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Propagation delays are derived by the Optical path

Receiver

Satellite Geometrical Optics Approximation

   Optical path between Sat and Rec

D   Geometric distance

T    Tropospheric contribution

I    Ionospheric contribution
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Propagation Delays

Propagation and Atmospheric contributions to optical path

GeometricDistance), ropospheric, Ionospheric 

        =       D + T + I

Equivalent Group Path P = Group delay G  speed of light 

P = G · c = D + T - I

Refractivity R = n -1, n Index of Refraction 
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Receiver

Satellite
Code

 P1 = D + I1 + T +  + 1 + 1 + M1

 P2 = D + I2 + T +  + 2 + 2 + M2

DGD = P2 – P1 = I2 – I1 +  +  + m

I

T

D
S1

S2

Ionospheric Observables

Forming the Differential Phase (DPD) and the Differential Group (DGD) delays, any 
non dispersive term is canceled out, apart the difference of biasing terms and multi-paths 
Q1 – Q2 =>  q) 

Phase

  1 = D - I1 + T + 

 2 = D – I2 + T + 

DPD = 1 – 2 = I2 – I1 + 

I2 – I1 = TEC



How do ionospheric observable look like

Source of data : (Daily) RINEX Files 

Typical: One data point each 30th second per satellite

For a given satellite and epoch get the phases (L1, L2) and the 
pseudo-ranges (P1, P2)  at two carriers

Compute DGD = P2 – P1 (meters)

Compute the optical paths 1 = L1 · 1, 2 = L2 · 2               
        Compute DPD = 1 –2 (meters)

Transform in TEC units (1016 e/m2)  getting the

 Slants (Phase and Code)  



  

DGD = TEC +  +  + m

DPD = TEC + 



  

Offset  is an arbitrary quantity: can we set it in some useful way?

A new set of observables: Phase slants leveled to Code 

Operator <·> is a properly selected weighted (possibly robust) 
average

Build, arc by arc, the leveled slants SL

SL = SP - < SP – SC >

< SP – SC > =    - < m> -  b -  g

 SL = TEC +  < m> +  b +  g

Properties of SL

Noise is the same (neglected) of phase slants

Biased as code slants, But

 an arc dependent  constant leveling error  = < n> + < m>



  



  



  

CALIBRATION

Rewriting the full set of observations 

 As already shown, properly processing GPS measurements, forming differential 
delays (dual frequency receiver), combining them to obtain ‘leveled slants’, one 
gets slant Total Electron Content (TEC) measurements affected by biasing terms 
j(Arc)

  Sijt = TECijt  j(Arc)

At time t
Satellite i

Receiver j
Sijt

i = 1, 2 , …,32  available GPS satellites

j = 1, .., available receivers

t all the available observation epochs (in 
one day or fraction, or many days)

Arc = common to all continuous 
observations performed by receiver j on 
satellite i at times contiguos to t  

We bracket Arc because this term is 

disregarded in the traditional approach 
but basic for the proposed “arc offset” 
solution.



How performing calibration

Calibration can be performed writing TECs as functions of a set of 
unknown parameters |Z|, forming the residuals 

ijt = Sijt - TECijt ( |Z| ) j(k )

 and estimating together the parameters |Z| and unknown biases 
j(k ) in order to minimize ijt ijt

2

Given that

some possible approaches are shown
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Tomography: |Z| parameters are the electron densities of voxels.

 The ionosphere is divided in elements of volume (voxels) inside which Ne is constant. Ne of 
voxels are the unknowns. Evolution with time of Ne is considered to improve the budget 
unknowns/observations. Vertical behaviour of Ne is expanded in Empirical Orthogonal 
Functions (EOF)  
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The multi-shell method

This is the method by which numerical integration is carried out. For each 
shell, a suitable 2D expansion in horizontal coordinates is assumed. 

