
Hybrid Programming Models for 
Emerging High Performance 
Computing Systems 

Ekpe Okorafor  

 
School of Parallel Programming & Parallel Architecture for HPC 

ICTP 

October, 2014 



What you already know 

2 

• Parallelizing programs on shared 

memory computers using OpenMP 

• Parallelizing programs on distributed 

memory computers using MPI 



Emerging HPC Systems: Architecture 

• General purpose processors are not getting (very 

much) faster 

• The optimal (price/performance) HPC hardware goes 

to massively parallel computers (MPPs): 

– many compute nodes coupled by high-speed interconnects 

– each compute node is a multi-socket shared memory node 

– each socket holds a multi-core processor 

• Hybrid architectures: 

– Coupling of “standard” compute nodes with highly 

specialized computes nodes (cell processors, general 

purpose GPUs) 

3 



Emerging HPC Systems: Performance Features 

We the people hold these to be true! 

 

• Computation (Flops) are cheap 

• Communication (data transfer) is costly 

• Data locality is key 

 

• What is the best model for 

emerging HPC systems? 

4 



• Should be  

– Easy to use 

– Robust against errors 

• Best use of hardware 

– low level, allowing for controlling details 

– compatible with old legacy code 

• Energy consumption is main issue 

– Power for transfer >> Power for computation 

• Avoid data transfers if possible 

• Transfers must be controllable at every level 

5 

Emerging HPC Systems: Best Model 



• Could use MPI across whole system 

• Cannot (in general) use OpenMP/threads 

across whole system 

– requires support for single address space 

– this is possible in software, but very inefficient 

– also possible in hardware, but expensive 

• Could use OpenMP/threads within a 

node and MPI between nodes 

• Combine shared and distributed 

memory 

6 

Emerging HPC Systems: Best Model 



Topics 

• Hybrid Parallel Programming Models 

• Hybrid Modes (MPI + OpenMP) 

• NAS Parallel Benchmarks 

• Other Hybrid Modes (MPI + MPI-3) 

• Summary 

 

 

 

7 



Hybrid 

Parallel Programming Models 

8 

MPI 
(One MPI process 

per core) 

MPI + MPI 
• MPI: Inter-node 

• MPI-3: shared 

memory  

MPI +OpenMP 
• MPI: Inter-node 

• OpenMP: Inside 

each SMP node 

OpenMP 
(Shared memory, 

multi-threaded) 

Non-

Overlapping 
(MPI only outside of 

parallel region) 

Overlapping 
(MPI communication 

by one or more 

threads) 

Master Only 
(No MPI in parallel 

section) 

Funneled 
(Same thread 

makes MPI call) 

Serialized 
(One thread at a 

time makes call) 

Multiple 
(Multiple threads 

can make call) 



Reasons to combine MPI & OpenMP 

1. This software approach matches the hardware 

trend. 

2. Some applications expose two levels of parallelism: 

coarse-grained (suitable for MPI), and fine-grained 

(best suited for OpenMP) 

3. Application requirements or system restrictions may 

limit the number of MPI processes. Thus, OpenMP 

can offer an additional amount of parallelism. 

4. Some application show unbalanced workload at the 

MPI level. OpenMP can be used to address this 

issue by assigning a different number of threads to 

each MPI process. 

9 



Basic Hybrid Program Template 

Start with MPI initialization  

   

(Serial regions are executed by the 

master thread of the MPI process)  

 

Create OMP parallel regions within 

each MPI process 
• MPI calls may be allowed here too  

• MPI rank is known to all threads 

 

 

 

Call MPI in single-threaded regions  

 

Finalize MPI 

10 

MPI_Init 

.... 

MPI_Call 

.... 

 

 

 

 

 

 

.... 

MPI_Call 

.... 

MPI_Finalize 

OMP parallel 

…. 

MPI_Call 

…. 

end parallel 



Hybrid Mode: Master Only 

Fortran: 
!$OMP parallel 

work… 

!$OMP end parallel 

 

call MPI_Send(…) 

 

!$OMP parallel 

work… 

!$OMP end parallel 

11 

C: 
#pragma omp parallel 

{ 

work… 

} 

ierror=MPI_Send(…); 

#pragma omp parallel 

{ 

work… 

} 

 



Hybrid Mode: Funneled 

Fortran: 
!$OMP parallel 

… work 

!$OMP barrier 

!$OMP master 

call MPI_Send(…) 

!$OMP end master 

!$OMP barrier 

.. work 

!$OMP end parallel 

12 

C: 
#pragma omp parallel 

{ 

… work 

#pragma omp barrier 

#pragma omp master 

{ 

ierror=MPI_Send(…); 

} 

#pragma omp barrier 

… work 

} 

• Use OMP Barrier since there is no implicit barrier in master work-

share construct (OMP Master). 

• All other threads will be sleeping. 



