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Electromagnetic Wave Propagation
in Linear Media

EM wave propagation inside matter - in regions with no free charges
and no free currents ( the medium is an insulator/non-conductor).

For this situation, Maxwell’s equations become:

1) [VeD(7#,t)=0 2) |V-B(7#,t)=0

OB(7,t)
ot

3) |VxE(F,t)=— 1) \VxH(F,t)=
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Electromagnetic Wave Propagation
in Linear Media

The medium 1s assumed to be linear, homogeneous and 1sotropic-
thus the following relations are valid in this medium:

D(7,t)=¢E(7,t)

and

» & = electric permittivity of the medium.
» € =¢ (I +x), x, = electric susceptibility of the medium.

» M = magnetic permeability of the medium.

» M = M (I +x ) x, = magnetic susceptibility of the medium.
» €, = electric permittivity of free space = 8.85 X 107!* Farads/m.

> M = magnetic permeability of free space = 4 X 107/ Henrys/m.
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Electromagnetic Wave Propagation
in Linear Media

Maxwell’s equations inside the linear, homogeneous and 1sotropic
non-conducting medium become:

1) |V-E(7,t)=0 2) |VeB(#,t)=0

OB (7 .. OE (¥
_9B(%1) 4) |VxB(F,t)= pe (77)

VxE(#,t)=
3) * (r) ot ot

In a linear /7homogeneous/isotropic medium, the speed of
propagation of EM waves 1s:
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Electromagnetic Wave Propagation
in Linear Media

The E and B fields in the medium obey the following wave

equation:

L O’E(¥,t) 1 OE(F,1)
VZE(r’t) — = vrz atz

2
at prop

. OB (7,1 O’B(7,t
VB(F,t)=¢gu G )= ,1 (;’ )
Ot rop OF
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Electromagnetic Wave Propagation
in Linear Media

For linear / homogeneous / 1sotropic media:

e=Ke =(1+7,)s, K = £ (1+ z,) = relative electric permittivity
g,
u=K =1+, ) 7 K = £ (1+ Zm) = relative magnetic permeability
Hy
S 1 1 1 1 1 .
o V gﬂ \/Ke goKm ﬂ ) \/KeKm \/goﬂ 0 v KeKm
1 <1 = 1 <
If KK, 21 thus KK B = |Vorop = KK €c=¢

29/01/2015 6




Electromagnetic Wave Propagation
in Linear Media

. g
Note also that since K, = 8_

o

H . :
K, =-— are dimensionless

H,

and

1

quantities, then so 1s [ KK

Define the index of refraction - a dimensionless quantity- ot the linear /
homogeneous / 1sotropic medium as:

JKK, =

n

eu
80 ﬂ 0
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Electromagnetic Wave Propagation
in Linear Media

For linear / homogeneous / 1sotropic media:

Vi =c/n (£ ¢)

For many (but not all) linear/homogeneous/1sotropic materials:

because

=, (1+ 7,) =M,

n=1

( True for many paramagnetic and diamagnetic-type materials)

Thus
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K, =t =(1+y)=1

Ho

= [n=yK,
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Electromagnetic Wave Propagation
in Linear Media

The instantaneous EM energy density associated with a linear/
homogeneous/isotropic material

Upy, (F,l‘)=

1

2

—

(E(F,t)-D(F.1)+B(F,t)H (71))

with
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Electromagnetic Wave Propagation
in Linear Media

The instantaneous Poynting’s vector associated with a linear/
homogeneous/isotropic material

S(7t) = (E(Fr)<B(7.0)) = (E Gy (7)) | 2o
y7;

m

The intensity of an EM wave propagating in this medium is:

Watts )

1)= 507:0) =¥t 7.0) = 352 7) = 35 )em ) (M
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Electromagnetic Wave Propagation
in Linear Media

The instantaneous linear momentum density associated with an EM
wave propagating in a linear/homogeneous/isotropic medium 1is:

B (1) =08 7.1) = 5(70) =X (7)) {130 12
X

S
Vorop m”-sec

The instantaneous angular momentum density associated with an EM
wave propagating in this medium is:

0 (Ft)=Fxp,., (F.t)=¢Fx(E(F,t)xB(#,t ke
EM EM

m-ScCcC
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Electromagnetic Wave Propagation
in Linear Media

Total instantaneous EM energy:

Total instantaneous linear
momentum:;

Upy (1)= [ tesy (Fo)dz

P (£)= | Gy (751)d7

Instantaneous FM
Power:

OB

(t) ——(f) S(r t) ~da

Total instantaneous angular
momentum:

29/01/2015

Loy (1) = Ly (Fo1)d7

(Joules)
=
(Watts)

kg-m”
~ sec
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Reflection & Transmission of Linear
Polarized Plane EM Waves at Normal
Incidence

Suppose the x-y plane forms the boundary between two linear media. A plane wave
of frequency ®- travelling in the z- direction and polarized in the x- direction-

approaches the interface from the left
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Incident EM plane wave (in medium 1):

Propagates in the +Z -direction (i.e. k, = +k, =+Z), with polarization |7,,, = +x

ff=27/3=apy

E'. (z,t):E gtz

with:

k,

inc ::‘A%nc =

4!

mc(-at‘)——k < B (2 t)—— 2

o(hz-00) 5

y

since:

Reflected EM plane wave (in medium 1):

’\

~

>
.
[ P
X

=
I

+
Yt

Propagates in the —Z -direction (i.e. —k, =—2 ), with polarization |7,,, = +X
E‘,q? (z,0)=E, e’(_k‘z_m)i with: kmﬂ = k| =y = ‘A?l’: 272 = ofw,
B, (z.1) ——k ><E == '( "5 since: lemﬂ Aoy =
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Transmitted EM plane wave (in medium 2):

Propagates in the +Z -direction (i.e. k:mm = +I¢At2 =+2), with polarization |, =+X
EN’n'ans (Z’t) - E‘om ei(kﬂ_""”)‘f Wlth klrans - Etrans - k2 - EZ - 27[/12 - a)/vz
R 12 P R - e TN I I S SO S
B, .. (z,t) =k, XE, (z,t) =—KFE, y| since: |k, X, = FZXX=+)
‘b ‘E "

In this situation the E -field - polarization vectors are all oriented
in the same direction

