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f(x) =
√
x

f(2) =
√

2 = 1.41421356...

f ◦ f(2) = f2(2) =
√√

2 = 21/4 = 1.189207...

f3(2) = 1.090507...

f4(2) = 1.04427...

...

f100(2) = 1.0000...+ ε

fn(2) = 21/2n → 1, and f(1) =
√

1 = 1,

1 is a fixed point of f .
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Recall Banach’s fixed point theorem:

D.: Suppose (X, d) is a metric space. If for f : X → X there exists

γ ∈ (0,1) such that for all x, y ∈ X
d(f(x), f(y)) ≤ γd(x, y) then f is a contraction.

T.: Suppose that f is a contraction defined on the complete metric space

(X, d). Then f has exactly one fixed point, x∞ and for any x0 ∈ X we

have fn(x0)→ x∞.

f(x) =
√
x is NOT a contraction on X = (1,+∞). (Prove it.)

Find an interval I ⊂ (1,+∞) such that f maps I into itself, 2 ∈ I and f

is a contraction on I.
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Greek method of computing√
2 ≈ 1.414213562...:

1.22 = 1.44 < 2 < ( 2
1.2)2 = 2.77...

⇒
1.2 + 2

1.2

2
= 1.433...

is a better approximation,
(1.433...) + 2

1.433...

2
= 1.414341085

is even better.

We take the sequence x1 = 1.2,

xk+1 = f(xk) =
xk + 2

xk

2
.

xk →
√

2.

f(
√

2) =
√

2 is a globally attract-

ing fixed point in (0,+∞).

(On the figure

f(x), y =
√

2 , f3(x). )
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Given X a “phase space”, “state space” and

a transformation of X into itself “law of nature” f : X → X

we would like to understand the dynamics, the long term behavior of this

(dynamical) system.

If f is a contraction of a complete metric space everything is very simple.

Every point converges to this fixed point. We will see that things can

get much more complicated.

i.) If X is a differentiable manifold and T is a (sufficiently smooth)

diffeomorphism (or at least a differentiable transformation) then we speak

about differentiable (smooth) dynamics.

ii.) If X is a topological, or metric space and T is a homeomorphism (or

at least a continuous transformation) then we speak about topological

dynamics.

iii.) If X is a measure space (X,B, µ) and T is a measure preserving

transformation (µ(T−1A) = µ(A)) then we speak about Ergodic theory.

ergod+odos=energy-path
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i.) If X is a differentiable manifold and T is a (sufficiently smooth)
diffeomorphism (or at least a differentiable transformation) then we speak
about differentiable (smooth) dynamics.
ii.) If X is a topological, or metric space and T is a homeomorphism (or
at least a continuous transformation) then we speak about topological
dynamics.
iii.) If X is a measure space (X,B, µ) and T is a measure preserving
transformation (µ(T−1A) = µ(A)) then we speak about Ergodic theory.
ergod+odos=energy-path

Sometimes the same system can be an example of all three types.

Example: Circle rotations: Let X = T be the circle of unit length = [0,1)
= R/Z = the reals modulo 1.
Given α ∈ R let Tα : T→ T, or [0,1)→ [0,1) be
Tα(x) = x+ α (modulo 1) = {x+ α}.
If we think of T as the normalized unit circle in C then Tαe2πiφ = e2πi(φ+α).
Tα clearly smooth (and hence continuous) on the manifold T.
If we consider (T,L, λ), where λ=Lebesgue-measure and L=Lebesgue
measurable sets, then
Tα is measure preserving (λ(T−1

α (A)) = λ(A− α) = λ(A) for ∀A ∈ L).
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Ergodic theory = study of actions of (semi)groups on measure spaces

T : X → X, we consider {Tn : n ∈ Z≥0} the semi-group action of Z≥0.
We have (?) Tn+m = TnTm, ∀n,m ∈ Z≥0.
If T is invertible we can consider the group action {Tn : n ∈ Z}, having
(?) for all n,m ∈ Z.
In these cases we have “discrete time”, “snapshots” of the system. We
work with discrete dynamical systems.

One can consider continuous dynamical systems, flows (coming usually
from autonomous differential equations).
These are semigroup actions of R≥0, or in the invertible case of R:
Tt : X → X, Tt : t ∈ R, Ts+t = TsTt for all s, t ∈ R.

