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Overview

● 1) Introduction:
What makes computations faster?

● 2) Example 1: Post-install optimization
Optimizing an application without changing it

● 3) Example 2a: Quick-n-dirty optimization
How much speedup can you get in a weekend

● 4) Example 2b: Proper application optimization
The power of the rewrite

● 5) Conclusions
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How do (many) Computational 
Scientists view a CPU?

Calculations run 
faster in case we:

● Type faster,
read faster
(Faster RAM)

● Turn crank faster, 
use motor
(Higher Clock)

● Use better 
technology
(New Hardware)

Register 2

Register 1

Register 3

Controls

Arithmetic Unit
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What is really going on?

● Clock rates have gone up for many years,
but we are at the limit of (affordable) technology

● More general purpose registers
=> compiler optimize their use, but we can also 
write code to help the compiler with this task

● Vector registers (SSE, AVX)
=> compilers can utilize them, but data layout 
and code have to meet certain conditions

● Multi-core CPUs, require parallel software, 
share memory access, not really independent
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What is really going on? (2)
● CPU Cache memory (per core, per socket),

=> speeds up access to recently used data
=> can reduce memory bandwidth contention
=> caches can be per core or shared
=> multiple levels of caches with different size,
     speed and “closeness” to the CPU core

● Pipelined superscalar CPU (implicit parallelism),
=> one core can work on multiple instructions
=> speculative and out-of-order execution

● Vector instructions: process “wide” registers 
containing multiple data elements
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Running Faster: Pipelining

● Multiple steps in one CPU “operation”:
fetch, decode, execute, memory, write back
=> multiple functional units in CPU design

● Using a pipeline allows for a faster clock
● Dependencies or

branches can stall
pipeline, only “fast”
instructions pipelined:
=> branch prediction
=> no “if” in inner loop
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How Would This Statement Be Executed?

1. Load a into register R0
2. Load b into R1
3. Multiply R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;

Data load can start
while multiplying 

Start data load for
next command

Actual steps:
z1 = a * b;

z2 = c * d;

z= z1 + z2;

Pipeline savings:
1 step out of 8, plus 3 more if next operation independent
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Running Faster: Superscalar

● Superscalar CPU => instruction level parallelism
● Redundant functional units in single CPU

=> multiple instructions executed at same time
● Often combined with pipelined CPU design
● No data dependencies,

no branches
● Not SIMD/SSE/MMX
● Optimization:

=> loop unrolling
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Superscalar & Pipelined CPU Execution

1. Load a into register R0
and load b into R1

2. Multiply R2 = R0 * R1
and load c into R3
and load d into R4

3. Multiply R5 = R3 * R4
4. Add R6 = R2 + R5
5. Store R6 into z

z = a * b + c * d;
Actual steps:
z1 = a * b;

z2 = c * d;

z= z1 + z2;

Superscalar pipeline savings:
3 out of 8 steps, plus 3 if next operation independent

Start data load for
next command
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Vectorized Loop

for (i = 0; i < length; i++) {
  z[i] = a[i] * b[i] + c[i] * d[i];
}
Vector registers on a CPU can hold multiple numbers 
and load, store or process them in parallel (SIMD):
for (i = 0; i < length; i +=2) {
 z[i] = a[i]  *b[i]   + c[i]  *d[i];
 z[i+1]=a[i+1]*b[i+1] + c[i+1]*d[i+1];
}
This is in addition to superscalar pipelining and
with using special vector instructions (SSE,AVX,etc.)
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2) Post-Install Optimization or: How to Make 
an Application Faster Without Changing It?

● Importing well known compute kernels from 
libraries is quite common in HPC
Examples: BLAS/LAPACK, FFT(W)

● For BLAS multiple compatible implementations 
exist: MKL, ACML, Goto-BLAS, ATLAS, ESSL

● Usually link time choice; with shared libs 
alternative compilations of same library can be 
provided via $LD_LIBRARY_PATH; some libs 
offer a “dynamic dispatch”, i.e. a selection 
between alternatives at run time  (e.g. MKL)
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There are less obvious libraries with 
optimization potential: e.g. libm
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Optimization Step 1: Alternatives

● libm is part of standard C, thus it is ubiquitous, 
but not many alternatives for x86/x86_64 exist

● Focus is typically put on standard compliance 
(glibc) or extended accuracy (cephes)

● AMD offers libM (originally bundled with ACML), 
it is binary only and for x86_64 only

=> program a shared object providing a log() 
function which calls amd_log() and links to libM
=> override log() in libm via $LD_PRELOAD
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... and here is the result
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Step 2: Can We Do Better?

● x86 FPU internal log() is slower than libm
● The log() in LibM is about 2.5x faster than libm
● Total execution time is reduced by ~30%
● Note: this is a very application specific speedup
● Other commonly used “expensive” libm 

functions are exp() and pow() (= log() + exp());
=> fast pow(x,n) with integer n via multiplication

● exp() version in tested AMD's LibM was broken
=> try to optimize log()/exp() from cephes lib
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How To Compute log() or exp()?

