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INTERFERENCE 
 
 
 

Scalar Approximation 
  
In a region free of charges and currents and of ferromagnetic materials, from 
Maxwell equations one obtain the Equation of d'Alembert for both electric field E 
and magnetic field B. Description of propagation of the electromagnetic field requires 
knowledge of  three components of the electric field and  three components of the 
magnetic field; A total of six unknown quantities.  
 
In the case of waves at optical frequencies, generally only one component of the two 
fields is sufficient to describe all the electromagnetic field.  This fact is known as 
"optics approximation".  It is valid, for example, when the distances from the source 
are large with respect to the wavelength, and in this case one has the so called TEM 
waves.  In TEM waves, the two fields, E and B are normal to the propagation 
direction and normal to each other, in such a way that "propagation direction k", E 
and B can be taken  in the directions i, j, k of a rectangular coordinate system x, y, z.  
 
A transverse Cartesian component, v = v(P,t) of  E or B is representative of the 
complete e.m. field.  Recall that the modulus E and B of the two vectors E and B are 
related by E/B= V, propagation velocity, in the empty space V=c.    
The scalar approximation is also called optics approximation. 

 S2v    v  square is proportional to modulus of Poynting vector, S. It is 
denoted by I, intensity, and is proportional to power flux.  
  
Monochromatic radiation, central frequency   0.5 10+15 Hertz 
Linearity, 
Complete systems.  
 
For component  v(P,t), here simply denoted as v,  D'Alembert equation becomes: 
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where   denotes Laplacian;  and µ denote dielectric constant and magnetic 
permeability, respectively. This equation is valid in the case of empty space and 
homogeneous non magnetic media. Interest here: transparent media. 
 
Choice of coordinate system.   
Separation of variables. 
 

Method of complex exponentials 
 

Let us remember that the e.m. field is real quantity. For instance one solution of  Eq.3 
is 
2)  tPPAtPv1 cos)(),(  
 
Use of complex exponentials helps with mathematics and allows one to find two 
simultaneous solutions.  Let us write: 
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where u(P) is called complex amplitude. 
It is immediately verified that real part of v(P,t) gives above solution v1(P,t) and the 
coefficient of imaginary part gives another independent  solution  v2 (P,t) 
 
4)    tPPAtPv2 sin)(),(  
Conclusion: one can use complex exponentials method by taking into account that the 
real part and the coefficient of the imaginary part only have physical meaning. 
Introduction of Eq.s 3) in D�’Alembert Equation gives 
 

5)   0Pu2kPu2 )()(  
 
Quantity  u(P) is called complex amplitude 
 
Some notations :  
k  =  / V     Wavenumber 

 = 2         frequency 
T =1/  T period 

Helmholtz  Equation  or 
 
Wave Equation 
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In  Eq. 2) quantity 
 
 6)                                (P,t) =  (P) - (t)  
 
is called instantaneous phase, and  (P) simply phase. 
A surfaces where 
  
     is  �“equiphase surface�” called WAVEFRONT 
 
Two  wavefronts  differing by an entire number of 2   are said to be �“in phase�”,  
 
 (P1) �– (P2) =  m 2          m entire number 
 
If  the difference is  (2m+1) , that is an odd number of , one has opposite phases. 
Intensity I(P)  
 
7)                         I(P) =  v(P,t). v*(P,t)  = u(P).u*(P) = |A (P)|2 

 
Values in  Optics: 
 

      0.75   0.37  1015       Hertz 
k      1.6     0.8   107   m-1 

         4    8       10-7 m    = 0.4 - 0.8 µm =  400  8oo  nm   
T       1.3   2.7   10-15 s 
 
NOTE: Laser has reached large part of the spectrum outside optics and now speaking 
of  Optics one includes infrared and ultraviolet radiation.  
 

PLANE WAVES 
 

Here we remember two wave solutions which are of interest for interference. 
Plane wave solution of wave Equation: 
 

8)          
)zyx(ikeA)P(u   ,           where       1222  

 
and A constant (real or complex), is called �“plane wave�” and can also be written as: 
 

9)           rkieA)P(u                 where    k = k n =k (  i +  j +  k) 
                                n =  i +  j +  k 
                                r = x i +y j + z k    vector from origin to a   
          wave point P 

(P) = Constant 
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Wavefronts are the planes, Fig 1: 
 
10) k  r  =  k ( x +  y+  z) = Const      
 
where  , ,   are real quantities and represent the �“cosine directors�” of the normal to 
the wavefront from the origin;  p = n  r  is the distance of wavefront from origin.  
 

