Fundamental Radiobiology

Colin G. Orton, Ph.D.
Professor Emeritus,
Wayne State University,
Detroit, Michigan, USA
Topics to be discussed

- The 4 Rs of radiotherapy
 - *Repair*
 - *Repopulation*
 - *Reoxygenation*
 - *Redistribution*

- The effect of the LET of the radiation
Which is the most important?

Repair!
Repair: Single strand and double strand damage

Single strand breaks (upper figure) are usually considered “repairable”

Double strand breaks (lower figure) are not usually “repairable” if the breaks are close together, since an intact 2nd strand of the DNA molecule is needed for the repair enzymes to be able to copy the genetic information
The effect of dose

- At low doses, both DNA strands are unlikely to be hit
 - so single strand breaks will dominate i.e. repair is common

- At high doses, double strand breaks will be common i.e. little repair
 - consequently survival curves get steeper as dose increases
As dose increases, survival curves become steeper.

For types of cells that have a high capacity for repair, the less steep the curve will be at low doses and hence the curvier the survival curve.
Survival curves: normal vs cancer cells

- Cancer cells do not “repair” damage at low doses as well as do normal tissue cells
 - *survival curves will be straighter*

- There is a “Window of Opportunity” at low doses where the survival of late-reacting normal tissue cells exceeds that of cancer cells
Cell survival curve comparison: the “Window of Opportunity”

At low doses, the survival of normal tissue cells (green curve) exceeds that of cancer cells.

At high doses, the survival of cancer cells (red curve) exceeds that of normal tissues.
Fractionation

- This is why we typically fractionate radiotherapy at low doses/fraction
- We need to fractionate at doses/fraction within this “Window of Opportunity” e.g. typically about 2 Gy/fraction
Normal vs cancer cells for fractionation at 2 Gy/fraction
Cell survival curve comparison: the “Window of Opportunity”

- Note that we have assumed that the dose to normal tissues is the same as the dose to the cancer cells.
- Is this a reasonable assumption if we are using conformal teletherapy?
Because the major advantage of conformal radiotherapy is that the dose to normal tissues is kept less than the tumor dose.

Hence the *effective dose* to normal tissues will usually be less than the *effective dose* to tumor.

the effective dose is the dose which, if delivered uniformly to the organ or tumor, will give the same complication or cure rate as the actual inhomogeneous dose distribution. Sometimes called the Equivalent Uniform Dose (EUD)
Geometrical sparing factor

We can define a “geometrical sparing factor”, f, such that:

$$f = \frac{\text{effective dose to normal tissues}}{\text{effective dose to tumor}}$$

For conformal radiotherapy $f < 1$
The “Window of Opportunity” widens with geometrical sparing

Even with a modest geometrical sparing of only 20%, the “Window of Opportunity” extends to over 10 Gy
This means that:

With highly conformal therapy we can safely use much higher doses per fraction

- *for teletherapy i.e. hypofractionation*
- *for brachytherapy i.e. HDR*
What about dose rate and time between fractions?

- Repair takes time (half-time for repair typically 0.5 – 1.5 hours), hence repair decreases as
 - time between fractions decreases
 - dose rate increases
Importance of time between fractions

- Because repair is more important for normal tissues than for tumors, enough time must be left between fractions for full repair
 - *based on clinical results, this is assumed to be six hours*
Importance of dose rate

- Normal tissue cells repair better than cancer cells and low dose rate enhances repair.
- This is the basis of low dose rate brachytherapy and, especially, permanent implants at very low dose rate.
How can we determine the “best” fractionation or dose rate to use?

- We need a mathematical model that describes the effects of radiotherapy on cancer and normal tissue cells
 - *this is the linear-quadratic model*
The linear-quadratic model of cell survival: two components

- **Linear component:**
 - a double-strand break caused by the passage of a single charged particle e.g. electron, proton, heavy ion

- **Quadratic component:**
 - two separate single-strand breaks caused by different charged particles
So what is the equation for cell survival?