7

~

inc — nrq'l =n

frans

~

=+X

29/01/2015

or equivalently:

E,. (F,t) | Ep (7o) | E s (7,2)
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

At the interface between the two linear / homogeneous / isotropic
media -at z = 0 1n the x-y plane- the boundary conditions 1 — 4 must be
satisfied for the total E and B -fields immediately present on either side
of the interface:

BC 1) Normal D continuous:  |gE- =&E;

1T ot 2T ot

(n.b. L refers to the x-y boundary, i.e. in the +Z direction)

BC 2) Tangential E continuous: E' = E!

lTot 2Tor

(n.b. || refers to the x-y boundary, i.e. in the x-y plane)
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 3) Normal B continuous: Bliot = sz;o,

( L to x-y boundary; 1.e. in the +z" direction)

o 1 1
BC 4) Tangential H continuous: —Blnm =_B;|z|

H H,

Tot

(| to x-y boundary; i.e. in x-y plane)
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

For plane EM waves at normal incidence on the boundary at z = 0-
lying 1n the x-y plane- no components of E or B (incident, reflected or
transmitted waves) - allowed to be along the £z propagation direction
(s) - the E and B-field are transverse fields -constraints imposed by
Maxwell’s equations.

BC -1) and BC- 3) impose no restrictions on such M waves since:

{EJ_ =EZ

lTor lTar

=0; Ef =E:

2Tot 2Tot

=0}and {B" =B’ =0; B =B’

lTot lTot 2 Tot 21" ot

=0}

= The only restrictions on plane EM waves propagating with normal
incidence on the boundary at z = 0 are imposed by BC-2) and BC- 4).

29/01/2015 18



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Atz = 0 1n medium 1) (i.e. z < 0) we must have:

B (z=0,0)=E, (z=0,1)+E,,(z=0,¢)| and
1 = 1] = 1] =
—B! (z=0,t)=—B8, (z=0,t)+—B,_,(z=0,t
B (2=00) =B (2=0.0)+ B g (= 01)

While at z = 0 in medium 2) (i.e. z 2 0) we must have:

E!m (z=0,t)=E,, (2=0,1)| and
LB (2=0,)=—5,,, (z=0.1)

29/01/2015
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 2) -Tangential £ 1s continuous @ z = 0) requires that:

— —_—
~

Ell

lTot

—
~

_|2=0| oI E.__ (z = 0,1‘) + E'reﬂ (z =0, t) = l:ir

ans

(z=0,t).

BC 4) -Tangential A is continuous @ z = 0) requires that:

| | 1 =
or: —Bmc(z=0,t)+—B,_ (z=0,1)=—22,
# m?

frans
2

(z= O,t)
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Using explicit expressions for the complex E and B fields

E:inc (Z’t) - Eo- e"(kIZ—“"‘))’E. §inc (Zat) = lk’\imc 2 E:mc (Zat) = _Eo. el
mnc vl vl i
> I i(~kyz-ot) ~ R 1A ~ 1 ~ i(~kz-ot) A
K. (z,t)= Eomﬂe( b= B, (z,l‘) = v—lkreﬂ XE, (z,t) = _ZE"nﬂe( “
E:h'ans (Z’t) . Eo ey Etmns (Zat) - ik’\hans & ﬁhans (Z?t) - iEo eZ(kz 5
ig Y, Vv trans

The above boundary condition relations become

29/01/2015 21



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 2) (Tangential E continuous @z=0):

BC 4) (Tangential H continuous @z=0):

ik b

i, P -k,
- Y ? Y, -

il

Cancelling the common e?*factors on the LHS & RHS of above
equations - we have at z = 0 ( everywhere in the x-y plane- must be

independent of any time t):

29/01/2015
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 2) (Tangential E continuous @ z=0): E o+ =

() Oreft Otrans
L _ | 1 =~ | QR
BC 4) (Tangential H continuous @ z = 0): E, ——F, = Eom
ﬂlvl /u]vl ! ﬂ2v2

Assuming that {x; and /,} and {v; and v,} are known / given for the two media, we have two

equations {from BC 2) and BC 4)} and three unknowns {£. , E. , E. }

Oinc > "~ Orgt 7 ™ Otrans

29/01/2015 23



Reflection & Transmission of Linear
Polarized Plane EM Waves at Normal
Incidence

— Solve above equations simultaneously for

{E’% and Eow } in terms of / scaled to £, .

Define: [?__ JZA%
/Ll2v2

BC 4) -Tangential H continuous @ z = 0- relation becomes:

Eoinc - Eoreﬂ = ﬂ Eotrans

929/01/2015 94



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

BC 2) -Tangential E continuous @ z = 0 - gives:

E ne + Eors = Eofram

o; p

BC 4) -Tangential H continuous @ z = 0- reduces to

= _ 7 _aF . _ 4y
EO,-,,,,. _Eomﬂ - IB Eom.m with :B= =
V)

29/01/2015 95



Reflection & Transmission of
Linear Polarized Plane EM

Waves at Normal Incidence
Add and Subtract BCG -2) and BC- 4) relations:

2133 =(1+p) E

—

B - (

2
1+ f

]E

_ (MJ i
2 ) o

Insert the result of eqn. (2+4) into eqn. (2—4):

29/01/2015

Z

. 1-f
E —l
Oren ( Z

I

1+

(5

-/
1+ f

).

(2+4)

(2-4)
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

5 5 2 ) .
E, 1= ﬂ and |, =|——-+ |,
refl 1 + ﬂ trans 1 + ﬁ inc

C _ &M

J7RY c &l
Now: |f=—1| and:|v,=—| |v, =—| where: |1, and |n, = |22
:u2v2 n n2 go:uo go:uo

gt Aln) gy pemles ety \/[ M Jz Akt
H, H

) Y, /”2( c/ 2) i /Uz\/gl/ul/g H,  Hy & 611,
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Reflection & Transmission of

Linear Polarized Plane EM
Waves at Normal Incidence

Now 1f the two media are both paramagnetic or diamagnetic-

such that

l.e.