11) u(P) = rnikeA = pkieA  
 
 

 
Fig. 1 
 
At time t1 the wavefront 1 is at distance p1 from origin: 
 
 1 =   k p1  -  t1  
after a time dt  position of  1 is 
 
 1 = k (p1 + dp) �–   (t1 + dt) 
from which 
  k dp �–   dt =0;                 dp =( /k)  dt 
 
p increases. Linear  motion.  Velocity 

12)   
k

Vf  

   
Wavefront moves with velocity Vf  “phase velocity”, in our case  Vf = V. 
Wavelength: distance between two subsequent equiphase planes.  At time t1 : 
  
 2)tkp(t)p(k 1111  
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Therefore 

13) f
ff VTVV2

k
2

       useful relations 

 
Important fact:  Frequency    is from source and does not change in linear 
media; the effect of a medium is to change propagation velocity and wavelength. 

Amplitude, A, can be complex   0i
0eAA   and constant   0   represents initial 

phase.  A real plane wave solution, e.g. the real part of the complex solution, of the 
wave equation, written in complete explicit, form is 
 
14)                          t)zyx(kcosA)t,P(v 001  
 
Quantity 0  represents the initial phase in the origin (t=0, p=0). Generally one has to 
deal with phase differences where it does not play a role, often here we assume 

0=0. Quantity 2
0A   is the Intensity (proportional to the power density flux) on a 

surface normal to propagation direction n. 
 
IMPORTANCE OF PLANE WAVES: 
- plane wave is an approximation to describe a wave in limited regions,  
 - e.g. the beam from a lens due to a point source in the focus  
        - the field from a distant source; distance much larger than wavelength and 
 limited region 
- basically plane waves are the elements for representing any e.m. field in terms 
 of Fourier Series or Fourier Integrals. 
 
 

SPHERICAL WAVES 
 

By taking the Laplacian in polar coordinates (r, , ) one can write the wave equation 
in these coordinates. In general solution u = u(r, , ).  First consider a solution 
depending on r, u = u(r). In this case the wave Equation gives  

  0)ur(k
r

)ur( 2
2

2
 

whose solution is    

   ikreAur       ;           
where A is, generally, complex constant. One obtains two solutions: 
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Equiphase surfaces are spherical surfaces: 
 
 0kr  Constant                0  initial phase 
 
At a given instant the total phase  
   0krt  
that is 

16) 
02

01

tkr
tkr

 

 
which represent the phase of  a diverging spherical wave , u1,  and a converging 
spherical wave , u2. respectively. 
 
Wavelength and velocity are equal to those of  plane waves. 
 
Dependence of Amplitude on 1/r  represents conservation of energy. An element of 
spherical surface is:  

   ddsinrd 2  
Power across the element is 
 

  ddsinr
r

AAduud 2
2

*
*P  

Power across an entire sphere is 
 

          *AA4d
sphere

PP  

 
Note: spherical waves have singularity for  r = 0.   
Physical significance: diverging wave u1 represents radiation emitted by a point 
source, valid everywhere apart from a small volume around r = 0 where the source is. 
Converging wave u2 represents focussing of a wave, for instance by a lens, and is 
valid everywhere apart from a small region near the focus.  The effect of a 
converging lens can be described by a converging spherical wave before the focus 
and a diverging one after it.  
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Figure 2.  Spherical diverging wave, from a source, focussed by a lens at point image 
I, then diverging again. 
 
 

INTERFERENCE  
 

TIME INTERFERENCE 
 
Two time coherent waves  
 
Two coherent waves (of the same frequency) at point P: 
 
                 )( ti

2
ti

1 eAveAv  
 
Without loss of generality the amplitudes are assumed equal and real. 
Total field v = v1 + v2.   Intensity   I: 
 
              cos)()( ** 22

2121
2 A2A2vvvvvI  

 
Therefore the intensity value depends on the phase difference, and can be higher or 
lower than the total intensity of the sum of the two waves, as expected. If  = /2  
I=0, and if  =0   I = 4 A2.  Of course total energy in space is conserved due to the 
phase of  other points. 
 
