
Imrana Ashraf  Zahid

Quaid-i-Azam University Islamabad Pakistan


Preparatory School to Winter College on Optics:  Light : A Bridge between Earth and Space.  2nd   

February - 6th  February 2015






EM wave propagation inside matter - in regions with no free charges 
and no free currents ( the medium is an insulator/non-conductor).


For this situation, Maxwell’s equations become:
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The medium is assumed to be linear, homogeneous and isotropic- 
thus the following relations are valid in this medium:


and


Ø  ε = electric permittivity of  the medium.

Ø 	
  ε = εo (1 +χe), χe = electric susceptibility of  the medium.


Ø  μ = magnetic permeability of  the medium.


Ø  μ = μo (1 +χm), χm = magnetic susceptibility of  the medium.


Ø 	
  εo	
  = electric permittivity of  free space = 8.85 × 10－12 Farads/m.


Ø μo	
  = magnetic permeability of  free space = 4π × 10－7 Henrys/m.
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 Maxwell’s equations inside the linear, homogeneous and isotropic 
non-conducting medium become:


In a linear /homogeneous/isotropic medium, the speed of  
propagation of  EM waves is:
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The E and B fields in the medium obey the following wave 
equation:
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For linear / homogeneous / isotropic media:


If
 thus
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Note also that since
 are dimensionless


quantities, then so is


Define the index of  refraction - a dimensionless quantity- of  the linear / 
homogeneous / isotropic medium as:
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For linear / homogeneous / isotropic media:


because


For many (but not all) linear/homogeneous/isotropic materials:


( True for many paramagnetic and diamagnetic-type materials)


Thus

8
29/01/2015




The instantaneous EM energy density associated with a linear/
homogeneous/isotropic material


with
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The instantaneous Poynting’s vector associated with a linear/
homogeneous/isotropic material


The intensity of  an EM wave propagating in this medium is:
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The instantaneous linear momentum density associated with an EM 
wave propagating in a linear/homogeneous/isotropic medium is:


The instantaneous angular momentum density associated with an EM 
wave propagating in this medium is:
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Total instantaneous EM energy:


Total instantaneous linear 
momentum:


Instantaneous EM 
Power:


Total instantaneous angular 
momentum:


12
29/01/2015




Suppose the x-y plane forms the boundary between two linear media. A plane wave 
of  frequency ω- travelling in the z- direction and polarized in the x- direction- 
approaches the  interface from the left
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Incident EM plane wave (in medium 1):


Reflected EM plane wave (in medium 1):
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Transmitted EM plane wave (in medium 2):


In this situation the E -field - polarization vectors are all oriented 
in the same direction


or equivalently:
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At the interface between the two linear / homogeneous / isotropic 
media -at z = 0 in the x-y plane- the boundary conditions 1 – 4 must be 
satisfied for the total E and B -fields immediately present on either side 
of  the interface:
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( ⊥ to x-y boundary, i.e. in the +zˆ direction)


(║ to x-y boundary, i.e. in x-y plane)
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For plane EM waves at normal incidence on the boundary at z = 0- 
lying in the x-y plane- no components of  E or B (incident, reflected or 
transmitted waves) - allowed to be along the ±zˆ propagation direction
(s) - the E and B-field are transverse fields -constraints imposed by 
Maxwell’s equations.


BC -1) and BC- 3) impose no restrictions  on such EM waves since:


⇒ The only restrictions on plane EM waves propagating with normal 
incidence on the boundary at z = 0 are imposed by BC-2) and BC- 4).


18
29/01/2015




At z = 0 in medium 1) (i.e. z ≤ 0) we must have:


While at z = 0 in medium 2) (i.e. z ≥ 0) we must have:
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BC 2) -Tangential E is continuous @ z = 0) requires that:


BC 4) -Tangential H is continuous @ z = 0) requires that:
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Using explicit expressions for the complex E and B fields 


The above boundary condition relations become
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Cancelling the common e－iωt factors on the LHS & RHS of  above 
equations - we have at z = 0 ( everywhere in the x-y plane- must be 
independent of  any time t):
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→ Solve above equations simultaneously for
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Define:


BC 4) -Tangential H continuous @ z = 0- relation becomes:




BC 2) -Tangential Ε continuous @ z = 0 - gives:


BC 4) -Tangential H continuous @ z = 0- reduces to


with
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Add and Subtract BC -2) and BC- 4) relations:


Insert the result of  eqn. (2+4) into eqn. (2－4):
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Now if  the two media are both paramagnetic or diamagnetic- 
such that


Common for many (but not all) non-conducting linear/ 
homogeneous/isotropic media


Then
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Then


We can alternatively express these relations in terms of  the 
indices of  refraction n1 and n2:
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Now since:


δ = phase angle (in radians) defined at the zero of  time - t = 0


Then for the purely real amplitudes
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The relations between real amplitudes become:
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Monochromatic plane EM wave at normal incidence on a 
boundary between two linear / homogeneous / isotropic media 
for 
 for the following cases:
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What fraction of  the incident EM wave energy is reflected ?