Hybrid Mode: Serialized 

Fortran: 
!$OMP parallel 

… work 

!$OMP barrier 

!$OMP single 

 call MPI_Send(…) 

!$OMP end single 

!Don't need OMP barrier 

… work 

!$OMP end parallel 

13 

C: 
#pragma omp parallel 

{ 

… work 

#pragma omp barrier 

#pragma omp single 

{ 

ierror=MPI_Send(…); 

} 

//Don't need omp barrier 

… work 

} 

• Best to use OMP Barrier only at beginning, since there is an 

implicit barrier in the SINGLE workshare construct, OMP SINGLE 

• All other threads will be sleeping. 



Hybrid Mode: Multiple 

Fortran: 
!$OMP parallel 

… work 

call MPI_Send(…) 

… work 

!$OMP end parallel 

14 

C: 
#pragma omp parallel 

{ 

… work 

ierror=MPI_Send(…); 

… work 

} 

• No restrictions 



Hybrid Mode 

15 

Support Level Description 

MPI_THREAD_SINGLE Only one thread will execute. 

MPI_THREAD_FUNNELED 

Process may be multithreaded 

but only main thread can make 

MPI calls. Default mode. 

MPI_THREAD_SERIALIZE 

Process may be multithreaded, 

any thread can make MPI 

calls but threads cannot exe- 

cute MPI calls concurrently. 

MPI_THREAD_MULTIPLE 
Multiple threads may call MPI. 

No restrictions. 



MPI Initialization 

• MPI_Init_thread works in a similar way to MPI_Init by initializing 

MPI on the main thread. 

• It has two integer arguments: 

– Required ([in] Level of desired thread support ) 

– Provided ([out] Level of provided thread support) 

 

• C syntax 

int MPI_Init_thread(int *argc, char *((*argv)[]), 

int required, int *provided); 

 

• Fortran syntax 

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR) 

INTEGER REQUIRED, PROVIDED, IERROR 

16 



MPI Hybrid: Hello World 

#include <stdio.h> 

#include "mpi.h" 

#include <omp.h> 

 

int main(int argc, char *argv[]) { 

  int numprocs, rank, namelen; 

  char processor_name[MPI_MAX_PROCESSOR_NAME]; 

  int iam = 0, np = 1; 

 

  MPI_Init(&argc, &argv); 

  MPI_Comm_size(MPI_COMM_WORLD, &numprocs); 

  MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

  MPI_Get_processor_name(processor_name, &namelen); 

 

  #pragma omp parallel default(shared) private(iam, np) 

  { 

    np = omp_get_num_threads(); 

    iam = omp_get_thread_num(); 

    printf("Hello from thread %d out of %d from process %d out of %d on %s\n", 

           iam, np, rank, numprocs, processor_name); 

  } 

 

  MPI_Finalize(); 

 

17 



MPI Hybrid: Hello World 

• Compiling and Linking Mixed MPI and OpenMP Programs 

Once you have your example program, you can compile and link it with  

 

$mpicc -openmp hello.c -o hello   

 

• Running Mixed Programs 

$export OMP_NUM_THREADS=4 

$mpirun -np 2 -x OMP_NUM_THREADS ./hello 

 

Hello from thread 0 out of 4 from process 0 out of 2 on hpcnode004 

Hello from thread 1 out of 4 from process 0 out of 2 on hpcnode004 

Hello from thread 2 out of 4 from process 0 out of 2 on hpcnode004 

Hello from thread 3 out of 4 from process 0 out of 2 on hpcnode004 

Hello from thread 0 out of 4 from process 1 out of 2 on hpcnode001 

Hello from thread 3 out of 4 from process 1 out of 2 on hpcnode001 

Hello from thread 1 out of 4 from process 1 out of 2 on hpcnode001 

Hello from thread 2 out of 4 from process 1 out of 2 on hpcnode001 

 

• Note that you have to tell OpenMPI to set the OMP_NUM_THREADS environment 

variable for OpenMP for each process it starts using the -x OMP_NUM_THREADS 

command line  

 
18 



Things To Watch Out For! 

19 

• Introducing OpenMP into an existing MPI code also 

means introducing the drawbacks of OpenMP, such as 

the following: 
– Limitations when it comes to control of work distribution and 

synchronization 

– Overhead introduced by thread creation and synchronization 

– Dependence on quality of compiler and runtime support for OpenMP 

– Shared memory issues (ccNUMA architectures) 

• The interaction of MPI and OpenMP runtime libraries 

may have negative side effects on the program’s 

performance. 

• Some appliations naturally expose only one level of 

parallelism, and there may be no benefit in introducing 

a hierarchical parallelism. 



NAS Parallel Benchmarks 

• Simulated 3D CFD simulation 

• Uses (Alternating Direction Implicit) ADI 

in 3D to solve the discrete Navier-

Stokes equations 

• Parallelization by domain decomposition 

• Consider the multi-zone benchmarks 

• Zone size varies widely, therefore, a 

load-balancing algorithm is used 

20 



NPB on Ranger at TACC 

• DDR infiniband network 

• 3936 compute blades 

• Each node: 4 2.3GHz AMD “Barcelona” quad core 

• Peak performance: 579 TFlops  

• MVAPICH, numactl 

• PGI F90 7.1 

• Class E benchmark: 4224 x 3456 x 92 points in 4096 

zones 

• Equally-sized zones - Scalar Pentadiagonal (SP)  

• Zones of varying size -  Block Triagonal (BT) 

 

 21 



NPB: Multi-zone Hybrid 

• Multi-zone versions of NPB (NPB-MZ) 

are designed to exploit multiple levels 

of parallelism in applications and to 

test the effectiveness of multi-level 

and hybrid parallelization paradigms 

and tools.  