- This is based on Poisson statistics (the statistics of rare events), since the probability that any specific DNA molecule will be damaged is low.
- According to Poisson statistics, the probability, P_0, that no event (DNA strand break) will occur is given by:

 $$ P_0 = e^{-p} $$

 where p is the mean number of hits per target molecule.
For single-particle events, \(p \) is a linear function of dose, \(D \)

- so the mean number of lethal events per DNA molecule can be expressed as \(\alpha D \) and \(P_0 \) represents the probability that there are no single-particle lethal events, i.e. it is the surviving fraction of cells, \(S \)

- Then

\[S = e^{-\alpha D} \]
What causes these single-particle events

- For a single particle to damage both arms of the DNA at the same time it has to be highly ionizing.
- Hence single-particle events are caused primarily by the high-LET component of the radiation.
- For photon and electron beams, it is the very low-energy secondary ionizing radiations (i.e. slow electrons) that are high LET and hence give rise to these single-particle events.
With two-particle events, the probability that one arm of a DNA molecule will be damaged is a linear function of dose, D, and the probability of damage in an adjacent arm is also a linear function of dose, D.

Hence the probability that both arms are damaged by two different single-particle events is a function of D^2.

So the surviving fraction of cells due to single particle events is given by:

$$S = e^{-\beta D^2}$$
The linear-quadratic model

Single-particle event

Two different single-particle events

Effect

Linear

Dose

Quadratic

effect $\propto D$

effect $\propto D^2$
The L-Q Model Equation

Hence \[S = e^{-\alpha D} \cdot e^{-\beta D^2} = e^{-(\alpha D + \beta D^2)} \]
or \[-\ln S = (\alpha D + \beta D^2) \]

where \(\alpha \) represents the probability of lethal single-particle (\(\alpha \)-type) damage

and \(\beta \) represents the probability that independent two-particle (\(\beta \)-type) events have combined to produce lethal damage
Problem with the L-Q model

- There are too many unknown biological parameters in this basic L-Q equation (α and β) for reliable values to be determined from analysis of clinical data.

- These can be reduced to one parameter by dividing $-\ln S$ by α to give the Biologically Effective Dose (BED) equation.
The BED equation for fractionated radiotherapy in N fractions each of dose d

$$-\ln S = (\alpha d + \beta d^2)$$

or, for N fractions:

$$-\ln S = N(\alpha d + \beta d^2)$$

Hence:

$$BED = \frac{-\ln S}{\alpha} = Nd\left(1 + \frac{d}{\alpha / \beta}\right)$$

The remaining unknown biological parameter is α/β
Typical values for α/β

The most common assumptions are:

for tumors and acute reactions:

$\alpha/\beta = 10 \text{ Gy}$

for late-reacting normal tissues:

$\alpha/\beta = 2 - 3 \text{ Gy}$

Note that some recent studies have reported that the α/β value for prostate cancer may be as low as 1.5 Gy and for breast cancer as low as 4 Gy
What about the effect of dose rate?

For low dose rate (LDR) brachytherapy where the time, \(t \), for each fraction is long enough for some repair to take place but the time between fractions is long enough for complete repair:

\[
BED = NRt \left\{ 1 + \frac{2R}{\mu(\alpha / \beta)} \left[1 - \frac{1 - e^{-\mu t}}{\mu t} \right] \right\}
\]

where \(\mu = \) repair rate constant \((= 0.693/t_{1/2}\) where \(t_{1/2} \) is the half time for repair)
The approximate BED equation for LDR brachytherapy

If the treatment time t is long, typically greater than about 100 h, the BED equation reduces to:

$$BED = NRt \left(1 + \frac{2R}{\mu(\alpha/\beta)} \right)$$
What if the dose rate decreases due to decay during treatment?

$BED = \frac{R_0}{A \lambda} \left[1 + \frac{2R_0 \lambda}{(\mu - \lambda)\alpha / \beta} \left(A(B - C) \right) \right]$

where:

$A = \frac{1}{1 - e^{-\lambda t}}$

$B = \frac{1 - e^{-2\lambda t}}{2\lambda}$

$C = \frac{1 - e^{-(\mu + \lambda)t}}{\mu + \lambda}$

Where R_0 is the initial dose rate and λ is the decay constant of the source.
BED equation for permanent implants

By letting the treatment time t approach infinity in the LDR BED equation the equation for a permanent implant is obtained:

$$BED = \frac{R_0}{\lambda} \left[1 + \frac{R_0}{(\mu + \lambda)(\alpha / \beta)} \right]$$
What about Repopulation