 

Pi, point on the generic ith shell 

hi increment in height

si increment in arc length

si = hi sec i 



The classical thin shell model

Reducing down the number of shells, and in principle the expected 
accuracy,

take only one (thin) shell at some reference height h

TEC = V(P) sec  

V(P) is the TEC along the vertical of the ionospheric point P

(Vertical Electron Content, VEC)

VEC is a 2D function of horizontal coordinates

Station

Vertical

To 
GNSS

ds

dh

h


P

Ionosphere
In the following, the thin shell method will 

be the only one considered



The expansion of VEC

V(Pijt ) = n c(t)
nn(ijt, ijt

Some simple example

Single-station: assume, at time t, that VEC is constant over the station horizon, 
VEC = V0

(t):

V(Pijt) = V0  
(t)

  

Single-station : assume VEC varies linearly with latitude  and longitude 

V(Pijt) = V(t)
0 + a (t) (   0 )+ b(t) ( )

Which can be improved to bi-linear, bi-polynomial expansion up to the full 
spherical harmonics expansion for global solutions.  



The system of equations and its solution

Rewrite equations of observation

Sijt = TECijt  jArc = V(Pijt) sec ijt  j(Arc) 

Sijt = sec ijt nc(t)
nn(ijt, ijt j(Arc)

Symbolically written as 

S = Ax

Unknowns x will be solved using Least Squares or equivalent (and more 
sophisticated) methods

x = (AT A )-1 AT S

Going back to the equations of observations, knowing solution  x means 
knowing

The coefficients of the expansion of vertical TEC c(t)
n

The biasing terms j(Arc)



After the numerical solution

Having solved for c(t)
n j(Arc), available products are

The calibrated slants

Calibrated slants will be available as TECijt = Sijt - j(Arc)

The Vertical TEC

In addition, as a by-product of calibration, knowledge of the coefficients 
c(t)

n of TEC expansion will enable to estimate slants along directions 

different from the ones of the actual observations. 

TECijt = sec ijt nc(t)
nn(ijt, ijt

The most familiar is vertical TEC (VEC), the Total Electron Content 
relative to the zenith of the station of coordinates j, j

VEC(j,t) = TECjt = nc(t)
nn(j, j



Summary 

All solutions for calibration follow the reported scheme

Extraction of un-calibrated slants from GNSS observations

Solution of the system in the unknown VEC coefficients and 
biasing terms

According to the geographical distribution of stations and the time 
span in which observations are available, several solutions are 
possible getting the possible combinations of one solution per line  

Hourly / Single-day / Multi-day

Single-station / Regional /Global



The traditional method: assumptions

Accept the known limitations of the thin shell approach (which 
enables global and regional solutions)                    

Accept the constancy of biases

Disregard the leveling error contribution 

Solve the system

Sijt = sec ijt nc(t)
nn(ijt, ijt j

In the unknowns c(t)
n j

The indetermination is avoided assuming some  additional 
condition on the set of unknowns j



The traditional method: Advantages 

Sijt = sec ijt nc(t)
nn(ijt, ijt j

Excellent observations/unknowns budget

Unknowns: coefficients of VEC expansion plus one per satellite, one per 
receiver, both constant.

No need to perform calibration for every new set of data:

 just compute the leveled slants and subtract a set of pre-computed j 

TECijt = Sijt - j

Use pre-computed values during storm periods or at extreme latitudes 
(inadequacy of VEC expansion)

 Use pre-computed values provided by others



Use of pre-computed values

Slants to calibrate

From a set of IGS stations (RINEX files)

Work has been already done by IGS: monthly values biases for 
satellites and IGS stations are available at

ftp://ftp.unibe.ch/aiub/CODE/

For users owning their own receiver

Use CODE for satellite biases, set up a calibration algorithm to 
estimate the bias of the receiver 

 Sijt  = sec ijt nc(t)
nn(ijt, ijt



But it may occurr:

Slants (to the same satellite) of co-located receivers are not the same

Possible occurrence of negative TECs at middle latitudes 



Factors affecting the reliability of calibration

Quality of Measurements

Modeling of observation

S = VEC sec  + Arc

Mapping function accuracy, constancy of biases, role of  Arc , adequacy 
of the model used for the expansion of VEC

VEC ( P , t ) = c  ( P , t ) + ?

Conditioning of the resulting systems of equations, used algorithms

Biasing terms and VEC strongly correlated. Is the classical Least Squares  
method the best choice



Ionosphere

A

A

B

B

SB

SA

If A = B then SA = SB

Modeling of observations :

Limitations of the thin shell assumption

The thin shell assumption is self-evidently 
poor: TEC is the same for rays passing 
through the same ionospheric point for 
given , disregarding at all gradients 

Errors range to few TECu in normal 
conditions, but up to 30-40 TECu under 
storm (thesis of Bruno Nava, carried out 
on super-truth data). This may introduce 
severe errors in regional and global 
solutions.