What fraction of  the incident EM wave energy is transmitted?


In a given linear/homogeneous/isotropic medium with


The time-averaged energy density in the EM wave is:
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The time-averaged Poynting’s vector is:


The intensity of  the EM wave is:
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For a monochromatic plane EM wave at normal incidence with 


The three Poynting’s vectors associated with this problem are such 
that


37
29/01/2015




Take the ratios                                                    - then square them:


and
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Define the reflection coefficient as:


Define the transmission coefficient as:
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For a linearly-polarized monochromatic plane EM wave at normal 
incidence on a boundary between two linear / homogeneous /  
isotropic media, with


Reflection coefficient:


Transmission coefficient:
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But:


Thus Reflection and Transmission  coefficient:
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Thus:


⇒EM energy is conserved at the interface/
boundary between two L/H/I media 
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A monochromatic plane EM wave incident at an oblique angle θinc 
on a boundary between two linear/ homogeneous/isotropic media, 
defined with respect to the normal to the interface- as shown
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The incident EM wave is:


The reflected EM wave is:


The transmitted EM wave is:
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All three EM waves have the same frequency-


The total EM fields in medium 1
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Must  match to the total EM fields in medium 2:


Using the boundary conditions BC1) → BC4) at z = 0.


At z = 0- four boundary conditions  are of  the form:


They must hold for all (x,y) on the interface at z = 0 - and also must hold for 
all times t. The above relation is already satisfied for arbitrary time, t - the 
factor e－iωt is common to all terms.
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The following  relation must hold for all (x,y) on interface at at z = 
0:


When z = 0 - at interface we must have:


@ z = 0 
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The above relation can only hold for arbitrary (x, y, z = 
0) iff  ( = if  and only if):
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The problem has rotational symmetry about the z –axis- without any 
loss of  generality - choose  k to lie entirely within the x-z plane- that is 
no component of  k in y-direction as shown in the figure on next slide




The transverse components of                           are all equal and point in 
the +xˆ direction.
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The incident, reflected, and transmitted wave vectors form a plane  - called 
the plane of  incidence- which also includes the normal to the surface -here 
the z axis. 


From the figure- we see that:


Angle of  Incidence = Angle of  Reflection
 Law of  
Reflection!
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For the transmitted angle - θtrans we see that:


In medium 1):


where


and


In medium 2):
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Which can also be written as:


Since θtrans refers to medium 2) and θinc refers to medium 1)
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Using three laws of  geometrical optics we can see that :


everywhere on the interface at z = 0 -in the x-y plane


Thus 


everywhere on the interface at z = 0 -in the x-y plane and  valid 
also for all time(s) t, since ω is the same in either medium (1 or 2).
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The BC 1) → BC 4) for a monochromatic plane EM wave 
incident on an interface at an oblique angle between two linear/
homogeneous/isotropic media become:


BC 1): Normal ( z-) component of D continuous at z = 0 (no free 
surface charges):


BC 2): Tangential (x-, y-) components of E continuous at z = 0:
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BC 3): Normal (z-) component of  B continuous at z = 0:


BC 4): Tangential (x-, y-) components of  H continuous at z = 0 
(no free surface currents):


Note that in each of  the above, we also have the relation
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For a monochromatic plane EM wave incident on a boundary 
between two L / H/ I media at an oblique angle of  incidence - 
three possible polarization cases to consider:


Transverse Electric (TE) 
Polarization


Transverse Magnetic 
(TM) Polarization
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• A monochromatic plane EM wave is incident on a boundary at z = 
0 -in the x-y plane between two L/H/I media - at an oblique angle 
of  incidence. 

• The polarization of  the incident EM wave is transverse (⊥ ) to the 
plane of  incidence (containing the three wave-vectors and the unit 
normal to the boundary nˆ = +zˆ ).

• The three B-field vectors are related to their respective E -field 
vectors by the right hand rule - all three B-field vectors lie in the x-z 
plane (the plane of  incidence)
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The four boundary conditions on the complex E  and B fields on 
the boundary at z = 0 are:


BC 1) Normal (z-) component of  D continuous at z = 0 (no free 
surface charges)


BC 2) Tangential (x-, y-) components of  E continuous at z = 0:
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BC 3) Normal (z-) component of  B continuous at z = 0:
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Using the Law of  Reflection on the BC 3) result:





Using Snell’s Law / Law of  Refraction:


Reduces to  BC2)
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BC 4) Tangential (x-, y-) components of  H continuous at z = 0 (no 
free surface currents):


Using the Law of  Reflection on the BC 4) result:
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From BC 1) → BC 4) actually have only two independent relations 
for the case of  transverse electric (TE) polarization:


Define:


Then eqn. 2) becomes:
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Adding  and subtracting Eqn’s  1 &2 to get:


Plug eqn. (2+1) into eqn. (2－1) to obtain:
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with
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Incident Intensity


Reflection Intensity


Transmission Intensity
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• A monochromatic plane EM wave is incident on a boundary at z = 
0 in the x-y plane between two L / H/ I media at an oblique angle of  
incidence. 