One can consider other group actions
for example Z2-actions, {Tg : g ∈ Z2},
or in general Zd-actions, {Tg : g ∈ Zd}.
If α 6= β one can consider the Z2-action, T (n,m)

α,β : T→ T, (n,m) ∈ Z× Z

T
(n,m)
α,β x = {x+ nα+mβ}.
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Origin from Physics

k particles in R3,

positions (in generalized coordinates) qi, momenta pi, i = 1, ..., k.

Phase space X = R6k.

The Hamilton function H(p, q) = K(p) + U(q)

where K(p) is the kinetic energy, and U(q) is the potential energy.

Hamilton’s equations:
dqi
dt

=
∂H

∂pi
,

dpi
dt

= −
∂H

∂qi
.

Connection to high-school Physics:

mv =
∂1

2mv
2

∂v
=
∂K(p) + U(q)

∂p
, and F = ma =

∂mv

dt
= −

∂K(p) + U(q)

∂q
.

Energy surface H−1(e), Hamiltonian H is constant on solution curves

(preservation of energy).

Liouville’s theorem: The Hamiltonian flow, Tt (the solution flow from the

H. equations) preserves the Lebesgue-measure on R6k.

(λ(T−1
t (A)) = λ(A), for all A ∈ L.)
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Energy surface H−1(e), Hamiltonian H is constant on solution curves

(preservation of energy).

Liouville’s theorem: The Hamiltonian flow, Tt (the solution flow from the

H. equations) preserves the Lebesgue-measure on R6k.

(λ(T−1
t (A)) = λ(A), for all A ∈ L.)

Boltzmann’s ergodic hypothesis: “{Tt(x) : t ∈ R} “equals” the energy

surface H−1(e).”

Boltzmann gave the name Ergodic, recall ergon=work, energy, odos=path

in Greek.

Boltzmann’s ergodic hypothesis is false.

We can only hope for density of {Tt(x) : t ∈ R} on the energy surface.

Boltzmann also conjectured the hypothesis for

the equality of time means and phase (space) means.
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D.: A measure space (X,B, µ) is the triple consisting of the phase space

X, the σ-algebra of the measurable sets B and a probability measure µ,

(this means µ(X) = 1).

Sometimes we work with finite measures µ(X) < +∞, but these can al-

ways be normalized.

Infinite Ergodic theory is different in that case σ-finite measure spaces

like (R,L, λ) can be considered.

D.: Given two measure spaces (X1,B1, µ1) and (X2,B2, µ2) the transfor-

mation T : X1 → X2 is measure preserving if

µ1(T−1A) = µ2(A) holds for all A ∈ B2.

T.: (Poincaré’s Recurrence Theorem) Let T : X → X be meas. pres. on

the prob. space (X,B, µ). If µ(A) > 0 then µ almost every x ∈ A returns

to A.
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T.: (Poincaré’s Recurrence Theorem) Let T : X → X be meas. pres. on

the prob. space (X,B, µ). If µ(A) > 0 then µ almost every x ∈ A returns

to A.

Proof.: F
def
=A \

∞⋃
k=1

T−kA

(these are those points which never return to A).

F = A ∩ T−1(X \A) ∩ T−2(X \A) ∩ ...
F ∩ T−nF = ∅ for all n ≥ 1 ⇒T−kF ∩ T−(n+k)F = ∅ for all n ≥ 1, k ≥ 0

⇒F , T−1F , T−2F , ... are pairwise disjoint.

T is measure preserving ⇒µ(T−kF ) = µ(F )

µ(X) < +∞ ⇒µ(F ) = 0. �

(R,L, λ) with Tx = x + 1 gives an example that Poincaré’s Recurrence

Theorem is not true on σ-finite measure spaces.

No point returns to say A = [0,1).
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The three and n-body problem

The problem of finding the general solution to the

motion of more than two orbiting bodies in the

solar system known originally as the three-body

problem and later the n-body problem (n ≥ 2).

In honour of his 60th birthday, Oscar II, King

of Sweden, advised by Gösta Mittag-Leffler, es-

tablished a prize for anyone who could find the

solution to the problem. The prize was finally

awarded to Poincaré, even though he did not

solve the original problem. (The first version of

his contribution even contained a serious error).