Am,

< 1

=1, (14 2, ) = 1,

and:

=1, (14 7, )~ 4,

Common for many (but not all) non-conducting linear/
homogeneous/isotropic media

Then

HV; V) n,

29/01/2015

j for |14 = p, = 4, or

K,

<1
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

refl

1-p
1+,6’

S

-(w/v,)

1+(w/v,)

Jie|

vV, —V

VvV, +V

1 ~
J Eoinc
1

Then

i =[

2

1+4

=

2

1+(V1/v2)

2v

2

X

v2+v

).

~

E-C

We can alternatively express these relations in terms of the

indices of refraction n, and n,:

E

Oreft

|

n —n

2 ~
) Eoinc
2

n +n

29/01/2015

and |E

otrans

|

2n

n +n

1
o,
2

~

E

inc
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

~

Now since: _ i5
E, =E e
o
[

0 = phase angle (in radians) defined at the zero of time - ¢ = 0

\

Then for the purely real amplitudes (E, Eomﬂ , By )

otrans

29/01/2015 30



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

The relations between real amplitudes become:

[ for |14 = p, = 4,

1 4
Oreft 1 + ﬂ Oinc v2 + vl Oinc nl + nz Oinc ,UZVZ

2n, E
n,+n,

=, = H,

§°m

a8

I
N
e

n ‘N
e
N
S'Qm
= S
N
S
N S

ey

I
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Monochromatic plane EM wave at normal incidence on a
boundary between two linear / homogeneous / isotropic media

for |,U] = H, = H, for the following cases:

If v, >v, (i.e. n, <n) {e.g. medium 1) = glass = medium 2) = air}:

- - . . . .
v T . n —n, = Eomﬂ 1s precisely in-phase with
| ' E, because (v, -v;)>0.

929/01/2015 39



Reflection & Transmission of Linear
Polarized Plane EM Waves at Normal
Incidence

Ifv,<v, (i.e. n,>n,) {e.g. medium 1) = air = medium 2) = glass}

. 0 .
e N A E,, 15180 out-of-phase with
R S R R B E, because (v,-v)<0.
—_— " —n The minus sign indicates a 180°
- —_ 2 1 1 2 . -
Le. Eo,q, = E, =- E, | = | phase shift occurs upon reflection
HTh LREC for v, <v, (i.e. n, >n, ) !
, <V, (Le. ny, >n )
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

E, 1salways in-phase with E, for all possible v, &, (m, &n,) because:

EO = L EO- = zvz EO- = 2 nl EO.
frans 1+4) ™ v, +V, n, +n,

29/01/2015 34



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

What fraction of the incident £ZM wave energy 1s reflected ?

What fraction of the incident £ZM wave energy 1s transmitted?

In a given linear/homogeneous/1sotropic medium with

V= ’g"’u" c=c/n
ep

The time-averaged energy density in the EM wave is:

(tzas (F1)) =%gEj (F)=£E2 (F) (Jouiesj

m

29/01/2015 35



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

The time-averaged Poynting’s vector is:

The intensity of the EM wave 1s:

]

§(F,t)‘>=v<uEM(F,t)>=v(—gEj(F))=lngj(F)=ngjm(F) [ :

2 2

1(;7)5<

29/01/2015 36



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

The three Poynting’s vectors associated with this problem are such
that

§inc ”(+2)’ S;reﬂ ” (_ZA) and S.tmns ” (+2)

For a monochromatic plane EM wave at normal incidence with

:ul = luz = :uo
V2" E = LT E /8 = Yy
v,+v, ) ™ \nm+n, ) LV,

EO = L EO P = 2 vz EO- = 2 nl EO-
frans 1+4) ™ v, +V, n,+n,

29/01/2015 37
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Take the ratios (Eo,,ﬂ / E, )and (Eom / EO.-,,C) - then square them:

E

or@l

EO

inc

=]

BR

2 2
V2+V1] (nl+n2)

and

~
M~

K

2v, 2n,

n, +n2

=)

V, + A4

29/01/2015
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

Define the reflection coeflicient as:

k(7 :(zmﬂ (7)] (S (P0) ) (@) devEL(F) EL(F)
Le(F)) (S, () wlum (Fr)) (i (Fur) 3ams (F) B, (F)

Define the transmission coeflicient as:

I(7)- [f_()} (S i) (B () _emE ()
L.(7) <‘§(Ft)‘> v1<u?f4(17,t)> (%%%Efm (F)) gllej,-m (7)
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Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

For a linearly-polarized monochromatic plane EM wave at normal
incidence on a boundary between two linear / homogeneous /
1sotropic media, with =, = H,

Reflection coeflicient:

Transmission coefficient:

29/01/2015 40



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

N2
But: E, (7) (1= 2~ v, —V, 2_ n, —n, : -
E, (7) 1+ f v, +V, n, +n,
N2
E, F)) (2 Y (2v, Y ( 2, Y
E, (17) 1+ f v, +V, n, +n,
Thus Reflection and Transmission coelflicient:

Rt

2 2 2
2 E,V, 2v, &V,
1+ ev, \ v, +v, &V,

4l



Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence

&MV,
EVy _ M
&V SV,
4,

Now:

but:

&4

_(vz ]/2 A“_Mv_

Ll

29/01/2015
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b

HV,

&V

42




Reflection & Transmission of
Linear Polarized Plane EM
Waves at Normal Incidence
(—or |/ m 1, * U,

T(F)z(gzsz( : J:ﬂ(i]z: 1p_ 1 vy __4nn,
ev, \ 1+ 1+8)  (1+8) (v,+v) (m+n,)

Thus:

2

royr)=Ll W A D 188 g ragg L8]

(1+p8)  (1+p) (1+B)’ (1+p8)  (1+p8)

|R(F)+T(F):1 =EM energy 1s conserved at the interface/
boundary between two L./H/I media
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Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

A monochromatic plane EM wave incident at an oblique angle 6.

