI Finalize (): Finalizes MPI, must come last
- err . Returns error code

« Communicator Components
— MPI_COMM WORLD : Global Communicator

— MPI_Comm rank (MPI_COMM WORLD, &rank): Get current tasks
rank

— MPI Comm size (MPI_COMM WORLD, &size): Get
communicator size

« MPI Communication
— Point-to-point: (Send & Receive)
— Collective: (Synchronization, Data movement & Reduction)