● Evaluating log(x) or exp(x) according to its 
definitions is too time consuming; floating point 
math requires only an approximation anyway

=> Four step process in cephes:

1.Handle special cases, over-/underflow (-> skip it)

2.Perform a “range reduction” (-> use IEEE754 tricks)

3.Approximate log(x)/exp(x) in reduced x interval from 
polynomial or rational function or spline table

4.Combine results of steps 2 & 3

● Optimizer friendly C code with compiler “hints”
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Fast Implementation of exp()
● Range reduction:

 
● Get 2n from setting IEEE-754 exponent:

zero mantissa bits (=1), exponent is n + 1023
● Padé Approximation:

● Unroll & interleave P
3
(f2) and Q

3
(f2) evaluation

● Store coefficients for P/Q at aligned address 

● exp(x) = exp2(log
2
(e)*x)

x=f +n; n∈ℤ ,−0.5≤f <0.5
2x=2f +n=2f⋅2n

2f
=1.0+(

2 f⋅P3(f
2)

P3( f
2
)+Q3( f

2
)
)
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The “Faster” Math Library

● exp() 1.5-3x, log() 2-4x times faster than libm
● Faster when compiled for SSE4 or AVX
● More speedup in 64-bit mode (more registers) 
● No branches, gcc attributes for data access
● no vectorization (but uses SSE/AVX unit)
● Wrong results for out-of-range arguments
● Most useful for post installation optimization
● URL: http://github.com/akohlmey/fastermath
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3) Quick 'n' Dirty Optimization or: How Much Can 
You Optimize a Code Over the Weekend?

● From the “HPC Hepldesk”: hpc@temple.edu
User requests access to HPC resource 
because his self-written program needs too 
much memory and runs too slow on desktop

● Next, the user asks for parallel programming 
assistance to handle large matrices

● Application is one file with ~1000 lines C code
=> could be perfect showcase for a “minimum 
effort” optimization and parallelization study

=> “The game is afoot...”

mailto:hpc@temple.edu
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Structure of the Application
● Input data: a network, a list of nodes (names) 

and a list of connections between those nodes
(e.g. “friends” in a social network)

● Objective: find a subset where the ratio of 
internal vs. external connections is maximal

1) Clustering: pick a sample of connected nodes 
around a random seed, pick the most connected 
nodes as new seed, repeat until converged

2) Pruning: Take connection matrix from 1), remove 
most unfavorable entry, record target function value 
and subset, repeat until matrix is of rank 1
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Optimization 1: Reduce Memory

● The by far most time consuming step is the 
calculation of the “connection matrix” of the 
selected nodes

● The matrix elements are either 1 (if two nodes 
are connected) or 0 (if the are not connected) 

● Storage element was unsigned long int

=> use char instead

=> 4x (32-bit) to 8x (64-bit) memory savings

=> 1.5-2x performance increase
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Optimization 2: Compiler

● The reference executable was compiled with 
gcc using default settings, i.e. no optimization

● Using compiler optimizations leads to 
significant performance increase

● Compiler optimization can be improved through 
using const qualifiers in the code wherever 
possible and local code changes 

● Hide complex data types with typedef

=> 2.5 – 3.5x speedup
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Optimization 3: Parallelization

● The construction of the connection matrix has 
no data dependencies => multi-threading

● Using OpenMP requires only adding one 
directive and a little bit of code reorganization

● Speedup going from serial to 2 threads: 1.5x
● Speedup levels out at 6-8 threads: 2.5x total

=> very little computation, mostly data access
=> performance limited by memory contention

● Total improvement: 8x-12x with 8 threads



24



25

4) Proper Optimization or:
 The Power of the Rewrite

● Quick'n'dirty optimizations of T-CLAP resulted 
in significant improvements in a short time

● More optimization potential with rewrite:
● Connection matrix information requires only 1 bit

=> reduce storage by another factor of 8 (vs. char) 
● Network represented by structs and lists of pointers

=> pointers require more storage in 64-bit mode
=> many pointers point to the same data
=> C aliasing rules still require re-reading data

● Pruning implementation uses memmove() to 
compact matrix rows => bottleneck for large data
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The Rewrite
● Rewrite in C++ (more optimization hints than C)
● Use STL container classes
● std::vector<bool> uses single bit per entry
● Single list of structs for all network nodes,

all references via index lists (std::vector<int>)
=> no more need to re-read data

● Leave data in place during pruning, maintain 
lists of valid rows and columns instead

● Rewrite piece-by-piece to reproduce original
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Memory Usage After Rewrite
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Performance After Rewrite



29

Parallel Performance After Rewrite
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5) Conclusions

● “The free lunch is over”: CPU speed levels out
● Moore's law continues, but leads to multi-core, 

larger caches, vector units, more integration

=> Performance increase now mostly through 
optimization, vectorization, and parallelization

● Bottleneck has transitioned from CPU clock to 
memory access and efficient data structures

● We have to abandon our simplified image of a 
“serial” CPU and “think parallel” instead
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