1nc

on a boundary between two linear/ homogeneous/isotropic media,
defined with respect to the normal to the interface- as shown

SIS

29/01/2015 il



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The incident EM wave 1s:

Einc (Frt) - E:O- ei(Ei"c.F_ﬂ) and Binc (F’ t) = lj& X E (F’t)
inc v

The reflected EM wave 1s:

~ — ~ ik, g o7 —c ~ — 1 - ~ -
E_ (r,t)=Eor¢e(quz t) and |B,, (r,t)=v—kreﬂ xE, ., (7,1)
1

The transmitted EM wave 1s:

= A (A =
Epps (7o) =E Sl oa |

Opans frans

. [ =
(i’,t) = _ktmns xEtrans (r>t)
v2

29/01/2015 45



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

All three EM waves have the same frequency- f=0/27
o= kincvl = kreﬂvl = ktransv2
1% Vv n n
kmc = kreﬂ = kl = (_2] ktrans = (_2) k2 = [_IJ ktrans = (_1] k2
1 vl n2 n2
v.=c/n i=1,2

The total EM fields in medium 1

R
3

By, (7o) = By (7o) + B,y (71)| and |By, (7,t)= By, (F,1)+ By (7.1)

29/01/2015



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Must match to the total EM fields in medium 2:

E,. (7.0)=E,, (.1)| and |B,, (F.1)=B,,, (7.1)

Using the boundary conditions BG1) — BC4) at z = 0.

At z = 0- four boundary conditions are of the form:

—

kmﬁ-i’—mt) ()-c;mm -F—a)t)

O A o WA et X

They must hold for all (x,y) on the interface at z = 0 - and also must hold for

all times t. The above relation 1s already satisfied for arbitrary time, t - the

factor e 'Wtis common to all terms.
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The following relation must hold for all (x,y) on interface at at z =

0:

-7

(w)ei(l?,-m-?) +(—) ei(Emﬂ.F) —(—) ei(];ms )

When 2z = 0 - at interface we must have;:

— — —

koo =k, g oF =k, oF

mnc frans

kmcxx+kmyy=kreﬂxx+k,_eﬂyy=k x+k__y @z =0

trans, trans,,

29/01/2015

48



Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

The above relation can only hold for arbitrary (x, y, z =

0) iff ( = if and only if):

k x k x k trans., X = k k refl, — k trans,
kznc k refl, Y= k trans,, y — k kreﬂy — kz‘ransv

29/01/2015 49



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The problem has rotational symmetry about the z —axis- without any
loss of generality - choose k to lie entirely within the x-z plane- that 1s
no component of k in y-direction as shown in the figure on next slide

Kine. =Ko =Kpans, =0 andthus: k. =k, =k

Inc refl : trans,, efl. frans,

—_— —_— .

The transverse components of k. .k .,k reall equal and point in

inc® "“refl > “trans

the +x” direction.
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Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

29/01/2015

51



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The First Law of Geometrical Optics:

The incident, reflected, and transmitted wave vectors form a plane - called
the plane of incidence- which also includes the normal to the surface -here
the z axis.

The Second Law of Geometrical Optics (Law of
Rétboocthofigure- we see that:

k. =k

frans, frans

sin &

trans

k =k smn6 — kmﬂx - refl Slil greﬂ

inc, inc inc

kz’nc = kreﬂ = kl — |SII ginc = S greﬂ

0 =0 Law of

inc — “refl] Reflection!
29/01/2015 52
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The Third Law of Geometrical Optics (Law of
Refraction — Snell’s Law):

For the transmitted angle - &, we see that:

trans

k. sin0

inc

=k, sin@

frans

Inmedium 1):  k =k =w/v, =no/c=nk,

1

where  k, = vacuum wave number =27/4,

and A, = vacuum wave length

In medium 2): |k, =k, = ofv, =n,ofc=nyk,
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

kinc Sin ginc = kzrans SIn gtrans = kl S einc = k2 S1n Htrans

k =k =nk|and|k_ =k, =nk

mnc frans o

: : : : LLaw of Refraction
k.smf =k sin@ = |n,sinf =n,sml
1 inc "2 trans . - ‘ (Snell’s Law)

sin szns 7!

1

Which can also be written as:

Sm Qinc n2
Since &, refers to medium 2) and 6. _refers to medium 1)
. : sin), n
|n1 siné, =n, sm(92| or" — 2 — 1
X X sin€ n,

(incident) (transmitted)
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Using three laws of geometrical optics we can see that :

=k __ or

refl °F | z=0 trans

z=0

Thus

ei(Ei"c-F—mt) | _ i(ﬁrql-r—mt) I _ i(ktmm-i:—mt) |

everywhere on the interface at z = 0 -in the x-y plane and valid
also for all time(s) t, since W 1s the same 1n either medium (1 or 2).
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The BC 1) — BC 4) for a monochromatic plane EM wave
incident on an interface at an oblique angle between two linear/
homogeneous/1sotropic media become:

BCG 1): Normal ( z-) component of D continuous at z = 0 (no free
surface charges):

& (Eom +E ) = 82E {using D=c¢E

BC 2): Tangential (x-, y-) components of E continuous at z = 0:

P +F )=E
( Ofncx’y orqlx,y Orransx’y
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

BC 3): Normal (z-) component of B continuous at z = 0:

(B, +B,,)=5
refl,

oincz orransz

BC 4): Tangential (x-, y-) components of H continuous at z = 0
(no free surface currents):

Note that 1n each of the above, we also have the relation

tlju

= 1 ~
B, =—kx
v

29/01/2015
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

For a monochromatic plane EM wave incident on a boundary
between two L. / H/ I media at an oblique angle of incidence -
three possible polarization cases to consider:

Case I): E, L plane of incidence

{B

mnc

Transverse Electric (TE)
| plane of incidence} Polarization

Case II): El.

nc

lane of incidence :
I'p Transverse Magnetic

{B, L plane of incidence}  (TM) Polarization

"

Case III): The most general case: E. = 1s neither L nor || to the plane of incidence.

{= B, isneither || nor L to the plane of incidence}
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Case I): Electric Field Vectors Perpendicular to the Plane
of Incidence: Transverse Electric (TE) Polarization

*A monochromatic plane EM wave 1s incident on a boundary at z =
0 -in the x-y plane between two L/H/I media - at an oblique angle
of incidence.

*The polarization of the incident EM wave 1s transverse (L ) to the
plane of incidence (containing the three wave-vectors and the unit
normal to the boundary n” = +z" ).

