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Consumer GNSS Receiver Design
& comparison with ionospheric scintillation studies
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E T Standard GPS receiver architecture
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Standard GPS receiver architecture

BASEBAND BLOCK REPEATED ONCE PER CHANNEL
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Tri-band front end
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Corefation peak over freg/code search space. Entire frequency and code space is shown

Search space
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Acquisition space review:

Signal Search Area Covers Doppler Frequency (Af,) and Code
Phase (At). The total number of cells in the search space, M, is
equal to the number of code phase bins times the number of

+ At (sec.) Doppler bins.
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! — | search cell

Real-time animation of standard GPS f :
search of freq/code space.
Click picture to play
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Search Engine Evolution (2)

Coarse-Time Acquisition Sensitivity (@ fixed TTFA of 10s) vs. number of code-epoch bins
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Broadcom GPS

Correlation peak over freq/code search space. Entire frequency and code space is shown.
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2) Search all over 100 bins in parallel

Code delavs fchins)

1) Search all code delays simultaneously
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Contributors to frequency offset

8.4 kHz (satellite motion)

0.15 kHz / 100 km/h (receiver speed)
1.5 kHz/ppm (oscillator)

0.1 kHz/100km (init. position)
0.0008 kHz / s (init. Time)
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Dependence on oscillator stability
Does this mean the consumer market

will lead to better oscillators?
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Reminder of receiver design
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Assisted GNSS (1)
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Assisted GNSS (2)

Reduced search space
=> quicker acquisition

/\ => higher sensitivity
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Ephemeris is calculated for many days into the future
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Broadcom, LTO Server, Unique Android Visitors, in 24 hours
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| Unique Android Visitors,
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Back to search spaceW|th AGNSS

—8-4IHz(sateHrtemmoton) N
0.15 kHz / 100 km/h (receiver speed)
1.5 kHz/ppm (oscillator)

0.1 kHz/100km (init. position)
0.0008 kHz / s (init. Time)
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Frequency assistance

Cell towers have
oscillators that are
known to +100ppb

A cell-phone communicating
with a tower can calibrate its
internal oscillator to £100ppb
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Back to search space with A-GNSS
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Result: remaining search space is a fraction of a kHz, easily within the capabilities of modern

receivers. And so the trend is towards worse (= cheaper) oscillators in consumer products @.
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OSCILLATORS & IONO ...



Studying ionospheric scintillation

Measuring phase scintillation: must remove effects of receiver oscillator
Frequency jumps are not tolerable:

20 MHz OCXO (Bad) 10 MHz OCXO (Good)
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Conclusion: higher frequency OCXO showed jumps of the order of 1 rad/s in measured phase = 0.1 ppb

“Crystal Oscillator Noise Effects on the Measurement of Ionospheric Phase Scintillation Using GPS”,
A.J. Van Dierendonck & Quyen Hua IEEE Frequency Control Symposium. May 1998
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Oscillator summary

Typical frequency jumps in different types of oscillators

OCXO TCXO TSX
~$100 ~$0.50  ~$0.25 cost (USD)

0.1 1 10 Ppb

Summary:
for consumer products to measure 10no scintillation effect on phase you would need
(at least) to change the crystal oscillator.
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Measuring scintillation using observed C/No
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MEASURING TEC ...



State of the art, and trends

* Current consumer GNSS is multi-frequency, but across
different systems (therefore different satellite clocks)

« However, the trend is towards L1 and L5

* |n the next decade you may see consumer products
measuring multi GNSS systems on dual frequencies (L1, L5)
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Summary

* You've seen consumer GNSS
designs and trends
— half for your general knowledge
— half relevant to your work
* Consumer products have some
(small) overlap with GNSS for space
science today

* And may be quite useful in years to
come
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