 
Two waves of different frequency (time incoherent) 
 
                                        1             for simplicity   1  >       
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tA2A2eA2A2I 1
222ititi22 2

1 cosRe  
 
Intensity is oscillating function, called �“beating�”, with frequency 1 �–  a high 
frequency in optics. Our eyes (or conventional instruments) cannot follow it, and one 
sees the mean value I  of  I, averaged over a characteristic time   of the eye or the 
instrument: 

                                 
0

dt)t(I1I  

 
If    is large with respect to the period of the beating  Tb = 2 /( 1- )  the average 
oscillating term vanishes and the total intensity of the interference is the sum of the 
intensity of the two waves. Sum of energies means incoherent waves.  
 
On the contrary, if  is of the order of or smaller than the period Tb , then the time 
dependence can be revealed. Modern instrumentation can do this. 
Each instrument has its characteristic time  and one has: 
 

if             
1

2               the instrument �“sees�”  coherent waves 

 

if          
1

2
               the instrument �“sees”  incoherent waves 

 
Therefore interference from two time incoherent waves can be seen as coherent or 
incoherent depending on the characteristic time of the instrument with respect to the 
period of the beating. 
 
 

SPACE  INTERFERENCE  of  COHERENT WAVES 
 

Two plane Waves 
 

Let us consider two plane waves, of same frequency and amplitude propagating in 
two directions ( +   and - ) symmetric with respect to z axis, in plane (x,z).  (  =0).  
The first wave  u1  has  cosine directors  sin , 0 , cos  
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Intensity      

 )sinkx(cosA4*uuI 22  
 
is periodic function of  x, with period  p: 

 
sin2

p;sinpk  

 
On a screen normal to z axis: interference fringes parallel to y axis. 
On those planes parallel to plane (y, z) where  one has  

 
2

)1n2(sinkx    , 

 
field u(P) vanishes.  One can place metallic plane surfaces on these planes, without  
disturbing the field in between: this is the basis of metallic guiding of waves, used 
not only for microwaves but also in optics, for instance  in applications of high power 
lasers. 
Michelson interferometer, Fabry-Perot interferometer and many others such as 
Mach-Zehnder interferometer are based on simple or multiple interference between 
plane waves. 
 

-  
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Fig. 3. Scheme of 
interference of two 
plane waves 
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Two spherical  waves 
 
Two spherical waves (of the same frequency and equal amplitude coefficient A1, are 
centred on   -z0 and  z0 , respectively.  
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For small changes of r the phase of the first wave varies strongly, while its 
denominator does not change appreciably. We can neglect the dependence of 
denominator on r and call A the resulting amplitude.  The same can be said for the 
second wave. When the two distances are not much different from one another, which 
is true when the distance between the two sources is small with respect to the distance 
of point P, one can assume r = r1. 
 
Therefore 
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Intensity I is: 

 
2

)rr(kcosA4I 122  

 

r1 

r 

* * 
- z0 z0 

P 

z

x 

y 

Fig. 4 Two 
spherical waves 
with centres on the  
z axis 
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Surfaces  where  
 

                            
2

)rr(k 1     =   n           that  is     r �– r1  =  n      

are lines of maximum intensity:   they are hyperboloids of rotation, with foci in the 
two source points. Analogous relation is found for the lines of zero intensity. 

Intersections in a plane  x = d, are hyperbolas.  If d is large with respect to all other 
distances, by means of a series development, one can see that the fringes are linear in 
the central region.  

Superposition of spherical waves is the basis for the description of many 
interferometers, such as Young interferometer and Ronchi test. When one source 
goes to infinity, one obtains Newton’s rings. 

 

INTERFEROMETERS 
 

Interferometers played, and still play, a basic role to establish a number of 
fundamental discoveries of physics.  At present interferometers are tools which 
utilize interference to measure small "quantities", for example in metrology, as well 
as to evaluate the quality of optics systems.   
Below some examples are described of interest here, with no sake of completeness. 

a)  Young interferometer 

Young interferometer   was invented by Young to demonstrate the wave nature of the 
light in opposition to the corpuscular theory by Newton.  Young first measured the 
wavelength of light. A sketch of the experiment is shown in Fig.5. It is simpler than 
Young experiment as it is based on the use of laser coherent radiation. 