*The three B-field vectors are related to their respective L -field
vectors by the right hand rule - all three B-field vectors lie in the x-z
plane (the plane of incidence)
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The four boundary conditions on the complex £ and B fields on
the boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no free
surface charges)

(R ol =

BC 2) Tangential (x-, y-) components of E continuous at z = 0:

(E +E )=1§ ~|E +F =E
refly inc refl trans

0. [e)
inc tmnsy
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

BC 3) Normal (z-) component of B continuous at z = 0:

(Boinc + Boreﬂz ) - Otrans
inc = e, + e, = Sin gincx + COos anZ
kmﬂ =k . +k ~ =sin 6 _,x —cos Hmﬂz
k trans k trans, + ktransz = Sin gtransx +COs gmmsz
B 2.BR 3\—R 3 lE sinf +E sinf 2=lE sinf_ z
B 0. 2 + B O Z|= Botr Z| v Oine inc Oref refl » Otrans trans
inc; z ansz 1 2
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Using the Law of Reflection on the BC 3) result:

~

sin

0

frans

Eoinc + Eoreﬂ

=[v1
‘3

sin @

] E~‘orra

inc

Using Snell’s Law / Law of Refraction:

n n ] ]
. _ . 1 . _ 2 . . _ .
nsin =n,smf | = |—=sinf, =—<snb | = |—sint =—sinb
c c v, v,
v, sinf
. —_ : . 1 frans | _
or: |v,sinf =v;sinf | or: ( g ] =1
v, sinf
Reduces to BC2) E, + Ot " Orpans

29/01/2015
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

BC 4) Tangential (x-, y-) components of H continuous at z = 0 (no
free surface currents):

= L(Eom (—cos Bm)-l-l:l'% Ccos 9,,@,,)55 =

Vi

Using the Law of Reflection on the BC 4) result:

(Eo,.,,, _ ):[,ullvl - COS O,y JE

O’M om
fhV, COSO,,

29/01/2015



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

From BC 1) = BC 4) actually have only two independent relations
for the case of transverse electric (1'E) polarization:

~ ~ ~ = = 7 ~
D |E,_+E, =E,_ | 2 |E, -E,)=|EL === |,
inc refl trans inc refl ’le V2 coS 91 - trans
_ ‘ﬁﬁ}ﬁ = (3C”5£2vans
Define: ,3=(EJ ¢ { cosd,_ J
Then eqn. 2) becomes:
JE;%RC - ongl = (2a£; J.E:":’tmn.s'
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Adding and subtracting Eqn’s 1 &2 to get:

~ 2 )= - 1-af ) ~
Otrans [ 1 +a )BJ Oinc eqn ( ) Eorgﬂ ( 2 ] Eotrans eqn' (2 1)

Plug eqn. (2+1) into eqn. (2—1) to obtain:

b (52 g )~ (5 )2
Oref 2 l+aff ) ™ (l+af

E, (1- E
—L = ap and |—="=- = =
E, \l+af E, 1+ af
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The Fresnel Equations for E | to Interface

=FE | Plane of Incidence = Transverse Electric (TE) Polarization

with

29/01/2015 66



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

For TE polarization:

Incident Intensity

k. oz

{%vlgl (™ )2] :

mnc

1 =|(SEE ()2

[t -S .

Reflection Intensity

T M e ) Ry

Transmission Intensity
TE 2 l TE 2
—v &, (Eom ) cosl. __=—gv, (E ) cosf,_

- |(8, (1))+2] = e (EZ.
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflection and Transmission coefficients for transverse
electric (TE) polarization

cos &

nc

1 E \2 5
I e G e YENE em][Ezsm]
2
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The reflection and transmission coefficients for
transverse electric (TE) polarization

29/01/2015
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Case II): Electric Field Vectors Parallel to the Plane of
Incidence:

*A monochrbrnaatsvplare Mewateci§ iiddént o adiormdary at z =
0 1n the x-y plane between two L. / H/ I media at an oblique angle of
incidence.

*T’he polarization of the mcident EM wave 1s now parallel to the
plane of incidence —(containing the three wave-vectors and the unit
normal to the boundary n” = +z" ).

* The three B -field vectors are related to E -field vectors by the right
hand rule —then all three B-field vectors are L to the plane of
incidence {hence the origin of the name transverse magnetic

polarization}.
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The four boundary conditions on the complex E and B-fields on the
boundary at z = 0 are:

BC 1) Normal (z-) component of D continuous at z = 0 (no free
surface charges)

&)

~

—E, sind

mc

(
\ ox'ncz onsﬂz
(
\

+ Eo,,ﬂ sin 6’,67,) =g, (—E’ sin 0

Orans frans )

&

BC 2) Tangential (x-, y-) components of E continuous at z = 0:

oinc Otransx

CcOS Qeﬂ) =E_ cosf,

rans frans

(£, +E, )=
x refly

(Eom cost, + 5,
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

BC 3) Normal (z-) component of B continuous at z = 0:

=0 =0 =0
/ +h |=5B = [0+0=0
inc, refl, trans

BC 4) Tangential (x-, y-) components of H continuous at z = 0 (no
free surface currents):
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

From BC 1) at z = 0:

E -E =28\ |22\ -pF
Oinc Oret o Oans Oans Otrans
81 n2 8lvl

v £,V
where: ﬁz('uu}=( ZZJ
/’IZVZ glvl
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

From BC 2) at z = 0:

~ ~ cos 0 ~ ~ cos @
— frans _ — frans

(Eom + Eo,.eﬂ ) — 0 Eo,mm — an,rm where: o= 2
cosl, . COS Uipe

Thus for the case of transverse magnetic (I M) polarization:

E’W—E = pE, | and EM+EO =ak

Otrans 0; refl Otrans

Solving these two above equations simultaneously, we obtain:
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

~

'lz;%mns - [:

2
a+ f

:]‘ziiﬂnc

~

refl

a-pf
a+ﬂ

).