The version finally printed contained many im-

portant ideas which led to the theory of chaos.

He found that there can be orbits that are nonperiodic, and yet not for-

ever increasing nor approaching a fixed point. (source Wikipedia)

Poincaré called the recurrence theorem: “the stability theorem à la Pois-

son”.
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Ex.1.: Suppose our space X is the disjoint union of two circles
X = T1 ∪ T2.
We consider the normalized Lebesgue measure on the union.

Suppose α, β ∈ R \Q. Define Tx=

x+ α if x ∈ T1

x+ β if x ∈ T2.

Then T−1(T1) = T1 is an invariant set of of measure 1/2.
Ex.2.: Suppose X = T×[0,1] with the Lebesgue measure on the product.
Let T (x, α) = (x+ α, α).
Then we have continuum many T invariant sets.
The invariant sets Xα = {(x, α) : x ∈ T} are all of zero measure,
but one can find invariant sets of positive but not of full measure as well,
for example X∗ = T× [0,1/2] is also invariant and is of measure 1/2.

D.: Suppose (X,B, µ) is a prob. space. A meas. pres. tr. T of (X,B, µ)
is ergodic if for all A ∈ B, T−1A = A implies µ(A) = 0, or µ(A) = 1.

Example 1 is not an ergodic tr. but the space can be split into two components on

which T is ergodic.

Example 2 is more delicate. This space splits into continuum many “ergodic” com-

ponents each of measure zero and one needs to “disintegrate” the original masure to

obtain suitable ergodic measures on the components.
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T.: (Lp Ergodic Thm. of von Neumann) Let 1 ≤ p < ∞, T be a meas.

pres. tr. on the prob. space (X,B, µ). If f ∈ Lp(µ) then there exists

f∗ ∈ Lp(µ) such that f∗ ◦ T = f∗ a.e. and

||
1

n

n−1∑
k=0

f(T kx)− f∗(x)||p → 0.

T.: (Birkhoff’s Ergodic Theorem) Suppose (X,B, µ) is a prob. meas.

space and T : X → X is a meas. pres. tr., moreover f ∈ L1(µ). Then

1

n

n−1∑
k=0

f(T kx)→ f∗(x) ∈ L1(µ) a.e.

f∗ ◦ T = f∗ a.e. and
∫
X
f∗dµ =

∫
fdµ.

If T is ergodic then (?) f∗ =
∫
fdµ a.e.

In the ergodic case (?) means that the “Boltzmann time average”

1

n

n−1∑
k=0

f(T kx) converges a.e. to the “space average”
∫
X
f(x)dµ(x).
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Next we suppose that T is an invertible measure preserving transformation
on the prob. meas space (X,B, µ).
For invertible transfomations µ(T (A)) = µ(T−1(T (A))) = µ(A), which
means that T−1 is also measure preserving.

D.: Let T be a meas. pres. tr., and A ∈ B with µ(A) > 0 be fixed.
By Poincaré’s recurrence theorem
nA(x) = inf{n ≥ 1 : Tnx ∈ A} is finite for µ a.e. x ∈ A.
Consider (X,B|A, µ|A) where µA(B) = µ(B)

µ(A), for any B ∈ B|A = {B′ ∩ B :

B′ ∈ B}.
The induced (“derivative”) transformation TA : A→ A is given by
TA(x) = TnA(x).

Most of the time we ignore sets of measure zero so it is not a problem
that TA is defined only µ|A a.e.
E.g. the a.e. version of the definition of ergodicity is this:
D.: Suppose (X,B, µ) is a prob. space. A meas. pres. tr. T of (X,B, µ)
is ergodic if for all A ∈ B,
µ(T−1A∆A) = µ((T−1A \A) ∪ (A \ T−1A)) = 0
implies µ(A) = 0, or µ(A) = 1.
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Prop.: TA is measure preserv-

ing.

Proof.: An
def
= {x ∈ A : nA(x) = n}

Suppose B ⊂ A,

for a.e. b ∈ B select xb such that

TnA(xb)(xb) = b ,

since T is meas. pres. and in-

vertible T−1 is also meas pres.

and invertible,

hence for a.e. b ∈ B there is xb.

