
Dr Gavin J. Pringle

Applications Consultant

gavin@epcc.ed.ac.uk

+44 131 650 6709

Parallel I/O

and split communicators

David Henty, Fiona Ried, Gavin J. Pringle

Parallel IO and Split Communicators 2

1 2 3 4

4x4 array on 2x2 Process Grid

Parallel Data

File

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

http://www.epcc.ed.ac.uk/

3 Parallel IO and Split

Communicators

Shared Memory

• Easy to solve in shared memory

– imagine a shared array called data

 begin serial region

 open the file

 write data to the file

 close the file

 end serial region

• Simple as every thread can access shared data
– may not be efficient but it works

• But what about message-passing?

http://www.epcc.ed.ac.uk/

Message Passing

• Single master IO processor

• Multiple IO processors

– All processors write their own files

– A subset of all process write their own files

Parallel IO and Split Communicators 4

http://www.epcc.ed.ac.uk/

5 Parallel IO and Split

Communicators

Master IO

• All processors send their data to the Master

• If the master has large enough memory
– Create a single array

– Write to a single file

• If master memory is too small
– Receive data from each process in turn

– Append data to file

– Order will be important

• But does not benefit from a parallel fs that supports multiple
write streams

http://www.epcc.ed.ac.uk/

Multiple IO processors, single file

• Cannot have multiple processors writing to a single file

• Unix cannot cope with this

• Not even sufficient to have processes writing to distinct parts of a
file

• Even reading can be difficult

– 1024 processes opening a file can over load the file system

• Data is typically distributed across different processes
– Processes do not in general own contiguous chunks of the file

– Cannot easily do linear writes

– Local data my have ghost cells which need to be ignored.

• Parallel file systems may allow multiple access
– but complicated and difficult for the user to manage

• Solution is to have Multiple IO processors with multiple files

Parallel IO and Split Communicators 6

http://www.epcc.ed.ac.uk/

Multiple IO processors, multiple files

• All processors write their own data to their own file
– N processors create N files

• Major problem is reassembling data
– contents of the file are dependent on the decomposition

– pre and post-processing steps to change number of processes

– Each process writes to a local file system and user copies back to home

– or each process opens a unique file (dataXX.dat) on shared fs

– but at least this approach means that reads and writes are in parallel

– but may overload file system for many processes

Parallel IO and Split Communicators 7

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 8

9

10

13

14

2x2 to 1x4 Redistribution

data1.dat

data2.dat

data3.dat

data4.dat

write

1

2

3

4

5

6

7

8

11

12

15

16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

newdata4.dat

newdata3.dat

newdata2.dat

newdata1.dat

read

1

3

9

11

2

4

10

12

5

7

13

15

14

16

6

8

reorder

http://www.epcc.ed.ac.uk/

Multiple IO processors, multiple files (cont.)

• Only some processors perform IO
– More efficient than using all processors or just one IO processor

• Most efficient number of IO processors is
– Problem dependant

– System dependant

• Highly beneficial to employ split communicators

Parallel IO and Split Communicators 9

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 10

Communicators

• All MPI communications take place within a communicator

– a group of processes with necessary information for message passing

– there is one pre-defined communicator: MPI_COMM_WORLD

– contains all the available processes

• Messages move within a communicator

– E.g., point-to-point send/receive must use same communicator

– Collective communications occur in single communicator

rank=6
rank=2

rank=1 rank=3

rank=0 rank=4

rank=5 size=7

MPI_COMM_WORLD

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 11

Use of communicators

• Question: Can I just use MPI_COMM_WORLD for everything?

• Answer: Yes

– many people use MPI_COMM_WORLD everywhere in their MPI programs

• Better programming practice suggests

– abstract the communicator using the MPI handle

– such usage offers very powerful benefits

MPI_Comm comm; /* or INTEGER for Fortran */

comm = MPI_COMM_WORLD;

...

MPI_Comm_rank(comm, &rank);

MPI_Comm_size(comm, &size);

....