The Fresnel Equations for B|| to Interface

=B | Plane of Incidence = Transverse Magnetic (I'M) Polarization

29/

01/2015
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflected & transmitted intensities at oblique incidence
for the T'M case

LY =v < ﬂiff (t)>.2 = /%"151 (EZM )2] cos. = %glvl (EgM )2 cos .
\
L =V, <§3{ (t)>.2 = i%vlgl (Ef; )2] cos ), = %51"1 (Ef:: )2 cos 0,,,

™
I trans

v, <.§m (t)>-2

T e
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflection and Transmission coefficients

29/01/2015
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

The Fresnel Equations

TE Polarization TM Polarization
(" TE (" - TM
Eow | _(1-0p Eog | _(a—8
\Ejfc 1+ap \Ejf a+p
(EE. ) 2 (EM J 2
E |~ ™ |
£, ) (1+ap) E,, ) (a+B)
cosb,,
a = L] V. = c = 1
cos @, 1 Al / VEth
£ = T T R s 7| v2:7 :/
Ly, &vi  LHh &h, "y NEZY L)
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Reflection and Transmission Coefficients R & T

R+T=1
TE Polarization TM Polarization
1E 1E \? 2 ™ ™ \2 2
12 EE.I;gﬂ jg;mﬂ _ ]."CZI? 1? _ jngﬂ l?o"ﬂ a—
Yoone | EEX 1+ ap D Vv a+p
2 2
p o (Toms | g o | — 48 | |7 _(Jome | g o | 408
IE — TE o 1E o IM — M - IM 2
Iinc Eai,,c (1+aﬂ) Imc E"m (a+ﬁ)

ﬂ:ﬂlvl_g2v2_:uln2_‘92nl v_/ _/
— — — ) = —
n
Ly, &V, LHhn  &h, 2 &,

29/01/2015
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Reflection & Transmission of
Monochromatic Plane EM Waves at
Oblique Incidence

@ Now explore the physics associated with the Fresnel
Equations -the reflection and transmission coefficients.

© Comparing results for TE vs. TM polarization for the cases
of external reflection (n1 < n2) and internal reflection n1 > n2)

Comment 1):

= When (&, /E,)< 0 - E,,; 15 180" out-of-phase with E;

o1mc

since the numerators of the original Fresnel Equations for
TE & TM polarization are (I—a& S ) and (& — S )
respectively.
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Comment 2):

*For TM Polarization (only)- there exists an angle of mcidence where
(E.q 7E., )= 0 - no reflected wave occurs at this angle for TM
polarization!

*This angle is known as Brewster’s angle 6 ; (also known as the
polarizing angle 6, - because an incident wave which is a linear
combination of TE and TM polarizations will have a reflected wave
which is 100% pure-TE polarized for an incidence angle 6. =6,
=6, .

‘Brewster’s angle 6y exists for both external (n, < n,) & internal
reflection (n; > n,) for TM polarization (only).
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Brewster’s Angle &,/ the Polarizing Angle €, for

Transverse Magnetic (TM) Polarization

[ pIM [ pIM )\ _ a-p . .
From the numerator of  \Ea /E. )—( ~+ p his ratio = 0 at Brewster’s

angle 8 ; when (& —f)=0,i.e. when & = 8 .

coso, ..

n, n
and |f= P M
cosd,. L n

But: |a for |m=p =pn,

€080, =150 6, and Snell’s Law:  SinOyp, = [—Jsinﬁm
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

Brewster’s Angle &,/ the Polarizing Angle & , for
Transverse Magnetic (TM) Polarization

1 .
l——2$1n29

inc

= f°cos’ 6, = p’ (1 —sin’ Q.M) «— Solve for sin*

inc

1-g _(1=-5°)7°

1
1-3*=| —— f* |sin“ 0 | = |sin“ @ = =
ﬁ (ﬂz ﬂ J inc inc /ﬂz _ﬁ2 (1_ﬂ4)

== (=) 1+ )

sin’ @, = (l—ﬂ"‘)ﬁz = b |
" (1-p)(1+ ) 1+ P 1+ p
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

: : sid
Geometrically: [s;n 8, = p _|_OPp. s1de
1+ g hypotenuse
el — 1 _ | adjacent
" 1+ g* hypotenuse
tan 6,,, = 8 _|opp- side| [ m, :
= adjacent n,

Thus, at an angle of incidence 8, = ;° =8, = Brewster’s angle / the polarizing angle for a
T'M polarized incident wave, where no reflected wave exists, we have:

inc inc n
tan@; =tan6, '—*(n—z] for g =p, =p,
1

. : ne SINOFC 7
From Snell’s Law: n,sin6, =n,sin@, . we also see that: tan8;" = B .2
cosfg n

1
. = inc __ inc _ _
or: msin@ =mn,cos@y for p=pu =pu,.

Thus, from Snell’s Law we see that: cos 6;° =sinf,, when 6, =67 =67°.
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Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

So what’s so interesting about this???

=0
Well: |cos 67° = sin(% — 9;”“) =sin(§)cos G5 — %é sinf;° =sin6, | i.e. sin(% — ch) =sinf,

.. When 6, =65 =6;° for an incident TM-polarized EM wave, we see that 6§, = /265"

Thus: 6;°+6,, =n/2, ie. 63 =6, and 6, are complimentary angles !!!

Comment 3):
For internal reflecion (n;, > n,) there exists a critical angle of

incidence past which no transmitted beam exists for either TE or
TM polarization. The critical angle does not depend on polarization

— 1t 15 actually defined by Snell’s Law:
0::;@! =sin”’ (ﬁJ
=

. inc -
n 1 S gcrm'cal Or.

- n
. inc 1 "2
Sin 8crm'cal — [ n ]

1

: [
_ max _ _ .
=n,smn@, . —=n,sm [5) =n,| or:

29/01/2015



Reflection & Transmission of Monochromatic
Plane EM Waves at Oblique Incidence

inc
For 9z-nc = Vaitical > no transmitted beam exists — incident beam

1s totally internally reflected.

For 9 > einc

me = “erttical> the transmitted wave is actually exponentially

damped — becomes a so-called:

Evanescent Wave:

oSty

frans

(F.t)=E, &= Jonanli))) k, \/ (ﬂjz sin” 6, —1

nc
n2

Exp. damping inz  Oscillatory along interface in x-direction
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

» Free charge and free currents are zero for propagation through a
vacuum or 1nsulating materials such as glass or pure water.

» Inside a conductor- free charges can move around in response to
EM fields contained therein- free current is not zero.

