

United Nations/ICTP Workshop on the

Use of Global Navigation Satellite Systems (GNSS) for Scientific Applications

ICTP, 1 - 5 December 2014

GNSS applications in monitoring the movements of the Earth's crust to assess the seismicity of southeastern Kazakhstan

Zhantayev Zh.Sh., Bibossinov A.Zh., Vilyaev A.V. Ashenova A.A., Omarov Ch.T.

JSC "National Center of Space Researches and Technologies" 050010, 15 Shevchenko street, Almaty, Kazakhstan <u>nckit@spaceres.kz</u>, <u>bibossinov@gmail.com</u>

An overview map of the location of stationary GPS monitoring points

Map of the distribution of earthquake epicenters over energy class 8.0 for the period 1885 -2013 years. within the coordinates 42 ° N - 45 ° N and 75 ° E - 80 ° E

Level time-series changes in positions of points with daily increments, analysis of variance

p: 17 GMD 2013 Jan 30 11:50:13

Error estimation

point	precision	classification			
SELE_IGS	0.80 mm/year	Best sites			
ASTA	9.61 mm/year	Worst			
ACT1_Local	13.5 mm/year	Noisy sites			

The best sites will have values of 3-5 mm, and the worst 7-9 mm. Values between 10 and 15 mm indicate high but acceptable levels of noise.

*Introduction to GAMIT/GLOBK Release 10.4, 26 October 2010. T. A. Herring, R. W. King, S. C. McClusky, Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology.

Time series analysis of displacement (mm) of points CHUM, SELE, URUM

GPS Point - Turgen 2009-2013

Catalogue of velocities and the displacement components

Таблица характеристик миграции глобальных пунктов GPS за период 2009-20013 относительно Евразии											
ID ¢	A		V1	V2	V3	Vrop	Азимут	DL гор (мм)	DL верт (мм)	Приненации	
	Ψ	Ψ	2000-2012 (ww/con)		(nutron)	(rpo.g.)	2000-2013	2000-2013	примечание		
			2000	-2013 (MM)	TOA)	(MM/TOA)	(i það)	(MM)	(10100)		
ID	PHI	PSI	V1	V2	V3	VG	AZ	DG	DV		
ARTU	58.56046	56.42982	-3.01336	-0.94819	5.03728	3.15902	197.46671	15.79510	25.18642		
CHLK	78.37319	43.52911	2.82784	1.21709	-0.23229	3.07863	23.28679	15.39315	-1.16143	2009-2013	
CHSH	76.99760	43.85394	0.19586	0.91826	-1.62386	0.93892	77.95955	4.69458	-8.11928	2009-2013	
сним	74.75110	42.99850	0.89376	-1.40493	2.36308	1.66512	302.46289	8.32562	11.81542		
CRAO	33.99098	44.41326	-3.02966	4.25641	13.52450	5.22455	125.44281	26.12274	67.62252		
GUAO	87.17731	43.47111	7.72745	4.07880	-0.73527	8.73786	27.82656	43.68929	-3.67636	2002-2013	
HYDE	78.55087	17.41726	33.03248	13.78057	-0.33576	35.79174	22.64503	178.95872	-1.67880	2002-2013	
IISC	77.57038	13.02117	34.40186	16.66443	0.07467	38.22554	25.84578	191.12768	0.37333		
IRKJ	104.31618	52.21902	2.50784	-0.37038	-5.66377	2.53504	351.59887	12.67521	-28.31887	2002-2013	
IRKT	104.31624	52.21902	2.37190	-0.10078	-5.08362	2.37404	357.56697	11.87020	-25.41808		
IZVS	76.61011	43.03757	2.82265	-0.14270	0.76652	2.82626	357.10592	14.13129	3.83261	2009-2013	
KAST	75.96739	43.04487	1.57199	0.68877	0.43425	1.71626	23.66057	8.58130	2.17125	2009-2013	
KAZA	73.94351	41.38494	5.07611	0.30150	1.93587	5.08505	3.39910	25.42525	9.67937	2003-2013	
KHAR	36.23901	50.00510	-4.22210	4.04865	11.56953	5.84959	136.20138	29.24795	57.84767		
KIT3	66.88545	39.13477	0.74161	0.62791	1.58775	0.97173	40.25414	4.85866	7.93873	2000-2012	
KURY	76.33846	43.89349	0.96447	-0.05480	1.37018	0.96602	356.74825	4.83012	6.85090	2009-2013	
lhaz	91.10403	29.65733	18.13651	20.27608	-1.91894	27.20390	48.18806	136.01952	-9.59470	2002-2013	
MATB	76.42687	43.12999	1.95690	-0.23705	1.22573	1.97121	353.09307	9.85603	6.12865	2009-2013	
NOVM	82.90949	55.03050	0.32880	-2.06096		2.08702	279.06434	10.43511	0.00000	V3 брак	
NRIL	88.35978	69.36183	1.66480	-5.21925	0.60794	5.47833	287.69127	27.39166	3.03970	2002-2013	
NVSK	83.23545	54.84061	0.01010	-1.27818	-0.39152	1.27822	270.45287	6.39109	-1.95762		
POL2	74.69427	42.67977	2.58985	-1.67594	1.16489	3.08482	327.09228	15.42408	5.82446		
POLV	34.54293	49.60261	-3.48771	2.45181	11.33864	4.26327	144.89327	21.31635	56.69320	2002-2012	
POTS	13.06609	52.37930	-4.44109	7.92663	12.47089	9.08597	119.26082	45.42983	62.35447		
SATY	78.40838	43.05680	5.24410	1.94110	-1.29791	5.59182	20.31200	27.95909	-6.48953	2009-2013	
SELE	77.01690	43.17873	2.73896	0.12598	0.74911	2.74186	2.63353	13.70930	3.74554		
SUMK	73.99711	44.20813	0.38687	-0.59874	-0.89535	0.71285	302.86812	3.56424	-4.47673		
TALA	72.21045	42.44547	1.07356	-0.18769	3.84305	1.08984	350.08308	5.44922	19.21523	аппарат.брак	
TASH	69.29557	41.32805	0.98385	-0.93710	4.43545	1.35872	316.39407	6.79359	22.17725	2002-2013	
TOMS	120.98739	24.79799	-0.32008	8.53453	-12.03209	8.54053	92.14779	42.70266	-60.16044	2006-2013	
TEHN	51.33410	35.69728	11.25391	1.77218	10.45128	11.39259	8.94902	56.96297	52.25642	2005-2013	
TSHN	76.94381	43.04197	3.21635	-0.13122	2.65668	3.21903	357.66374	16.09515	13.28341	2009-2013	
TURG	77.63341	43.30894	3.51202	1.04328	0.96077	3.66370	16.54461	18.31850	4.80385	2009-2013	
ULAB	107.05233	47.86507	0.74682	3.09806	-5.71356	3.18680	76.44680	15.93401	-28.56780	2002-2012	
URUM	87.60066	43.80795	6.55286	3.82328	3.36711	7.58667	30.26152	37.93333	16.83557		
7FCK	41,56507	43,78839	-0.87252	3.69266	11.90079	3,79434	103,29428	18.97171	59,50396		