Station 1

S1PRN = TEC+  +  PRN+  

Modeling of observations : the role of Arc

The close stations experiment

< 100 m

TEC



S1 – S2 =-     

Not dependent on PRN 

Station 2

S2PRN = TEC+  +  PRN+  



S1 – S2 , all satellites



It turns out that the Arc term should be takent into account.

To know more about the topic: look at the recent publication on the

Journal of Geodesy

Calibration Errors on Experimental Slant Total Electron Content 
(TEC) Determined with GPS

L. Ciraolo, F. Azpilicueta, C. Brunini, A. Meza, S. M. Radicella
(DOI 10.1007/s00190-006-0093-1)

S = VEC sec  + Arc



The alternative solution

Always perform a single station solution: the thin shell approach can be 
considered exact provided VEC is interpreted as a Vertical Equivalent 
(VEq), such that S = VEq sec  

Take into account of the multi-path error Arc considering an unknown for 
each arc Arc=  + Arc

Observations: leveled slants (or directly phase slants) 
VEq is expressed as a proper expansion of horizontal coordinates l, f with one 
set of coefficients at each time VEq(l, f) = ncnpn(l,f)

Sijt =  nc (t)
n pn ( lijt , fijt ) sec ijt+ Arc 

The unknowns are now the coefficients cn
(t) and the offsets Arc



Proposed solution (Arc by arc)

Proposed solution (Arc by arc) 



  

Summary of the characteristics of the Proposed Solution

Observations

Leveled slants or directly phase slants 

Assumptions

One thin shell at 400 km

Elevation mask: 10o (20 at low latitudes)

 TEC is expressed through VEq at the ionospheric point, by the 
mapping function secone station only!)

VEq expressed as a proper expansion of horizontal coordinates l, f with 
one set of coefficients at each time VEq(l, f) = ncnpn(l,f)

Sijt =  nc (t)
n pn ( lijt , fijt ) sec ijt+ Arc 

The unknowns are now the coefficients cn
(t) and the offsets Arc



  

The adopted horizontal coordinates

Using as horizontal coordinates  Modified Dip Angle (modip)  and 
Local Time, we can assume that for a set of adjacent epochs (up to 
±15 minutes), the coefficients cn

(t) keep constant.

This allows also reducing computing resources during solution using 
commonly used standard methods for sparse systems.

After the solution of the system, we shall avail :

Calibrated slants along the observed rays TECijt = Sijt - Arc

“Mapped slants” at given coordinates lijt , fijt 

Vertical TEC above the station (ionospheric point at the its zenith)

     ijt
Zenith

ijt
Zenith
ijt

n
n

t
n flpctVTec sec,)( )(



  

Why multi-day solution

A multi-day solution is performed, avoiding day to day discontinuities in 
calibrated slants, except that at the beginning and the end of the solution.

Still, at the beginning and the end of the set of data, broken arcs occur.

Broken arcs are generally shorter implying

1. worse results during leveling

2. worse numerical conditioning for the solution 

To reduce these problems, in order to calibrate N days, N+2 days are actually 
processed: first and last day of the N+2  set are discarded.

 



  

The Errors

using a single station and VEq approach avoids the mapping function 
problems.

solving for an unknown offset for each arc helps in taking into account 
of the average multi-path contribution Arc 

Solutions look generally reliable at middle latitudes: but let’s come to 
the basic question (BQ)

How estimating the order of magnitude of errors? 

Presence of errors is evidenced only by the occurrence of negative 
TECs: see next slides



  

Left : middle latitude “not1” (15.0E,   36.9N) No errors?

Right: low latitude “nurk”  (30.0E, 2.0S) Errors!

Why errors in “nurk”? Likely bad observations? (scintillations, …)



  

Estimating Errors

To answer this questions,  truth data would be needed, but they are not 
(or at least scarcely) available.

Why not using artificial data as provided by ionospheric models?              
 This way we shall “calibrate” quantities we exactly know, so getting 
some answer to the “BQ”.

(But keeping in mind that agreement with artificial data is a condition 
necessary but not sufficient to validate the method). 



The artificial data

Ionospheric models enable to estimate median electron density at some time 
at some geographic location, i.e. given date and time, latitude, longitude, 
height.