» Assume that the conductor is linear/homogeneous/ isotropic

media.
» From Ohm’s Law

where 0, = conductivity ¢ pee (7>1) = OcE (71 )r (Ohm /m) and O,
=1/ 0 where 0 . = resistivity of the metal conductor (Ohm-m).
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

Assume that the linear/ homogeneous/isotropic conducting medium
has electric permittivity € and magnetic permeability ¢ . Maxwell’s
equations inside such a conductor are thus:

1) voé(l_",t)=pﬁ.ee(f7,t)/8 2) @.B’(;-’,t)zo
3) ?xE(r,t)——aB(F’t) Using Ohm’s Law:
ot Jﬁ.e( t)= O'E(r t)
L . . aE - 8E’ .
8) (9B 0)= 1 0 16 ) < i 1) e

29/01/2015
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

Electric charge 1s conserved- thus the continuity equation inside
the conductor 1s:

T %, r,t
Ved (7o) = ”ffe;f” )| bt J reo(Fo1) = 0 E (7.1)

— yf — ap ‘ee(’_;’t) p ee r, t
O'C(V-E(r,t))=— ﬁat but: |VeE(7,t)="" (7 Z
thus:

O-Cpﬁ'ee(’_;’t) apﬁ'ee (Fi't) apﬁee (r t)
= — - A 0
£ Ot = ot £ 5 | Pree (1) =

1st order linear, homogeneous differential equation
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

The general solution of this differential equation for the free charge
density 1s of the form:

pﬁ‘ee (F, f) = pfree (’7,1‘ — 0) e—oct/e _ pﬁ‘ee (F,t _ O)e_t/'[rglax

A damped exponential!!!

The continuity equation inside a conductor tells us that any free charge
density 1nitially present at time t = 0 13 exponentially damped 1n a
characteristic time = Trolax = 8'/ Ocation time.
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

Maxwell’s equations for a charge-equilibrated conductor

1) |V-E(#,t)=0 2) |V-B(7,t)=0

3) \VxE(F,t)=

4) |VxB(F,t) = uc E(7,t)+ ue /) = y(c E(F,t)+¢
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

These equations are different from the previous derivation(s) of
monochromatic plane EM waves propagating in free space and in
linear/homogeneous/ 1sotropic non-conducting materials. Re-
derive the wave equations for E and B. Apply V X () to
equations 3) and 4):

2y — o~ —
We get VZE(FJ)=IU88 E(r,t)_l_ 8E(r,t)

o 1T
. O°B(7,t OB(7
and V°B(F,t)= ue ag’ ) + Uo, ((;,t)
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ELECTROMAGNETIC WAVES IN
CONDUCTORS

General solution(s) - are usually in the form of an oscillatory function
times a damping term ( a decaying exponential) — 1n the direction of the
propagation of the EM wave. A complex plane-wave type solutions for
E and B associated with the above wave equation(s) are of the general
form:
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

With (frequency-dependent) complex wave number:

lg(a)) =k(o)+ix(o)




MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The imaginary part of k that is - A= JIm(k) results in an exponential
damping of the monochromatic plane £M wave with increasing z:

—KZ ei(kz—wt)

eIt
it
Reoft

B (z,t)= éoe"“ei(k:_ax) — —kx X

(2.)=

e

1 1
@ @

These solutions satisty the above wave equations for any choice

—

E

0
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The above plane wave solutions satisty the above wave equations(s).

Maxwell’s equations rule out the presence of any longitudinal 1.e,
z- component of E and B.

E and B are purely transverse waves (as before)- even in a
conductor.

Consider a linearly polarized monochromatic plane EM wave
propagating in the +z" -direction in a conducting medium.
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

- E (z,1) L B (z,t) LZ (+Z = propagation direction)

The complex wave-number k=Fk+ik = Ke"?

where: K E‘E‘ =\/k2 +K° and &, =tan" (%)
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

In the complex k -plane:




MONOCHROMATIC PLANE WAVES

IN CONDUCTING MEDIA

Then we see that:

l?? (z, t) = Eoe_xzei(h_”t)i

has

29/01/2015

= > i kz— A ,E o — i(kz—at) ~
B(z,t)=Be™" (e ”)y=;Eoe kzgllle=en) 5,
> it; =Kei¢k'w
- k - Ke*
B =Be*»="[ ==°_F ¢%
® 2
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

iy
_Ke* v _K sy _NE K L aa)

o o o

@

>
S

inside a conductor, E and B are no longer in phase with each other!!!

Phases of E and B Op =0+,

With phase difference: A@y r =05—0p = ¢,

Magnetic field lags behind electric field

_ —%
We also see that: 5, _K_ S,U\/1+(&] % 4
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The real/physical E and B fields associated with linearly polarized
monochromatic plane £M waves propagating in a conducting
medium are exponentially damped:

E(z,t)=iRe(l?J(z,t))=Eoe_'fzcos(kz—a)t+5E)52 > (0, =0+ N

g(z,t) = ‘Re(g (z,t)) =Be ™™ cos(kz— ot +0,)y=B,e ™ cos (kz — ot +{0; + ¢k})}7

b | =

K 2
B,_K@)_|_, J1+[&j
E @ EQ

o
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

W

i K0) @] ()01 o) o %]

_ _. [ x(o)
5,=6,+4., |4 (o)=tan (k(w)J

and

i ()= |;§ (a))‘ = k(@) +ix(o)




MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

The real part of k- determines the spatial wavelength A (W)-the
propagation speed v(® ) and also the index of refraction

v(w) 7)) @
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA

'The characteristic distance over which E and B are reduced
to 1/e=0.3679- ot their initial values (at z = 0) 1s known as
the skin depth

5, (@) =1/x(w)
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MONOCHROMATIC PLANE WAVES
IN CONDUCTING MEDIA




Reflection of EM Waves at Normal
Incidence from a Conducting Surface

In the presence of free surface charges O and free surface
currents- the BC’s for reflection and refraction at eg a dielectric-
conductor interface become:

BC 1): (normal D at interface): &E —&,E, = O free

BC 2): (tangential E at interface): El-E)=0| = |E! =E!

BC 3): (normal B at interface): Bli —BiL =0|= Bll = le
. . 1 | 1 | - ~
BC 4): (tangential H at interface): — B ——bB, =K, xn,
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

1 =normal to plane of interface
|| = parallel to plane of interface

Where n,,— is a unit vector L to the interface - pointing from
medium (2) into medium (1).

Incident M wave [medium (1)].