• The polarization of  the incident EM wave is now parallel to the 
plane of  incidence –(containing the three wave-vectors and the unit 
normal to the boundary nˆ = +zˆ ).

•  The three B -field vectors are related to E -field vectors by the right 
hand rule –then all three B-field vectors are  ⊥ to the plane of  
incidence {hence the origin of  the name transverse magnetic 
polarization}.
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The four boundary conditions on the complex E  and B-fields on the 
boundary at z = 0 are:


BC 1) Normal (z-) component of  D continuous at z = 0 (no free 
surface charges)


BC 2) Tangential (x-, y-) components of  E continuous at z = 0:
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BC 3) Normal (z-) component of B continuous at z = 0:


BC 4) Tangential (x-, y-) components of  H continuous at z = 0 (no 
free surface currents):
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From BC 1) at z = 0:


From BC 4) at z = 0:


where:
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From BC 2) at z = 0:


where:


Thus for the case of  transverse magnetic (TM) polarization:


Solving these two above equations simultaneously, we obtain:
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¨  Now explore the physics associated with the Fresnel 
Equations -the reflection and transmission coefficients.


¨   Comparing results for TE vs. TM polarization for the cases 
of  external reflection (n1 < n2) and internal reflection n1 > n2)


Comment 1):

¨  When (Erefl /Einc)< 0 - Eorefl is 180o out-of-phase with Eoinc 

since the numerators of  the original Fresnel Equations for 
TE & TM polarization are (1－αβ ) and (α － β ) 
respectively.
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Comment 2):

• For TM Polarization (only)- there exists an angle of  incidence where 
(Erefl /Einc)= 0 - no reflected wave occurs at this angle for TM 
polarization! 

• This angle is known as Brewster’s angle θB (also known as the 
polarizing angle θP - because an incident wave which is a linear 
combination of  TE and TM polarizations will have a reflected wave 
which is 100% pure-TE polarized for an incidence angle θinc =θB 
=θP !!). 

• Brewster’s angle θB exists for both external (n1 < n2) & internal 
reflection (n1 > n2) for TM polarization (only).
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From the numerator of                        -  this ratio = 0 at Brewster’s 

angle θB  when (α －β)=0 , i.e. when α = β .


and Snell’s Law:
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So what’s so interesting about this???


Comment 3):

For internal reflection (n1 > n2) there exists a critical angle of  
incidence past which no transmitted beam exists for either TE or 
TM polarization. The critical angle does not depend on polarization 
– it is actually defined by Snell’s Law:
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For
 no transmitted beam exists → incident beam 

is totally internally reflected.


For
 the transmitted wave is actually exponentially 

damped – becomes a so-called:
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Ø  Free charge and free currents are zero for propagation through a 
vacuum or insulating materials such as glass or pure water.

Ø  Inside a conductor- free charges can move around in response to 
EM fields contained  therein- free current is not zero.

Ø   Assume that the conductor is linear/homogeneous/ isotropic 
media.

Ø  From Ohm’s Law



where σC = conductivity of  the metal conductor (Ohm-1/m) and σC 
=1/ ρC where ρC = resistivity of  the metal conductor (Ohm-m).
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Assume that the linear/ homogeneous/isotropic conducting medium 
has electric permittivity ε and magnetic permeability μ. Maxwell’s 
equations inside such a conductor are thus:
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Electric charge is conserved- thus the continuity equation inside 
the conductor is:


thus:


1st order linear, homogeneous differential equation

91
29/01/2015




The general solution of  this differential equation for the free charge 
density is of  the form:


A damped exponential!!!


The continuity equation inside a conductor tells us that any free charge 
density  initially present at time t = 0 is exponentially damped in a 
characteristic time                        = charge relaxation time.
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Maxwell’s equations for a charge-equilibrated conductor
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These equations are different from the previous derivation(s) of  
monochromatic plane EM waves propagating in free space and in 
linear/homogeneous/ isotropic non-conducting materials. Re-
derive the wave equations for E and B.  Apply ∇ × ( ) to 
equations 3) and 4):


We get


and
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General solution(s) - are usually in the form of  an oscillatory  function 
times a damping term ( a decaying exponential) – in the direction of  the 
propagation of  the EM wave. A complex plane-wave type solutions for 
E and B associated with the above wave equation(s) are of  the general 
form:
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With (frequency-dependent) complex wave number:
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The imaginary part of k that is - κ= ℑm(k) results in an exponential 
damping of  the monochromatic plane EM wave with increasing z:


These solutions satisfy the above wave equations for any choice
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¨  The above plane wave solutions satisfy the above wave equations(s). 