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 12

Split Communicators

• It is possible to sub-divide communicators

• E.g.,split MPI_COMM_WORLD

– Two sub-communicators can have the same or differing sizes

– Each process has a new rank within each sub communicator

– Messages in different communicators guaranteed not to interact

rank=6
rank=2

rank=1 rank=3

rank=0 rank=4

rank=5 size=7

rank=2

MPI_COMM_WORLD

rank=0
rank=1 rank=3 size=4

size=3

comm1
comm2

rank=2 rank=0

rank=1

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 13

MPI interface

• MPI_Comm_split()

– splits an existing communicator into disjoint (i.e. non-overlapping)

subgroups

• Syntax, C:

 int MPI_Comm_split(MPI_Comm comm, int colour, int

 key, MPI_Comm *newcomm)

• Fortran:

 MPI_COMM_SPLIT(COMM, COLOUR, KEY, NEWCOMM, IERROR)

 INTEGER COMM, COLOUR, KEY, NEWCOMM, IERROR

• colour – controls assignment to new communicator

• key – controls rank assignment within new communicator

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 14

What happens…

• MPI_Comm_split() is collective

– must be executed by all processes in group associated with comm

• New communicator is created

– for each unique value of colour

– All processes having the same colour will be in the same sub-

communicator

• New ranks 0…size-1

– determined by the (ascending) value of the key

– If keys are same, then MPI determines the new rank

– Processes with the same colour are ordered according to their key

• Allows for arbitrary splitting

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 15

Split Communicators – Fortran example

 integer :: comm, newcomm

 integer :: colour, rank, size, errcode

 comm = MPI_COMM_WORLD

 call MPI_COMM_RANK(comm, rank, errcode)

 ! Again, set colour according to rank

 colour = mod(rank,2)

 call MPI_COMM_SPLIT(comm, colour, rank, newcomm,&

errcode)

 MPI_COMM_SIZE(newcomm, size, errcode)

 MPI_COMM_RANK(newcomm, rank, errcode)

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 16

Split Communicators – C example

 MPI_Comm comm, newcomm;

 int colour, rank, size;

 comm = MPI_COMM_WORLD;

 MPI_Comm_rank(comm, &rank);

 /* Set colour depending on rank: Even numbered ranks have

 colour = 0, odd have colour = 1 */

 colour = rank%2;

 MPI_Comm_split(comm, colour, rank, &newcomm);

 MPI_Comm_size (newcomm, &size);

 MPI_Comm_rank (newcomm, &rank);

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 17

Diagrammatically

• Rank and size of the new communicator

0 1 2 4 3
MPI_COMM_WORLD, size=5

color = rank%2;

key = rank;

newcomm, color=0, size=3

newcomm, color=1, size=2

0

0 1

1 2

key=0 key=2 key=4

key=1 key=3

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 18

Freeing Communicators

• MPI_Comm_free()

– a collective operation which destroys an unwanted communicator

• Syntax, C:

 int MPI_Comm_free(MPI_Comm * comm)

• Fortran:

 MPI_COMM_FREE(COMM, IERROR)

 INTEGER COMM, IERROR

– Any pending communications which use the communicator will
complete normally

– Deallocation occurs only if there are no more active references to the
communication object

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 19

Advantages of Communicators

• Many requirements can be met by using communicators

– Can’t I just do this all with tags?

– Possibly, but difficult, painful and error-prone

• Easier to use collective communications than point-to-point

– Where subsets of MPI_COMM_WORLD are required

– For example

– averages over coordinate directions in Cartesian grids

– parallel IO

• In dynamic problems

– Allows controlled assignment of different groups of processors to

different tasks at run time

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 20

Applications, for example

• Linear algebra

– row or column operations or act on specific regions of a matrix

(diagonal, upper triangular etc)

• Hierarchical problems

– Multi-grid problems e.g. overlapping grids or grids within grids

– Adaptive mesh refinement

– E.g. complexity may not be known until code runs, can use split comms

to assign more processors to a part of the problem

• Taking advantage of locality

– Especially for communication (e.g. group processors by node)

• Multiple instances of same parallel problem

– Task farms

http://www.epcc.ed.ac.uk/

Parallel IO communicators

• Create M sets of processors

– Each set will have its own master IO

– Writes/reads from M files in total

• Each set is a new communicators

• All processor then send their data to the master IO

processes

– If master has enough memory, then master can contain all data and

then perform a single read/write operation

– If master has limited memory, then master can receive and write

chunks of the data.f

• The problems of multiple data files remain

– But at least the number of data files has been reduced

Parallel IO and Split Communicators 21

http://www.epcc.ed.ac.uk/

22 Parallel IO and Split

Communicators

What do we really need?