(z t) E e(k‘“_“)x and B, (z t)=—E E ok “’t)j}

mc
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Reflected M wave [medium (1)]:

i(—k12=wf)£

E:reﬂ (Z,t) = EO e

refl

Transmitted ZM wave [medium (2)].

E”; i(ic"zz—a;r)je

trans

(Z,t) = Eo,,,, e

ns

complex wave-number in (conducting) medium (2) 1

29/01/2015

and

and

Breﬂ (z,t)=—

1

i

- I(—kyz— A
E, &7

trans( 2

k, =k, +ix,
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

In medium (1) EM fields are:

~ ~

Epy (2,8) = Ep (2,0)+ By (2,)| Bpy (2:1) = By (2,1)+ By (21)

In medium (2) EM fields are:

~

E‘Totz (29 ) = Etrans (Z? t) m: §Totz (Zﬂt) = Btrans (Z’t)
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Apply BC’s at the z = 0 interface in the x-y plane:

BC1): |6E; —&E, =0 fee  but E; =E12 =0| and: |E; Ezz =0

BC2): |E! =E) -|E, +E, =
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Reflection of EM Waves at Normal

Incidence from a Conducting Surface

BC3): |B =B;| but:|B =B, =0| and:|B; =B, =0|= [0=0
Loy T o5 s . l =
BC4): |—B-—B) =K x., but K, =0| o |—(E,_-E, |-—=E, =0
b 21 pv " e
—— oy i .
or: |E -E =pE | with:|f= (”1" ] (”1"1 i,
inc refl trans /uz

29/01/2015
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Thus we obtain:

E, 1-f 28
_ refl =(_’é] m: ~trans — —

with ,B = [

Mﬂ@]z[Mw
wo |\ o

The relations for reflection/transmission of EMW at normal incidence on a non-
conductor/conductor boundary are identical to those obtained for reflection/
transmission of EMW at normal incidence on a boundary between two non-
conductors- except for the replacement of B with a complex .

29/01/2015

114



Reflection of EM Waves at Normal
Incidence from a Conducting Surface

For the case of a perfect conductor- the conductivity

o, = {thus resistivity, p. =1/c,. =0}

’a) o - =
= both |k,=kK,= ﬂ; € =| and since: |k, =k, +ik,| then: |k, =00+io0 =00(1+i)

and since: ﬁz(ﬂlvl 2J=(&] | = B=o0

==k |and|E =0
refl inc trans
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

For a perfect conductor the reflection and transmission
coetficients are:

In case of a perfect conductor - for normal incidence- the reflected
wave undergoes a 180 degree phase shift with respect to the incident
wave at the interface at ¢ = 0 1n the x-y plane. A perfect conductor
screens out all M waves from propagating 1n its interior.
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

For a good conductor- the conductivity is large- but finite. The
reflection coetficient R for monochromatic plane EM waves at

normal incidence on a good conductor 1s not unity- but close to it.

{1 hus 1s why good conductors make good marrors!}.

Where ﬁ = [ Hn ]
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Define y = #lvl\/TC Then: |3 = y(1+i)
21,0

Thus, the reflection coetficient R for monochromatic plane EM
waves at normal incidence on a good conductor 1s:

2

~ |2 = ~\E
polfom| 2B (LB 1B _(Loy-iy | L=y +iy | (1-7) 47
b L+ B) \1+B)\1+8) L+y+iy \1+y-iy _(1+;/)2+y2_
O-C

g = vV
with V=V 241,
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

Obviously, only a small fraction of the normally-incident
monochromatic plane EM wave s transmitted into the good

conductor-since R<1and |T=1-R| ie.

_(l—}/)z +y2_

I'=1-R=1- >
(A+y) +7"

(«1)

Note that the transmitted wave 1s exponentially attenuated in the z-
direction- the E and B fields in the good conductor fall to 1/e of
their mitial {z = 0} values at the interface- the monochromatic
plane EM wave propagates a distance of one skin depth in z-
direction into the conductor:
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Reflection of EM Waves at Normal
Incidence from a Conducting Surface

K, (w) \/wﬂf%

Note also that the energy associated with the transmitted
monochromatic plane EM wave 1s ultimately dissipated in the
conducting medium as heat.

O, (@) =

In metals - the transmitted wave 1s absorbed in the metal- we can
only study the reflection coetficient R.
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Full Maxwell Equations in Matter

The electromagnetic state of matter at a given observation point 7 at a
given time t 1s described by four macroscopic quantities:

1.) The volume density
of free charge:

2.) The volume density of
electric dipoles:

3.) The volume density of
magnetic dipoles:

4.) The free electric current /
unit area:

29/01/2015

& electric polarization

< magnetization

& {free} current density
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Full Maxwell Equations in Matter

Then Maxwell’s equations in matter, for P e =0 and M =0
1) Gauss’ Law: VeD=0| or: |VeE = —gioﬁ-ﬁ = pﬁee/go
2) No magnetic charges: VeB=0
3) Faraday’s Law: VXE = —%lf
4) Ampere’s Law: VxB=pu,e, %€+ 1, §+ Hyd
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Full Maxwell Equations in Matter

Then applying the curl operator to Faraday’s Law:

We thus obtain the inhomogeneous wave equation:

. 10°E 1 °p  dJ,

V’E — =—V + + st

6'2 atz 80 pbound :uo at2 /uo 81‘
sourcgterms

{and a similar one for B }
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Full Maxwell Equations in Matter

For non-conducting or poorly-conducting media, i.e. insulators/
dielectrics- the first two terms on the RHS are important — they
explain many optical effects such as dispersion (frequency-dependence
of the index of refraction), absorption . . .

Note that the Vpbc;n.md ==V (V°P)term 1s often zero- P uniform

. . OP aPy OP - 0. O . O .
P=—>+ +—~—and V=—x+—y+—2Z
ox oy Oz ox oy oz

e.g. for Poc E (i.e. P proportional to E) where: E(z,t) =E, cos(kz—at+0)x

29/01/2015 124



Full Maxwell Equations in Matter

For good conductors (e.g. metals), the conduction term

ajﬁee_ Ja_z?j
o 1%y

Ho

1s the most important, because it explains the opacity of metals (e.g.
in the visible light region) and also explains the high reflectance of
metals.
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