Ionospheric Storm Monitoring with GNSS

Anthea J. Coster, MIT Haystack Observatory

Outline

MOVIE Introduction Review Atmospheric Measurements History Storm time electric fields Global Space Weather Events

Definition:

TEC = Total Electron Content $(10^{16} \text{ x el/m}^2)$

GPS samples the ionosphere and plasmasphere to an altitude of ~20,000 km

TEC is a measure of integrated density in a 1 m² column 1 TEC unit = 10¹⁶ electrons m⁻²

Space Weather

Definition:

 "Conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can affect performance and reliability of space-based and ground-based technological systems."*

University of Michigan Manchester et. al. 2003

Northwest Territories, Canada

West Texas 15 Sept 2000 near El Paso Texas

(from astronomy picture of the day)

Space Weather

Why do we care?

Never before has our society depended so much on radio waves that can be disrupted by the effects of the Sun's activity on the Earth.

Space Weather

November 20, 2003

Space Weather - Scintillation

Cornell University

IGS Network, 6 December 2006

Introduction

Review Atmospheric Measurements
History
Storm time electric fields
Global Space Weather Events

Atmospheric Propagation

From Attila Komjathy, JPL

Illustration of Atmospheric Effects

Index of Refraction in the lonosphere

$$n^{2} = 1 - \frac{X(1-X)}{(1-X) - \frac{1}{2}Y_{T}^{2} \pm \left(\frac{1}{4}Y_{T}^{4} + (1-X)^{2}Y_{L}^{2}\right)^{\frac{1}{2}}}$$
$$X = \frac{\omega_{N}^{2}}{\omega^{2}} \qquad Y = \frac{\omega_{H}}{\omega} \qquad \omega_{N} = \left(\frac{Ne^{2}}{\varepsilon_{0}m_{e}}\right)^{\frac{1}{2}} \qquad \omega_{H} = \frac{e|B|}{m_{e}}$$

 ω = the angular frequency of the radar wave,

$$Y_L = Y \cos \theta, \quad Y_T = Y \sin \theta,$$

 θ = angle between the wave vector \overline{k} and \overline{B} ,

k = wave vector of propagating radiation,

B = geomagnetic field, N = electron density

e = electronic charge, m_e = electron mass,

and ε_{0} = permittivity constant.

Ionospheric Range Correction

$$n \approx (1 - \frac{\omega_N^2}{\omega^2})^{\frac{1}{2}} \approx 1 - \frac{\omega_N^2}{2\omega^2} \approx 1 - \frac{AN_e}{f^2}$$
$$\Delta R_{ion}(meters) = \frac{40.3}{f^2} \int_0^R N_e \, dr$$

TEC	S-Band	L-Band	UHF	VHF	Elev	Mapping Function
50	2.4 m	12 m	104 m	787 m	90°	x 1
110	5.1 m	26 m	223 m	1.7 km	20°	x 2.12

Ionospheric Parameters GPS can be used to measure

Ground-Based Receivers

- Total Electron Content
- Scintillation Parameters: S_4 and σ_{ϕ}

Space-Based Receivers

- Electron Density Profiles
- Scintillation Parameters: S_4 and σ_{ϕ}

Total Electron Content (TEC) Estimation Dual-Frequency Measurements

Introduction Review Atmospheric Measurements History Storm time electric fields Global Space Weather Events

Solar Flare of 14 July 2000

2000/07/14 09:48

SOHO – Coronal Mass Ejection

Solar Flare of 14 July 2000 Biggest Solar Storm in Nine Years

Caused very large magnetic storm and ionospheric effects

GPS Loss of Lock at Millstone Hill

TEC Disturbances on 15 July 2000

Wide Area Distribution of 'Raw' Information

Distributed networks of sensors yield global physics unattainable with single-point measurements

[Coster et al, 2003]

GPS Total Electron Content Map Illustration of Storm Enhanced Density

Wide Area Distribution of 'Raw' Information

Distributed networks of sensors yield global physics unattainable with single-point measurements

Example : Global GPS-derived ionospheric mapping during geomagnetic disturbances

Geodetic Longitude, Deg

[Coster et al, 2003]

Day 90, 2001

Day 101, 2001

IMAGE Data of Plasmasphere

Introduction Review Atmospheric Measurements History Storm time electric fields Global Space Weather Events

Inner Magnetosphere – Low Latitude View

May 30, 2003 01:00 UT TEC [10,100], TECu

Storm-time Electric Fields

- Cross-tail electric fields energize and inject particles into the inner magnetosphere forming the disturbance Ring Current
- Strong penetration eastward electric field uplifts equatorial ionosphere
 - Equatorial anomaly enhanced
- Radial/Poleward Polarization Jet Electric Fields form (Sub Auroral Polarization Stream). As the Polarization Stream overlaps the outer plasmasphere
 - Storm-Enhanced Density (SED)
 - Detached plasmas/plasma tails

Figure courtesy of J. Foster

Plasmasphere / Ring Current Interactions

Plasmasphere Erosion Plume

(Merged image courtesy J. Goldstein)

Common Features observed in TEC during geomagnetically disturbed conditions

Introduction Review Atmospheric Measurements History Storm time electric fields Global Space Weather Events

Northern Europe and American Sector SED Plumes

American Sector

20 Nov 2003 18:20 UT

MIT Haystack Observatory Geodetic GPS TEC Map from 20-Nov-2003 18:10:00 to 20-Nov-2003 18:20:00 TEC 50 45 40 35 30 25 20 15 10

26 Sep 2011 North Pole

19:00-19:30 UT Kp = 6.3

.

20:00-20:30 UT Kp = 6.3

21:00-21:30 UT Kp = 6.3

22:00-22:30 UT Kp = 5.3

South Pole

Location of Base of Plume stays fixed in longitude North Pole

South Pole

17 March 2013

18:00-19:20 UT

Conjugacy Examples

Conjugacy Examples

Conjugacy Examples

Nighttime MSTID Observations (TEC, Airglow) [Saito et al., 2001]

Japan Tsunami Makes Waves in More Than Just the Ocean

GPS TEC change – no warming

•GPS TEC (Total Electron Content) data show largescale picture of ionospheric behavior

•Before the warming, TEC change is 10-20% from mean and vertical drift is small

•The mean is Jan 1-14, 2009

GPS TEC during warming: morning sector

•During stratwarming, TEC increases in excess of 50-100% in the morning

•Large upward drift at Jicamarca

•The magnitude of increase is similar to effects of severe geomagnetic storms

24-hour satellite path for GPS (Green) and GLONASS (Red)

GLONASS orbit plane inclination: 65°

COMPASS

GALILEO

European Geostationary Navigation Overlay Service

SUMMARY

Over the last 10 years, global GPS TEC maps have provided a paradigm shift in the way we study the ionosphere/plasmasphere/magnetosphere.

GPS has played a key role in system science studies of the atmosphere, but I think we are only at the beginning. How we combine GNSS observations with other data sets is the key to the future.

New discoveries are there buried in the data.

From the Sun to the Earth

Magnetosphere Ionosphere Atmosphere Coupling