- Cancer cells and cells of acutely-reacting normal tissues proliferate during the course of therapy (called “repopulation”)
- Cells of late-reacting normal tissues proliferate little
- Hence the shorter the overall treatment time the better
 - but should not be too short otherwise acute reactions will prevent completion of treatment
Repopulation and the L-Q equation

- The basic L-Q model does not correct for repopulation during the course of therapy.
- Hence, the basic L-Q equation does not take overall treatment time, T, into account.
- The L-Q model with repopulation correction assumes that increase in surviving fraction due to repopulation is an exponential function of time.
The BED equation with repopulation

\[\text{BED} = Nd \left(1 + \frac{d}{\alpha / \beta} \right) - \frac{0.693T}{\alpha T_{pot}} \]

where

- \(T = \) overall treatment time (days)
- \(T_{pot} = \) potential doubling time (days)
As before, there are too many parameters in this L-Q equation (α, α/β, and T_{pot}) for reliable values to be determined from analysis of clinical data.

These can be reduced to two parameters by replacing $0.693/\alpha T_{pot}$ by k.
Then the BED equation with repopulation becomes

\[\text{BED} = Nd\left(1 + \frac{d}{\alpha / \beta}\right) - kT \]

The unknown biological parameters are \(\alpha/\beta \) and \(k \).
Typical values for k assumed for normal tissues

Acutely responding normal tissues:
• $0.2 - 0.3$ BED units/day

Late responding normal tissues:
• $0 - 0.1$ BED units/day

Note that this is not Gy/day, as you will see in some publications, because BED is not linear in dose (it is linear-quadratic)
Typical values for k assumed for tumors (assuming no accelerated repopulation)

<table>
<thead>
<tr>
<th>Growth rate of tumor</th>
<th>k (BED units/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>slow</td>
<td>about 0.1</td>
</tr>
<tr>
<td>average</td>
<td>about 0.3</td>
</tr>
<tr>
<td>rapid</td>
<td>about 0.6</td>
</tr>
</tbody>
</table>
What is accelerated repopulation?

- Some believe that there is a delay between the start of treatment and the onset of “accelerated repopulation”
 - there is no repopulation before the “kick-in” time T_k days for accelerated repopulation
 - there is significant repopulation after T_k days (the so-called “Withers’ hockey stick”)
- The BED equation then becomes:

$$BED = Nd\left(1 + \frac{d}{\alpha / \beta}\right) - k(T - T_k)$$

where $k = 0$ for $T<T_k$
Withers’ “hockey stick”

The iso-effect dose for local control of H & N cancers increases significantly after 3 - 4 weeks of treatment.
What about repopulation with permanent implants?

- With permanent implants for tumors that are repopulating during treatment, a time, T_{eff}, is reached at which the rate of repopulation equals the rate of decay.
- At this time, the maximum BED has been reached.
- It can be shown that, to a good approximation, assuming no accelerated repopulation, that

\[T_{\text{eff}} = \frac{1}{\lambda \ln(R_0/k)} \]
BED reaches a maximum at T_{eff} days

Derived from Ling, 1992
The BED equation for permanent implants with repopulation

- This is obtained by substituting T_{eff} for t in the equations below, making sure to keep all the parameters R_0, α/β, μ, λ, and T_{eff}, in consistent units.
- Then the maximum BED is given by:

$$BED = \frac{R_0}{A\lambda} \left[1 + \frac{2R_0\lambda}{(\mu - \lambda)\alpha / \beta (A(B - C))} \right]$$

where:

$$A = \frac{1}{1 - e^{-\lambda t}}$$

$$B = \frac{1 - e^{-2\lambda t}}{2\lambda}$$

$$C = \frac{1 - e^{-(\mu + \lambda)t}}{\mu + \lambda}$$
What about **Reoxygenation**?

- Reoxygenation relates to the oxygen effect
- Oxygen is a powerful radiation sensitizer, so tumors that are poorly oxygenated (i.e. are hypoxic) tend to be resistant
- Hypoxic tumors can reoxygenate during a course of treatment and become more sensitive
The Oxygen Enhancement Ratio (OER)

- The degree of sensitization is expressed in terms of the Oxygen Enhancement Ratio, where:

\[
OER = \frac{\text{dose under hypoxic conditions}}{\text{dose under aerobic conditions}}
\]

to produce the same biological effect
How the oxygen effect works

Oxygen reacts with the broken ends of the DNA molecule to make the damage permanent i.e. to “fix” the damage by preventing recombination of the broken ends.

