
Observations on OptimizingObservations on Optimizing
Scientific Computing ApplicationsScientific Computing Applications

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Computational Science

Assistant Vice President for High-Performance Computing

Temple University
Philadelphia PA, USA

a.kohlmeyer@temple.edu

2

Overview

● 1) Introduction:
What makes computations faster?

● 2) Example 1: Post-install optimization
Optimizing an application without changing it

● 3) Example 2a: Quick-n-dirty optimization
How much speedup can you get in a weekend

● 4) Example 2b: Proper application optimization
The power of the rewrite

● 5) Conclusions

3

How do (many) Computational
Scientists view a CPU?

Calculations run
faster in case we:

● Type faster,
read faster
(Faster RAM)

● Turn crank faster,
use motor
(Higher Clock)

● Use better
technology
(New Hardware)

Register 2

Register 1

Register 3

Controls

Arithmetic Unit

4

What is really going on?

● Clock rates have gone up for many years,
but we are at the limit of (affordable) technology

● More general purpose registers
=> compiler optimize their use, but we can also
write code to help the compiler with this task

● Vector registers (SSE, AVX)
=> compilers can utilize them, but data layout
and code have to meet certain conditions

● Multi-core CPUs, require parallel software,
share memory access, not really independent

5

What is really going on? (2)
● CPU Cache memory (per core, per socket),

=> speeds up access to recently used data
=> can reduce memory bandwidth contention
=> caches can be per core or shared
=> multiple levels of caches with different size,
 speed and “closeness” to the CPU core

● Pipelined superscalar CPU (implicit parallelism),
=> one core can work on multiple instructions
=> speculative and out-of-order execution

● Vector instructions: process “wide” registers
containing multiple data elements

6

Running Faster: Pipelining

● Multiple steps in one CPU “operation”:
fetch, decode, execute, memory, write back
=> multiple functional units in CPU design

● Using a pipeline allows for a faster clock
● Dependencies or

branches can stall
pipeline, only “fast”
instructions pipelined:
=> branch prediction
=> no “if” in inner loop

7

How Would This Statement Be Executed?

1. Load a into register R0
2. Load b into R1
3. Multiply R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;

Data load can start
while multiplying

Start data load for
next command

Actual steps:
z1 = a * b;

z2 = c * d;

z= z1 + z2;

Pipeline savings:
1 step out of 8, plus 3 more if next operation independent

8

Running Faster: Superscalar

● Superscalar CPU => instruction level parallelism
● Redundant functional units in single CPU

=> multiple instructions executed at same time
● Often combined with pipelined CPU design
● No data dependencies,

no branches
● Not SIMD/SSE/MMX
● Optimization:

=> loop unrolling

9

Superscalar & Pipelined CPU Execution

1. Load a into register R0
and load b into R1

2. Multiply R2 = R0 * R1
and load c into R3
and load d into R4

3. Multiply R5 = R3 * R4
4. Add R6 = R2 + R5
5. Store R6 into z

z = a * b + c * d;
Actual steps:
z1 = a * b;

z2 = c * d;

z= z1 + z2;

Superscalar pipeline savings:
3 out of 8 steps, plus 3 if next operation independent

Start data load for
next command

10

Vectorized Loop

for (i = 0; i < length; i++) {
 z[i] = a[i] * b[i] + c[i] * d[i];
}
Vector registers on a CPU can hold multiple numbers
and load, store or process them in parallel (SIMD):
for (i = 0; i < length; i +=2) {
 z[i] = a[i] *b[i] + c[i] *d[i];
 z[i+1]=a[i+1]*b[i+1] + c[i+1]*d[i+1];
}
This is in addition to superscalar pipelining and
with using special vector instructions (SSE,AVX,etc.)

E
xe

cu
te

d
 t

o
g
e
th

e
r

11

2) Post-Install Optimization or: How to Make
an Application Faster Without Changing It?

● Importing well known compute kernels from
libraries is quite common in HPC
Examples: BLAS/LAPACK, FFT(W)

● For BLAS multiple compatible implementations
exist: MKL, ACML, Goto-BLAS, ATLAS, ESSL

● Usually link time choice; with shared libs
alternative compilations of same library can be
provided via $LD_LIBRARY_PATH; some libs
offer a “dynamic dispatch”, i.e. a selection
between alternatives at run time (e.g. MKL)

12

There are less obvious libraries with
optimization potential: e.g. libm

13

Optimization Step 1: Alternatives

● libm is part of standard C, thus it is ubiquitous,
but not many alternatives for x86/x86_64 exist

● Focus is typically put on standard compliance
(glibc) or extended accuracy (cephes)

● AMD offers libM (originally bundled with ACML),
it is binary only and for x86_64 only

=> program a shared object providing a log()
function which calls amd_log() and links to libM
=> override log() in libm via $LD_PRELOAD

14

... and here is the result

15

Step 2: Can We Do Better?

● x86 FPU internal log() is slower than libm
● The log() in LibM is about 2.5x faster than libm
● Total execution time is reduced by ~30%
● Note: this is a very application specific speedup
● Other commonly used “expensive” libm

functions are exp() and pow() (= log() + exp());
=> fast pow(x,n) with integer n via multiplication

● exp() version in tested AMD's LibM was broken
=> try to optimize log()/exp() from cephes lib

16

How To Compute log() or exp()?