Set Bn = {b ∈ B : nA(xb) = n}.
Then µ(T−1

A (Bn)) = µ(Bn) for all n.

If n 6= m then T−1
A (Bn) and T−1

A (Bm) are disjoint.

µ(T−1
A (B)) = µ(T−1

A (∪Bn)) =
∑

µ(T−1
A (Bn)) =

∑
µ(Bn) = µ(B). �
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T.: Kac Lemma Suppose (X,B, µ)
is a prob. meas. sp. and T is
an invertible ergodic meas. pres.
tr. If A ∈ B with µ(A) > 0 then∫
A
nA(x)dµ(x) = 1.

Remark: The expected recurrence
time of a point to A:∫
A
nAdµ|A =

1

µ(A)

∫
A
nAdµ =

1

µ(A)
.

Proof.: We use again the Kaku-

tani skyscraper. Let A∞
def
=

∪∞k=0T
n(A) = A∪(TA\A)∪(T2A\

(TA ∪A)) ∪ ....
Obviously, TA∞ ⊂ A∞, since T−1

is meas. pres. µ(TA∞) = µ(A∞)
⇒A∞ = TA∞, (modulo set of meas. zero) ⇒T−1A∞ = A∞ a.e.
Since µ(A∞) > µ(A) > 0, by ergodicity A∞ = X a.e.
An = {x ∈ A : nA(x) = n}.∫
A
nAdµ =

∞∑
n=1

n · µ(An) = µ(X) = 1. �
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Next we turn to topological dynamical systems.

Suppose X is a metric (or a topological) space and T : X → X is a

homeomorphism, (or continuous in the non-invertible case).

D.: The T -orbit , or trajectory of x ∈ X is OT (x)
def
= {Tnx : n ∈ Z}.

In case of non-invertible T we can talk about the positive semiorbit

O+
T (x)

def
= {Tnx : n ∈ Z≥0}. In this case O+

T (x) used in the next defini-

tions instead of OT (x).

D.: A T : X → X topological dynamical system is topologically transitive

if ∃x ∈ X such that its orbit, OT (x) is dense in X.

D.: A T : X → X topological dynamical system is minimal if ∀x ∈ X

its orbit, OT (x) is dense in X.

Exercise: Show that for irrartional α the rotation Tα : T→ T, is minimal.

D.: For T : X → X denote by Pn(T ) the number of the set of those

x ∈ X, for which Tnx = x. (n is not necessarily the minimal/prime pe-

riod.)
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The doubling map

E2(x) = {2x}

=

2x if 0 ≤ x < 1
2

2x− 1 if 1
2 ≤ x < 1.

In complex notation E2(z) = z2,

since (e2πix)2 = e2πi2x.

E2 is non-invertible but it pre-

serves the Lebesgue measure,

λ(E−1
2 (A)) = λ(A) for all A ∈ L.

One can see it on the figure for

intervals, and they generate the

σ-algebra L.

Prop.: Pn(E2) = 2n−1, the pe-

riodic points of E2 are dense in

T and E2 is topologically transitive (and obviously non-minimal).

This shows that E2 has much more complicated dynamics, than Tα.
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Prop.: Pn(E2) = 2n− 1, the periodic points of E2 are dense in T and E2
is topologically transitive (and obviously non-minimal).

Proof.: Using the complex representation of E2:
En2(z) = z ⇔z2n = z ⇔z2n−1 = 1
⇒each (2n − 1)st root of unity corresponds to a point with z2n = z

there are 2n − 1 such equally spaced points ⇒the result about number
and density.
Topological transitivity: Consider x ∈ [0,1) = T in base-2,
x =

∑∞
i=1 ai2

−i = Ξ[a1a2...],
where ai ∈ {0,1} and ∀N > 0, ∃n > N s.t. an = 0 (this way we have
unique repr.).

Then E2(x) =
{
a1 +

∞∑
i=2

ai2
−i+1

}
=
∞∑
i=1

ai+12−i = Ξ[a2a3...].