This is called the “oxygen fixation process”
OER is a function of dose and dose rate

OER at low doses (and dose rates) tends to be lower than the OER at high doses (and dose rates)
Why does OER decrease as dose decreases?

- O_2 sensitization relates to “fixing” of single-strand DNA breaks i.e. O_2 enhances β-type damage.

- At low doses, α-type damage dominates, so the effect of O_2 sensitization is reduced.

- Reduced effect of O_2 means lower OER.
Might this be important in radiotherapy?

- Yes, because the protective effect of hypoxia in hypoxic cancers should be reduced by treating at low dose/fraction or low dose rate
 - *for teletherapy, this should be a benefit of hyperfractionation*
 - *for brachytherapy, this should be a benefit of permanent implants*
Two types of hypoxia in tumors: Chronic and acute

- **Chronic hypoxia**
 - *due to the limited diffusion distance of oxygen through tissue*
 - *cells may remain hypoxic for extended periods*

- **Acute hypoxia**
 - *due to temporary closing of a blood vessel*
 - *transient*
Chronic and acute hypoxia
Timing of reoxygenation

- Rapid component: reoxygenation of acutely hypoxic cells due to blood vessels reopening

- Slow components:
 - as the tumor shrinks, cells previously beyond the range of oxygen diffusion (chronic hypoxia) find themselves closer to blood vessels and reoxygenate
 - revascularization of the tumor and killing of well-oxygenated cells might increase oxygen availability
Reoxygenation in clinical practice

- Spreading irradiation over long periods of time by fractionation or very low dose rate brachytherapy (e.g. permanent implants) ought to be beneficial.
- Modifications of the L-Q model to account for the oxygen effect and reoxygenation have been published but are not typically used in clinical practice.
Finally, Redistribution

Redistribution relates to the cell-cycle effect:

- Cells are most sensitive at or close to mitosis
- Survival curves for cells in the M phase are linear, indicating the absence of any repair
- Cells in late G$_2$ are usually sensitive, perhaps as sensitive as cells in M
- Resistance is usually greatest in the latter part of the S phase
What is Redistribution?

- Because of the cell cycle effect, immediately after a radiation exposure the majority of cells surviving will be those that were in a resistant phase of the cell cycle at the time of irradiation, such as late-S.

- After exposure, cells are thus partially synchronized. This is known as redistribution (or reassortment).
Redistribution with fractionated radiotherapy

- The timing of the subsequent fraction will, therefore, make a difference in the response.

- For example, if the next fraction is delivered at a time when the synchronized bolus of cells has reached a sensitive phase of the cell cycle, then the cells will be extra sensitive.
Redistribution with daily fractionation

- Clearly, the effect of redistribution depends on both the length of the various phases of the cell cycle and the time between fractions.
- Since 24 hours is much longer than the length of the G\textsubscript{2} phase of the cell cycle for most cells, it is unlikely that such sensitization will play a significant role for treatments delivered with daily fractionation.
Redistribution in clinical practice

- With twice or three-times-a-day fractionation, sensitization by the redistribution effect is conceivable and could be significant
- However, we have not yet found a way of utilizing redistribution to our advantage
- Modifications of the L-Q model to account for the redistribution have been published but are not typically used in clinical practice
Effect of LET of the radiation

- Repair decreases as LET increases
- The OER decreases as LET increases
- The cell-cycle effect decreases as LET increases
So when might high-LET radiotherapy be most beneficial?

- For the treatment of cancers that have a high capacity for repair
- For the treatment of hypoxic cancers
- For the treatment of cancers that have cells trapped in a resistant phase of the cell cycle
Summary

- Radiotherapy is governed by the 4 Rs
 - Repair, Repopulation, Reoxygenation, and Redistribution
- Since normal tissue cells are better able to repair than are cancer cells, there is a “Window of Opportunity” at low dose/fraction or low dose rate
- With geometrical sparing of normal tissues, the “Window of Opportunity” widens making hypofractionation and HDR brachytherapy possible
Summary (cont’d.)

- The L-Q model can be used to calculate effects of dose/fraction, overall treatment time, and dose rate.
- High-LET has potential biological advantages over conventional radiotherapy.