– BT-MZ - uneven-size zones within a 

problem class, increased number of 

zones as problem class grows 

– SP-MZ - even-size zones within a 

problem class, increased number of 

zones as problem class grows 

 
22 



NPB: Multi-zone Hybrid 

23 
Figure from: Ralf Rabenseifner, Georg Hager, Gabriele Jost: Hybrid MPI/OpenMP 

Parallel Programming on Clusters of Multi-Core SMP Nodes 



What Can We Glean From This? 

24 

• BT-MZ: 

– Inherent workload imbalance on MPI level 

– #nprocs = #nzones yields poor performance 

– #nprocs < #zones => better workload balance, but 

decreases parallelism 

– Hybrid MPI/OpenMP yields better load-balance, maintains 

amount of parallelism 

• SP-MZ: 

– No workload imbalance on MPI level, pure MPI should 

perform best 

– MPI/OpenMP outperforms MPI (on some platforms) due to 

network contention access within a node 



In Simple Terms! 

25 

• Pure OpenMP performing better than pure MPI within 

node is a necessity to have hybrid code better than 

pure MPI across node. 

 

                            But not sufficient... 

 

• It is often very hard to make hybrid programs run 

faster than pure MPI solutions. 

• One needs to use hardware specific tuning. 

• Hybrid programming includes both programming 

techniques and system tools. 



Hybrid Model: MPI + MPI 

26 

• Hybrid MPI+MPI – (MPI for inter-node communication + MPI-3.0 

shared memory programming) 

• Advantages: 

– No message passing inside of the SMP nodes 

– Using only one parallel programming standard 

– No OpenMP problems (e.g., thread-safety isn’t an issue) 

• Issues: 

– Communicator must be split into shared memory islands 

– To minimize shared memory communication overhead: 
• Halos (or the data accessed by the neighbors)must be stored in MPI shared memory windows 

– Same work-sharing as with pure MPI 

 



EXTRA SLIDES! 

27 



MPI-3: Shared Memory 

28 

• Split main communicator into shared memory islands 

– MPI_Comm_split_type 

• Define a shared memory window on each island 

– MPI_Win_allocate_shared 

– Result (by default): 

• contiguous array, directly accessible by all processes of the island 

• Accesses and synchronization 

– Normal assignments and expressions 

– No MPI_PUT/GET ! 

– Normal MPI one-sided synchronization, e.g., 

MPI_WIN_FENCE 



Summary: Pure MPI + OpenMP Only 

MPI + OpenMP 

• Seen with NPB-MZ examples 

– BT-MZ  strong improvement (as expected) 

– SP-MZ  small improvement 

– Usability on higher number of cores 

• •Advantages 

– Memory consumption (This is probably the most important advantage) 

– Load balancing 

– Two levels of parallelism 
• Outer distributed memory halo data transfer  (MPI) 

• Inner shared memory ease of SMP parallelization (OpenMP) 

• Quite doable 

• Does have a huge amount of pitfalls 

• Optimum: Somewhere in the area of 1 MPI process per NUMA 

domain 

29 



Summary: Hybrid MPI + OpenMP 

• Pure MPI 

+  Ease of use 

– Topology and mapping problems may need to be solved 

(depends on loss of efficiency with these problems) 

– Number of cores may be more limited than with 

MPI+OpenMP 

+  Good candidate for perfectly load-balanced applications 

• OpenMP only 

+  Ease of use 

– Limited to problems with tiny communication footprint 

– Source code modifications are necessary (Variables that are 

used with “shared” data scope must be allocated as 

“sharable”) 

± (Only) for the appropriate application a suitable tool 
30 



Summary: Hybrid MPI + OpenMP 

MPI+OpenMP: 
– Pitfalls of both MPI & OpenMPI 

• Pitfalls through combination of MPI & OpenMP 
– E.g., topology and mapping problems 

– Many mismatch problems 

• Tools are available 
– It is not easier than analyzing pure MPI programs 

– Most hybrid programs are Masteronly style 

• Overlapping communication and computation with 

several threads 
– Requires thread-safety quality of MPI library 

– Loss of OpenMP worksharing support  means using OpenMP tasks 

as workaround 

31 



Summary: Hybrid MPI + MPI-3 

MPI+MPI Shared Memory: 

• Two levels of parallelism 

– Outer -> distributed memory - > halo data transfer (MPI) 

– Inner ->shared memory -> halo transfer or direct access  

(MPI-3) 

• New promising hybrid parallelization model 

• No real experience up to now 

• No OpenMP and thread-safety problems 

32 