Ne = Ne(t,,h)

 TEC is the integral of electron density along the ray-path from satellite to 
receiver, 

which will be numerically evaluated as the sum 

or with any more effective numerical algorithm (Gauss, …)

Providing with the slants we need for checking calibration
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Pi, point on the generic ith shell 

si increment in arc length

 

Model TEC computation

Divide the path in elements si

At each point Pi compute the electron density Ne(Pi) provided 
by the model

Multiply by the element length si

Cumulate all elements



Generation of artificial truth data: former approach 

Given all slants actually observed and archived  in a (quasi) complete set of 
IGS stations ( 200 per day)  for year 2000,  days  88-91 ( March 28-31)

Re-compute them using                                                                                         
   NeQuick (Az =150), integrating up to 2000 km

Therefore:

Not only the actual GPS constellation has been preserved for the reference 
period, but also the possible lack of observations (this will affect the solution) 

                                                           



Generation of artificial truth data: current approach 

NeQuick slants are computed for a set of virtual stations 
distributed from 45 N to 45S, spaced 5 degrees in latitude and 
longitude, for year 2012, days  79-81 ( March19-21), using 
NeQuick (Az =200), integration up to 2000 km.

Therefore:

Also in this case the actual GPS constellation has been preserved 
for the reference period, keeping all available observations.

In both cases we shall avail data free from multi-path and any 
other disturbance  

                                                           



Testing procedure

         Former approach                              Current approach

Compute Slants using NeQuick

SOut - SIn

Truth Data SIN

Set of IGS stations Set of virtual stations 

Add random offsets (optional)

Calibrate

Compute Slants using NeQuick

SOut - SIn

Truth Data SIN

Set of IGS stations Set of virtual stations 

Add random offsets (optional)

Calibrate

Calibrated Slants Data 
SOut



SOut – SIn are plotted vs time

Worth (but expected) noting that errors at low latitudes are larger

Remark about highlighted arc: 

 errors show a weakness of the solution.

These errors occur for arcs of low elevation also if, in some case, of long 
duration.

Processing real data, there is no chance to know if the subject arc is ill-
calibrated (unless in presence of very strong errors)

Testing the solution with simulated data will (likely) enable to find a more 
effective way of avoiding such errors, or in a last instance, rejecting them  



  

Sample SOut – Sin (Lon 30.0E, Lat 0.0)



  

Sample SOut – Sin (Lon 15.0E, Lat 30N)



An overall look to the errors: SOut – SIn, whole set

(Former approach)



Current approach
Using all virtual stations enables to look at the behavior of calibration errors versus 
geographical position.

Worth noting:

The generally satisfactory behavior at middle latitudes

The strong correlation on Equatorial Anomaly (modeled by NeQuick, through CCIR 
coefficients i.e. data from ionosondes)

The non continuity of error (i.e. the jump from negative to positive values) in close 
stations. 
 



  

Results for different VEq bi-polynomial expansions are shown

All expansions: linear in local time displacement. 

A) Quadratic in latitude displacement (actually used in the past)

It is expected that at low latitudes a 4th order polynomial in latitude or 
modip displacement is more suitable

 B) 4th order in latitude displacement

C) 4th order in modip displacement

The three black lines plot -15, 0, +15  modiip
 



Current approach 
(Expansion A)



Current approach 
(Expansion B)



Current approach 
(Expansion C)



  

Some remark:

Why current approach is more 
effective?                                    
                                          
Several locations in the 
anomaly area show acceptable 
errors (Expansion A), but in 
very close ones errors jump to 
their maximum values. 
Especially in the past, with a 
poor coverage of stations at low 
latitudes, one could convince 
himself that his calibration 
method was reliable also there! 



  

Still remarks

Where the VEq expansion fits satisfactorily (middle latitudes) the data 
(artificial!), errors seem to be confined to the classical “few TECu”.

At low latitudes better results are obtained using expansion “C” . Note that 
artificial data are free from “observation errors” and possible improvements 
should be based on an improvement of the VEq expansion itself. But 
increasing the order of the bi-polynomial expansion did not give anyway 
significant results.

Possible future developments 

Using effective physical models able to describe the fountain effect and the 
winds (very difficult job)

Using EIV (“Errors In Variables”)  methods of analysis able to take into 
account of the errors of the expansion (Total Least Squares)

 



  

Answer to the basic question

You can imagine now which is the answer

Thank you
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