⇒E2 acts on the binary digits of x as the one sided shift: delete the first
entry and then move each entry to the left. Notation σ[a1a2...] = [a2a3...].
(From this approach one can see the periodic points as well, there are
2p−1 many 0−1-sequences of length p which are allowed, [1...1︸ ︷︷ ︸

p
...] is not

allowed.)
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Topological transitivity: Consider x ∈ [0,1) = T in base-2,

x =
∑∞
i=1 ai2

−i = Ξ[a1a2...],

where ai ∈ {0,1} and ∀N > 0, ∃n > N s.t. an = 0 (this way we have

unique repr.).

Then E2(x) =
{
a1 +

∞∑
i=2

ai2
−i+1

}
=
∞∑
i=1

ai+12−i = Ξ[a2a3...].

⇒E2 acts on the binary digits of x as the one sided shift: delete the first

entry and then move each entry to the left. Notation σ[a1a2...] = [a2a3...].

For the top. transitivity we need x with a dense orbit:

x
def
= Ξ[0 1︸︷︷︸

len.1
0 0 0 1 1 0 1 1︸ ︷︷ ︸

all str. of length 2
0 0 0 0 0 1 ...1 1 1︸ ︷︷ ︸
all strings of length 3

...] = Ξ[ω], this x is allowed and

for any binary “base interval” J = Ξ[a1...aj∗), ∃k s.t. the first j entries

of Ek2(x) = Ξ(σk[ω]) equal a1...aj, i.e. Ek2(x) ∈ J.�
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D.: Given a T : X → X top. dyn. sys. and x ∈ X
the ω-limit set of x (and the α-limit set) is

ω(x)
def
= {y ∈ X : ∃ni → +∞ s.t. Tnix→ y} =

∞⋂
n=0

cl(
⋃
m≥n

Tmx)

α(x)
def
= {y ∈ X : ∃ni → −∞ s.t. Tnix→ y} =

−∞⋂
n=0

cl(
⋃
m≤n

Tmx).

It is clear that ω(x) and α(x) are closed.

So far we have seen examples when ω(x) is

one point when we have an attracting fixed point;

union of finitely many points if x is a periodic point;

the whole space X if T is topologically transitive and O+(X) is dense in X.
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Other cases are also possible: It

is possible that ω(x) is the Cantor-

triadic set C3.

Exercise: x ∈ C3 iff x has an

expansion in base-3 that do not

contain the digit 1, in fact ∀x3 ∈
C3 there is unique triadic expan-

sion 0.a1a2... with ai ∈ {0,2}.
Let E3 : T→ T be given by

E3(x) = {3x}.
Prop.: For E3, C3 is E3 invariant, E3(C3) ⊂ C3, and C3 contains a dense

orbit ⇒∃x ∈ T s.t. ω(x) = C3.

Proof.: E3 acts on the trenary digits of x as the shift ⇒E3(C3) ⊂ C3

x
def
= 0. 0 2︸︷︷︸

len.1
0 0 0 2 2 0 2 2︸ ︷︷ ︸

all str. of length 2
0 0 0 0 0 2 ...2 2 2︸ ︷︷ ︸
all strings of length 3

.... �

23



Symbolic Dynamical Systems
Suppose N ≥ 2,
ΩN = {ω = (..., ω−1, ω0, ω1, ...) : ωi ∈ {0,1, ..., N − 1}, i ∈ Z},
the space of bi-infinite sequences on N symbols.
ΩR
N = {ω = (ω0, ω1, ...) : ωi ∈ {0,1, ..., N − 1}, i ∈ Z≥0},

the space of (right)-infinite sequences on N symbols.
Topology on ΩN (and on ΩR

N) take {0,1, ..., N − 1} with the discrete
topology and consider on {0,1, ..., N −1}Z, (or on {0,1, ..., N −1}Z≥0) the
product topology.
(More structure: If we think of {0,1, ..., N − 1} as a finite Abelian group
Z/NZ then ΩN and ΩR

N are copmpact Abelian (product) topological
groups.)
Given n1 < n2 < ... < nk and α1, ..., αk ∈ {0,1, ..., N − 1} the sets
C
n1,...,nk
α1,...,αk = {ω ∈ ΩN : ωni = αi, i = 1, ..., k} are the cylinder sets,

(similar def. for ΩR
N).