¨  Maxwell’s equations rule out the presence of  any longitudinal i.e, 

z- component of  E and B.

¨  E and B are purely transverse waves (as before)- even in a 

conductor.

¨  Consider a linearly polarized monochromatic plane EM wave 

propagating in the +zˆ -direction in a conducting medium.


then
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The complex wave-number
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Then we see that:


has


has
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 inside a conductor, E and B are no longer in phase with each other!!!


Phases of  E and B


With phase difference:


We also see that:
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Magnetic field lags behind electric field




The real/physical E and B fields associated with linearly polarized 
monochromatic plane EM waves propagating in a conducting 
medium are exponentially damped:
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where


and
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The real part of  k- determines the spatial wavelength λ (ω)-the 
propagation speed v(ω )  and also the index of  refraction
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The characteristic distance over which E and B are reduced 
to 1/e=0.3679- of  their initial values (at z = 0) is known as 
the skin depth
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In the presence of  free surface charges  σ and free surface 
currents- the BC’s  for reflection and refraction at e.g. a dielectric-
conductor interface become:


BC 1): (normal D at interface):


BC 2): (tangential E at interface):


BC 3): (normal B at interface):


BC 4): (tangential H at interface):
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Where  n21→ is a unit vector ⊥ to the interface - pointing from 
medium (2) into medium (1).


Incident EM wave [medium (1)]:


and
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Reflected EM wave [medium (1)]:


and


Transmitted EM wave [medium (2)]:


and


complex wave-number in (conducting) medium (2) is:
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In medium (1) EM fields are:


In medium (2) EM fields are:
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Apply BC’s at the z = 0 interface in the x-y plane:


but
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Thus we obtain:


with


The relations for reflection/transmission of  EMW at normal incidence on a non-
conductor/conductor boundary are identical to those obtained for reflection/ 
transmission of  EMW at normal incidence on a boundary between two non-
conductors- except for the replacement of  β with a complex β.
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For the case of  a perfect conductor- the conductivity


Thus, for a perfect conductor, we see that:
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For a perfect  conductor the reflection and transmission 
coefficients are:


In case of  a perfect conductor - for normal incidence- the reflected 
wave undergoes a 180 degree phase shift with respect to the incident 
wave at the interface at z = 0 in the x-y plane. A perfect conductor 
screens out all EM waves from propagating in its interior.
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For a good conductor- the conductivity is large- but finite. The 
reflection coefficient R for monochromatic plane EM waves at 
normal incidence on a good conductor is not unity- but close to it. 
{This is why good conductors make good mirrors!}. 


Where
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Define


Thus, the reflection coefficient R for monochromatic plane EM 
waves at normal incidence on a good conductor is:


with
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Obviously, only a small fraction of  the normally-incident 
monochromatic plane EM wave is transmitted into the good 
conductor- since


Note that the transmitted wave is exponentially attenuated in the z-
direction- the E and B fields in the good conductor fall to 1/e of  
their initial {z = 0} values at the interface- the monochromatic 
plane EM wave propagates a distance of  one  skin depth in z-
direction into the conductor:
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Note also that the energy associated with the transmitted 
monochromatic plane EM wave is ultimately dissipated in the 
conducting medium as heat.

In metals - the transmitted wave is absorbed in the metal- we can 
only study the reflection coefficient R. 
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The electromagnetic state of  matter at a given observation point r at a 
given time t is described by four macroscopic quantities:


1.) The volume density                 
of  free charge:


2.) The volume density of  
electric dipoles:


3.) The volume density of  
magnetic dipoles:


4.) The free electric current /
unit area:


⇐ electric polarization


⇐ magnetization


⇐ {free} current density


121
29/01/2015




Then Maxwell’s equations in matter, for
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Then applying the curl operator to Faraday’s Law:


We thus obtain the inhomogeneous wave equation:


{and a similar one for B  }
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For non-conducting or poorly-conducting media, i.e. insulators/ 
dielectrics- the first two terms on the RHS are important – they 
explain many optical effects such as dispersion (frequency-dependence 
of  the index of  refraction), absorption . . .


Note that the                                          term is often zero- P uniform 
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For good conductors (e.g. metals), the conduction term


is the most important, because it explains the opacity of  metals (e.g. 
in the visible light region) and also explains the high reflectance of  
metals.
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