
Debugging withDebugging with gdb gdb andand valgrind valgrind

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Computational Science

Assistant Vice President for High-Performance Computing

Temple University
Philadelphia PA, USA

a.kohlmeyer@temple.edu

2

What is Debugging?
● Identifying the cause of an error and correcting it

● Once you have identified defects, you need to:

● find and understand the cause
● remove the defect from your code

● Statistics show about 60% of bug fixes are wrong:
-> they remove the symptom, but not the cause

● Improve productivity by getting it right the first time

● A lot of programmers don't know how to debug!

● Debugging needs practice and experience:
-> understand the science and the tools

3

More About Debugging

● Debugging is a last resort:
● Doesn't add functionality
● Doesn't improve the science

● The best debugging is to avoid bugs:
● Good program design
● Follow good programming practices
● Always consider maintainability and readability

of code over getting results a bit faster
● Maximize modularity and code reuse

4

Errors are Opportunities

● Learn from the program you're working on:
● Errors mean you didn't understand the program.

If you knew it better, it wouldn't have an error.
You would have fixed it already

● Learn about the kinds of mistakes you make:
● If you wrote the program, you inserted the error
● Once you find a mistake, ask yourself:

– Why did you make it?
– How could you have found it more quickly?
– How could you have prevented it?
– Are there other similar mistakes in the code?

5

How to NOT do Debugging

● Find the error by guessing

● Change things randomly until it works (again)

● Don't keep track of what you changed

● Don't make a backup of the original

● Fix the error with the most obvious fix

● If wrong code gives the correct result,
and changing it doesn't work, don't correct it.

● If the error is gone, the problem is solved.
Trying to understand the problem, is a waste of time

6

The Physics of Bugs

● Heisenbug: bug disappears when debugging a
problem (compiling with -g or adding prints)
=> often a bug exposed by compiler
optimizations or a possible bug in the compiler

● Schroedingbug: bug only shows up after you
found out that the code could not have worked
at all in the first place => program design error

● Mandelbug: bug whose causes are too complex
to be reliably reproduced; it thus defies repair

● Bohrbug: “regular”, straightforward to solve bug

7

Debugging Tools

● Source code comparison and management
tools: diff, vimdiff, emacs/ediff, cvs/svn/git
● Help you to find differences, origins of changes

● Source code analysis tools:
compiler warnings, ftnchek, lint
● Help you to find problematic code

-> Always enable warnings when programming
-> Always take warnings seriously (but not all)
-> Always compile/test on multiple platforms

● Bounds checking allows checking of (static)
memory allocation violations (no malloc)

8

More Debugging Tools

● Using different compilers (Intel, GCC, Clang, ...)
● Debuggers and debugger frontends:

gdb (GNU compilers), idb (Intel compilers),
ddd (GUI), eclipse (IDE), and many more...

● gprof (profiler) as it can generate call graphs
● valgrind, an instrumentation framework

● Memcheck: detects memory management problems
● Cachegrind: cache profiler, detects cache misses
● Callgrind: call graph creation tool

9

Purpose of a Debugger

● More information than print statements

● Allows to stop/start/single step execution

● Look at data and modify it

● 'Post mortem' analysis from core dumps

● Prove / disprove hypotheses

● No substitute for good thinking

● But, sometimes good thinking is not a substitute
for effectively using a debugger!

● Easier to use with modular code

10

Using a Debugger
● When compiling use -g option to include

debug info in object (.o) and executable
● 1:1 mapping of execution and source code

only when optimization is turned off
-> problem when optimization uncovers bug

● GNU compilers allow -g with optimization
-> not always correct line numbers
-> variables/code can be 'optimized away'
-> progress confusing with loop unrolling

● strip command removes debug info

11

Using gdb as a Debugger
● gdb ex01­c launches debugger, loads binary,

stops with (gdb) prompt waiting for input:

● run starts executable, arguments are passed
● Running program can be interrupted (ctrl-c)
● gdb ./prog ­­args arg1 ­flag passes all

arguments to the run command inside gdb
● continue continues stopped program

● finish continues until the end of a subroutine

● step single steps through program line by line

● next single steps but doesn't step into subroutines

12

More Basic gdb Commands

● print displays contents of a known data object

● display is like print but shows updates every step

● where shows stack trace (of function calls)

● up down allows to move up/down on the stack

● break sets break point (unconditional stop),
location indicated by file name+line no. or function

● watch sets a conditional break point (breaks when
an expression changes, e.g. a variable)

● delete removes display or break points

13

Post Mortem Analysis

● Enable core dumps: ulimit ­c unlimited
● Run executable until it crashes; will generate a

file core or core.<pid> with memory image

● Load executable and core dump into debugger
gdb myexe core.<pid>

● Inspect location of crash through commands:
where, up, down, list

● Use directory to point to location of sources

14

Using valgrind
● Run valgrind ./myprog to instrument and run

● ­­leak­check=full ­­track­origins=yes

● Output will list individual errors and summary
● With debug info present can resolve problems to

line of code, otherwise to name of function
● Also monitors memory allocation / deallocation to

flag memory leaks (“forgotten” allocations)
● Instrumentation slows down execution a lot
● Can produce “false positives” (flag non-errors)

15

How to Report a Bug(?) to Others

● Research whether bug is known/fixed
-> web search, mailing list archive, bugzilla

● Provide description on how to reproduce the
problem. Find a minimal input to show bug.

● Always state hardware/software you are
using (distribution, compilers, code version)

● Demonstrate, that you have invested effort
● Make it easy for others to help you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