In the observation plane, at very large distance z=L, and in the central region (  very 
small) the fringes are parallel lines normal to the figure plane. 
Generally, as the holes are not small, the fringes appear inside a diffraction pattern. 
More generally, fringes appear in the intersection between whatever observation 
plane and the rotation hyperboloids produced by the interference of the two spherical 
waves, as described in previous theoretical sections.  
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To be precise the experiment by Young was different, he used two parallel slit, 
instead of holes, and located another slit between source and slits to produce a 
coherent cylindrical wave. The slit was needed due to the lack of coherent sources. 
Now, a laser beam and a lens can give us a field which well approaches a plane 
monochromatic wave in the region of our interest.  

b) Michelson interferometer 

 

  

Fig. 5.   Scheme of a 
Young Interferometer.  
  
A plane wave impinges 
on a screen where two 
small holes are present. 
The holes are small 
enough to neglect their 
dimensions. 
The output of each hole 
becomes a source of a 
spherical wave; on a 
far screen the 
interference fringes 
appear.   

          Fig.6. Scheme of a Michelson interferometer.  
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Michelson's interferometer, Fig 6, was used to make basic experiments in Optics and 
Physics in general.  For instance, the so called Michelson-Morley experiment allowed 
one to "eliminate" the hypothesis of the existence of the "aether" for light propagation 
in the empty space, and was the basis for Einstein's theory of relativity.  

In this scheme, an impinging plane wave is divided in two equal waves by the beam 
splitter; the two waves are reflected by the two corresponding mirrors, and are sent to 
the image plane one by reflection at the beam splitter and the other by crossing it.  

In Michelson interferometer the fringe shapes depend on source and configuration. If 
the two mirrors are not perfectly orthogonal, and there is a small angle  of difference 
from orthogonality, the fringes are lines as shown in the previous section.  When the 
mirrors are exactly orthogonal, the fringes are circular; this configuration was (and 
still is) used to measure small lengths. 

Michelson made another important application of the interferometer to measure the 
diameter of the stars. The configuration used is sketched in Fig.7.   

 

 

c)  Mach-Zehnder Interferometer 

Mach-Zehnder interferometer, Fig.8,  was an alternative to Michelson interferometer 
to be used over very long paths and far apart from one another.  

In this interferometer the light crosses each path (arm) only once.  In the figure, R is 
the region where the "material to be investigated" is located.  Mach-Zehnder 
interferometer finds large applications in fluid dynamics, in particular to measure 
small changes of refractive index in large areas, such as in wind tunnels. 

 

 

Fig 7. Michelson stellar interferometer to 
measure star diameter (from Wikipedia) 
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MACH-ZEHNDER    INTERFEROMETER

Mirror

Mirror

Beamsplitter

BeamspitterR

 

Fig. 8 Scheme of a Mach-Zehnder interferometer. R region where the material to be 
investigated  is located. 

 

FINAL REMARKS 

Interference is present always when there are waves, not only in the coherent case, 
but also in the case of partial coherence or incoherence. Interferometers were also 
used to measure the coherence degree of fields.  
Fabry-Perot interferometer was a basic configuration of laser cavities. Interference 
filters select monochromatic radiation from non monochromatic one, by multiple 
reflections at parallel surfaces and consequent multiple interference. 
Note also that image formation by any system is an interference procedure, as can be 
immediately understood thinking of the image of a star by a perfect lens. By 
remembering that rays are the normals to the wavefront (geometrical optics), one 
obtains the image in the point where the phases along the different rays are equal. In 
the case of aberrations the phases are different and the image is spoiled. 
It is also to be pointed out that a hologram is nothing else than an interference pattern 
obtained by interference of an illuminating wave and the wave "scattered" by an 
object. This pattern is recorded on a support and when illuminated again reproduces 
the field of the object: amplitude and phase. 
Interference of matter waves was also demonstrated, and utilized in the electronic 
microscope where high resolution is reached (remember De Broglie wavelength). 
Atomic interference was the last discovery obtained by using Bose-Einstein 
condensate, BEC. 

  

 