One can define the topology on ΩN , (or on ΩR
N) by saying that the cylin-

der sets are open and form the base for the topology.
(The cylinder sets are also closed, since their complement is the union
of finitely many cylinder sets.)
With t > 1, the metric dt(ω, ω′) =

∑∞
n=−∞

|ωn−ω′n|
t|n|

generates this top.
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Shift:
σN : ΩN → ΩN , σN(ω) = (..., ω′0, ω

′
1, ...), where ω′n = ωn+1 for ∀n.

σN is one-to-one and cylinders are mapped onto cylinders⇒σN is a home-
omorphism.
(ΩN , σN) is the topological Bernoulli shift.
The right-N-shift σRN : ΩR

N → ΩR
N is given by

ΩR
N(ω0, ω1, ...) = (ω1, ω2, ...).

It is a continuous, but a non-invertible map of ΩR
N into itself.

D.: A top. dyn. sys. T : X → X is topologically mixing if for any open
(non-empty) U, V ⊂ X there exists an integer N = N(U, V ) such that for
∀n > N , Tn(U) ∩ V 6= ∅.

Example 1. Irrational rotations of T are not top. mixing.
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D.: A top. dyn. sys. T : X → X is topologically mixing if for any open

(non-empty) U, V ⊂ X there exists an integer N = N(U, V ) such that for

∀n > N , Tn(U) ∩ V 6= ∅.
Prop.: The periodic points of σN (and of σRN)

are dense in ΩN ( or in ΩR
N ),

Pn(σN) = Pn(σRN) = Nn moreover σN and σRN are top. mixing.

Proof.: σnNω = ω ⇔ωn+m = ωm for ∀m ∈ Z, for ∀m ∈ Z≥0 for σRN .

For the density wee need to find in each cylinder set C
n1,...,nk
α1,...,αk a periodic

point.

Each cylinder in ΩN contains symmetric cylinders

C
−m,...,m
β−m,...,βm

= Cmβ with β = β−m, ..., βm.

ω = (... ...︸︷︷︸β−m, ..., βm︸ ︷︷ ︸
↑
0

β−m, ..., βm︸ ︷︷ ︸ ...︸︷︷︸) is a periodic point in Cmβ .

(The case of ΩR
N is similar.)

Each ω periodic by n is determined by the entries ω0, ..., ωn−1 and these

can be chosen Nn many ways.
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Prop.: The periodic points of σN (and of σRN)

are dense in ΩN ( or in ΩR
N ),

Pn(σN) = Pn(σRN) = Nn moreover σN and σRN are top. mixing.

Topological mixing: Each cylinder contains symmetric cylinders. ⇒
it is sufficient to show that for any α = α−m, ..., αm and β = β−m, ..., βm
for sufficiently large n we have σnN(Cmα ) ∩ Cmβ 6= ∅.
If n > 2m+ 1, n = 2m+ k + 1 with k > 0 then let

ω = (∗α−m, ..., αm︸ ︷︷ ︸
−m ↑

0 m

∗ β−m, ..., βm︸ ︷︷ ︸
n−m ↑

n n+m

∗)

Then ωi = αi if |i| ≤ m and

ωi = βi−n if |i−n| ≤ m, that is i = m+k+1, ....,3m+k+1 = n−m, ..., n+m.

Then ω ∈ Cmα and σnN(ω) ∈ Cmβ , since σnN(ω) ∈ σnN(Cmα ) ⇒
σnN(Cmα ) ∩ Cmβ 6= ∅.

The argument for σRN is similar. �
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D.: If T : X → X are S : Y → Y are two top. dyn. sys. and there exists a

homeomorphism h : X → Y such that h ◦T = S ◦h then the two systems

are called topologically conjugate.

Prop.: (ΩR
2 , σ

R
2 ) and (C3, E3) are topologically conjugate.

Proof.: Set φ(0) = 0 and φ(1) = 2.

For points in C3 we will use again the triadic expansion.

Define h : ΩR
2 → C3 by h(ω0, ω1, ...) = 0.φ(ω0)φ(ω1)... .

It is not difficult to see that h is a homeomorphism and h ◦ σR2 = E3 ◦ h.
�

D.: A symbolic dynamical system, or a shift space, is the restriction of

σN , (or of σRN ) onto a closed shift invariant subspace of ΩN , (or of ΩR
N).
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