Defining trend movements of the earth surface of investigated region using data from global and local networks of GNSS stations for the 2000-2012

Vertical velocities of movement

Map fragment of seismotectonics the Northern Tien Shan by A.V.Timush, T.V.Taradaeva

Mapping zoning on the complex data using GIS software for south-eastern Kazakhstan

Распределение скоростей движения земной поверхности Северного Тянь-Шаня (Горизонтальная составляющая)

Распределение скоростей движения земной поверхности Северного Тянь-Шаня (Вертикальная составляющая)

Interpolated data using global and local GNSS networks

A calculation the stress-strain state of North Tien Shan region within the parameters of contemporary movements of the earth's surface as a result of GPS-observations.

6.00

5.00

4.00

3.00

2.00

1.00

Diagram of horizontal velocity of GPS-points in the coordinate system relative to the Eurasian continent.

Diagram of divergence of horizontal velocity of GPSpoints relative to the Eurasian continent.

Geomechanical modeling

.2

from the sea level.

.3 The intensity distribution of tangential stresses at the level of 10-15 km

Shear stress intensity, Pa

Earthquakes energy

⁴Distribution of shear stress intensity and Lode-Nadai parameter

Shear stress intensity (Pa), layer 10-15 km

4.7500e+007 to 5.0000e+007 5.0000e+007 to 5.2500e+007 5.2500e+007 to 5.5000e+007 5.5000e+007 to 5.7500e+007 5.7500e+007 to 6.0000e+007 6.0000e+007 to 6.2500e+007 6.2500e+007 to 6.7500e+007 6.7500e+007 to 7.0000e+007 7.0000e+007 to 7.2500e+007 7.2500e+007 to 7.5000e+007 7.5000e+007 to 7.5000e+007

Lode-Nadai parameter, layer 10-15 km

8.2601e-001 to 8.4000e-001 8.4000e-001 to 8.6000e-001 8.6000e-001 to 8.8000e-001 9.0000e-001 to 9.0000e-001 9.2000e-001 to 9.2000e-001 9.4000e-001 to 9.4000e-001 9.6000e-001 to 9.6000e-001 9.8000e-001 to 9.9689e-001 Interval = 2.0e-002

Thanks for attention!