● Evaluating log(x) or exp(x) according to its
definitions is too time consuming; floating point
math requires only an approximation anyway

=> Four step process in cephes:

1.Handle special cases, over-/underflow (-> skip it)

2.Perform a “range reduction” (-> use IEEE754 tricks)

3.Approximate log(x)/exp(x) in reduced x interval from
polynomial or rational function or spline table

4.Combine results of steps 2 & 3

● Optimizer friendly C code with compiler “hints”

17

Fast Implementation of exp()
● Range reduction:

● Get 2n from setting IEEE-754 exponent:

zero mantissa bits (=1), exponent is n + 1023
● Padé Approximation:

● Unroll & interleave P
3
(f2) and Q

3
(f2) evaluation

● Store coefficients for P/Q at aligned address

● exp(x) = exp2(log
2
(e)*x)

x=f +n; n∈ℤ ,−0.5≤f <0.5
2x=2f +n=2f⋅2n

2f
=1.0+(

2 f⋅P3(f
2)

P3(f
2
)+Q3(f

2
)
)

18

The “Faster” Math Library

● exp() 1.5-3x, log() 2-4x times faster than libm
● Faster when compiled for SSE4 or AVX
● More speedup in 64-bit mode (more registers)
● No branches, gcc attributes for data access
● no vectorization (but uses SSE/AVX unit)
● Wrong results for out-of-range arguments
● Most useful for post installation optimization
● URL: http://github.com/akohlmey/fastermath

19

3) Quick 'n' Dirty Optimization or: How Much Can
You Optimize a Code Over the Weekend?

● From the “HPC Hepldesk”: hpc@temple.edu
User requests access to HPC resource
because his self-written program needs too
much memory and runs too slow on desktop

● Next, the user asks for parallel programming
assistance to handle large matrices

● Application is one file with ~1000 lines C code
=> could be perfect showcase for a “minimum
effort” optimization and parallelization study

=> “The game is afoot...”

mailto:hpc@temple.edu

20

Structure of the Application
● Input data: a network, a list of nodes (names)

and a list of connections between those nodes
(e.g. “friends” in a social network)

● Objective: find a subset where the ratio of
internal vs. external connections is maximal

1) Clustering: pick a sample of connected nodes
around a random seed, pick the most connected
nodes as new seed, repeat until converged

2) Pruning: Take connection matrix from 1), remove
most unfavorable entry, record target function value
and subset, repeat until matrix is of rank 1

21

Optimization 1: Reduce Memory

● The by far most time consuming step is the
calculation of the “connection matrix” of the
selected nodes

● The matrix elements are either 1 (if two nodes
are connected) or 0 (if the are not connected)

● Storage element was unsigned long int

=> use char instead

=> 4x (32-bit) to 8x (64-bit) memory savings

=> 1.5-2x performance increase

22

Optimization 2: Compiler

● The reference executable was compiled with
gcc using default settings, i.e. no optimization

● Using compiler optimizations leads to
significant performance increase

● Compiler optimization can be improved through
using const qualifiers in the code wherever
possible and local code changes

● Hide complex data types with typedef

=> 2.5 – 3.5x speedup

23

Optimization 3: Parallelization

● The construction of the connection matrix has
no data dependencies => multi-threading

● Using OpenMP requires only adding one
directive and a little bit of code reorganization

● Speedup going from serial to 2 threads: 1.5x
● Speedup levels out at 6-8 threads: 2.5x total

=> very little computation, mostly data access
=> performance limited by memory contention

● Total improvement: 8x-12x with 8 threads

24

25

4) Proper Optimization or:
 The Power of the Rewrite

● Quick'n'dirty optimizations of T-CLAP resulted
in significant improvements in a short time

● More optimization potential with rewrite:
● Connection matrix information requires only 1 bit

=> reduce storage by another factor of 8 (vs. char)
● Network represented by structs and lists of pointers

=> pointers require more storage in 64-bit mode
=> many pointers point to the same data
=> C aliasing rules still require re-reading data

● Pruning implementation uses memmove() to
compact matrix rows => bottleneck for large data

26

The Rewrite
● Rewrite in C++ (more optimization hints than C)
● Use STL container classes
● std::vector<bool> uses single bit per entry
● Single list of structs for all network nodes,

all references via index lists (std::vector<int>)
=> no more need to re-read data

● Leave data in place during pruning, maintain
lists of valid rows and columns instead

● Rewrite piece-by-piece to reproduce original

27

Memory Usage After Rewrite

28

Performance After Rewrite

29

Parallel Performance After Rewrite

30

5) Conclusions

● “The free lunch is over”: CPU speed levels out
● Moore's law continues, but leads to multi-core,

larger caches, vector units, more integration

=> Performance increase now mostly through
optimization, vectorization, and parallelization

● Bottleneck has transitioned from CPU clock to
memory access and efficient data structures

● We have to abandon our simplified image of a
“serial” CPU and “think parallel” instead

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