• Using Parallel IO with MPI communicators is a good start

• But we really need a way to do parallel IO efficiently

– where the IO system deals with all the system specifics

• Want a single file format

• We already have one: the serial format

– all files should have same format as a serial file

– entries stored according to position in global array

– not dependent on which process owns them

– order should always be 1, 2, 3, 4,, 15, 16

http://www.epcc.ed.ac.uk/

23 Parallel IO and Split

Communicators

Information on Machine

• What does the IO system need to know about the parallel

machine?

– all the system-specific file system details

– block sizes, number of IO nodes, etc.

• All this should be hidden from the user

– but the user may still wish to pass system-specific options

– how can this be done in a portable manner?

http://www.epcc.ed.ac.uk/

24 Parallel IO and Split Communicators

Information on Data Layout

• What does the IO system need to know about the

data?

– how the local arrays should be stitched together to form the file

• But ...

– mapping from local data to the global file is only in the mind of the

programmer!

– the program does not know that we imagine the processes to be

arranged in a 2D grid

• How do we describe data layout to the IO system

– without introducing a whole new concept to MPI?

– cartesian topologies are not sufficient

– do not distinguish between block and block-cyclic decompositions

http://www.epcc.ed.ac.uk/

Parallel IO and Split Communicators 25

Programmer View vs Machine View

1 2 3 4

1 2 3 4

1 2 3

1 2 3 4

Process 4
Process 2

Process 1

Process 3
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4

http://www.epcc.ed.ac.uk/

26 Parallel IO and Split

Communicators

Files vs Arrays

• Think of the file as a large array
– forget that IO actually goes to disk

– imagine that we are simply recreating a single large array on some master
process

• The IO system must create this array and save to disk
– without running out of memory

– never actually creating the entire array

– ie without doing naive master IO

– and by doing big writes

– try to create and write large contiguous sections at a time

– utilising any parallel features

– doing multiple simultaneous writes if there are multiple IO nodes

http://www.epcc.ed.ac.uk/

Solution is to use Parallel IO libraries

• MPI-IO

– Part of the MPI-2 standard

– You don’t have to have MPI-2 to have MPI-IO

– ROMIO is an MPI-IO implementation that uses MPI-1 calls

– Builds on most MPI systems

– see: www-unix.mcs.anl.gov/romio/

– MPI-IO now comes with most MPI’s by default

– Very difficult to use

• Better still to use a self-describing IO format and library

– HDF5

– HDF5 files contain complete information on their structure

– http://hdf.ncsa.uiuc.edu/HDF5/

– Parallel NETCDF

– http://trac.mcs.anl.gov/projects/parallel-netcdf

– Both employ MPI-IO

 Parallel IO and Split Communicators 27

http://www.epcc.ed.ac.uk/
http://hdf.ncsa.uiuc.edu/HDF5/
http://trac.mcs.anl.gov/projects/parallel-netcdf
http://trac.mcs.anl.gov/projects/parallel-netcdf
http://trac.mcs.anl.gov/projects/parallel-netcdf

Parallel IO and Split Communicators 28

Summary

• Parallel IO is difficult

• Single IO process is easiest to construct

– Highly inefficient

• Multiple IO processors is more efficient

• Split Communicators are extremely useful

– Not just for parallel IO but for many HPC codes

• Issues of multiple data files remain

• Libraries may hold the solution

– Can be very complex to use

http://www.epcc.ed.ac.uk/

Thanks you

• Any questions?

• gavin@epcc.ed.ac.uk

Parallel IO and Split Communicators 29

http://www.epcc.ed.ac.uk/
mailto:gavin@epcc.ed.ac.uk
mailto:gavin@epcc.ed.ac.uk

