Graphene heterostructures: electronic properties and potential applications

Leonid Ponomarenko

School on Anomalous Transport, Superconductivity and Magnetism in Nanosystems BITP, 15 - 20 June 2015, Kiev, Ukraine

Graphene

Graphite: strong in-plane bonding weak inter-plane interaction

Graphene was isolated and measured for the first time in 2004

Geim

Novoselov

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene"

Graphene Superlatives

thinnest imaginable material strongest material ever measured stiffest known material (stiffer than diamond) most stretchable crystal (up to 20% elastically) record thermal conductivity (outperforming diamond) highest current density at room T(million times of those in copper) highest intrinsic mobility (100 times more than in Si) lightest charge carriers (zero rest mass) longest mean free path at room T (micron range) most impermeable (even He atoms cannot squeeze through)

National Graphene Institute

- £61M building funded by UK Government and European Union
- Officially opened in March 2015

Prof V. Fal'ko, director of NGI (from 8/06/15)

Graphene is not alone

Van der Waals heterostructures. Geim & Grigorieva, NATURE (2013)

Outline

Graphene multilayer structures

metal-insulator transition Coulomb drag tunnelling transistors

Outline

Properties of graphene monolayer

band structure field effect

Graphene – BN heterostructures

fabrication

superlattices

Hofstadter butterfly

Graphene multilayer structures

metal-insulator transition Coulomb drag tunnelling transistors

Outline

Properties of graphene monolayer

band structure field effect

Graphene – BN heterostructures

fabrication superlattices Hofstadter butterfly

Graphene multilayer structures

metal-insulator transition

- **Coulomb drag**
- tunnelling transistors

Band Structure and Field Effect

Band Structure and Field Effect

B – magnetic field n – carrier density

 μ - mobility

10 000 cm²/Vs (on SiO2) 1 000 000 cm²/Vs (suspended, 4 K)

Geim & Novoselov, Science 2004 Mechanical exfoliation ("Sticky tape" method)

End of Introduction Part 2 things to remember: Graphene is always conducting; FET doesn't work.

In graphene ON/OFF ratio is ~ 20 at room T (needed ~ 10^3 for FET)

there is no proper OFF state because of zero band gap

Graphene Heterostructures

C. R. Dean et al. *Nature Nano* 5, 722 (2010)

One order improvement in mobility.

Fractional Quantum Hall Effect

Dean et al., Nature Phys. (2011)

Different forms of Boron Nitride

Hexagonal – "white graphite"

Cubic – almost as hard as diamond

BN nanotubes

Fullerene-like molecule B₁₂N₁₂

BN: insulator with gap 5.8 eV

K. Watanabe et al, Nature Materials 2004.

Inversion symmetry is broken!

a = 2.462 A, c = 6.708 A

a = 2.504 A, c = 6.661 A

Dry-peel transfer

de-lamination

release

Bubbles

Mobility and Mean Free Path

Mobility and Mean Free Path

The width of the Hall bar is 2 μm

At low temperatures the MFP is limited by the size of the device

graphene-hBN interface in TEM

NO CONTAMINATION LAYER at the interface between graphene & hBN

Focused ion beam (FIB) milling + STEM Slices 20-70 nm thick

HC chemical analysis TEM BN_T G_B BN_B

Manchester, Nature Materials 2012

moiré patterns: graphene on hBN

Yankowitz et al, *Nature Phys* 2012 Xue et al, *Nature Mat* 2011; Decker et al, *Nanolett* 2011

Scanning tunnelling microscopy (STM):

- the period is much larger than graphene lattice constant
- conductance electrons "feel" periodic potential

Graphene on Substrate with Similar Lattice Constant

Moiré pattern: well defined long range order

Graphene is just one atom thick. Electrons feel atoms of the substrate (if the interface is clean)

> What happens in strong magnetic field?

moiré patterns: graphene on hBN

Yankowitz et al, *Nature Phys* 2012 Xue et al, *Nature Mat* 2011; Decker et al, *Nanolett* 2011

 E_s

 E_{s}

THEORY:

Steve Louie's group Nature Phys 2008, PRL 2008 Francois Peeters' group PRB 2010-2012 Burset et al, PRB 2011 Ortix et al, PRB 2012 Kindermann et al, PRB 2012 Fal'ko et al, PRB 2013 and SOME MORE

moiré patterns: graphene on hBN

Yankowitz et al, Nature Phys 2012

New Dirac points generated at the edges of the superlattice Brillouin zone

 E_{s}

 $\cdot E_s$

can we probe in transport?

Yankowitz et al, Nature Phys 2012

specially aligned graphene devices

ambient CAFM: moiré in graphene on BN with ~12 nm period

specially aligned graphenerotevices

what happen in magnetic field?

graphene: $l_B = \left(\frac{\hbar c}{eB}\right)^{1/2} = \frac{25 \text{ nm}}{\sqrt{B[T]}}$ $a \approx 0.25 \text{ nm} \Rightarrow B \approx 10^4 \text{ T}$

Two competing lengthscales: a: lattice periodicity $l_{\rm B}$: magnetic length

Duglas F. Hofstadter, Phys. Rev. B 14, 2239 (1976)

 $\frac{\phi}{\phi_0} = \frac{a^2 B}{\phi_0}$ flux quanta per unit cell

Energy levels develop fractal structure when magnetic length is of the order of the lattice period

graphene/BN superlattice:

 $\lambda \approx 14 \text{ nm}$ A $\approx 170 \text{ nm}^2$

$$B \approx 24 \text{ T} \quad (\phi/\phi_0 = 1)$$

Е

Tracing gaps in B and n

gaps are constrained to linear trajectories in the B-n diagram:

 n/n_0 – normalised density (n_0 = 4/A, where A is the area of supercell)

Glimpse of Hofstadter's butterfly Earlier attempts in GaAs based structures

C. Albrecht et al, PRL (2001) M. C. Geisler et al, PRL (2004)

T. Schlosser et al, Semicond. Sci. Technol. (1996)T. Schlosser et al, Europhys. Lett.(1996)

- Large unit cell (100 nm or larger)
- Limited range of densities
- Significant disorder

Magnetotransport measurements

L. A. Ponomarenko et al. Nature 497, 594-597 (2013) C. R. Dean et al. Nature 497, 598-602 (2013) B. Hunt et al., Science 340, 1427-1430 (2013)

Capacitance Measurements

V Simple and reliable technique for studying details of the band structure

"geometrical" capacitance

Signature of Hofstadter's butterfly

Black – Landau fan (4x degenerate) Blue – Landau fan (degeneracy lifted, QHFM) Green – "Landau levels" from secondary DPs Red – gaps in Hofstadter spectrum

G.L.Yu et al. Nature Physics 10, 525 (2014)

Conclusions for Part 2

Graphene superlattice is an excellent example of "band structure engineering" and creating artificial structures with on demand properties (simply by controlling the orientation of graphene with respect to the properly chosen substrate)

Hofstadter butterfly has been finally observed (almost 40 years after its prediction)

Graphene Double Layer Structures

Layer-by-layer material engineering

BN-Gr-BN-Gr-BN

 $\begin{array}{ll} \mu_{B}\approx 50,000 \ \mbox{to}\ 120,000 \ \mbox{cm}^{2}/Vs & anything \ down \ \mbox{to}\ monolayer \\ \mu_{T}\approx 30,000 \ \mbox{to}\ 60,000 \ \mbox{cm}^{2}/Vs & (drag \ measurements - 3 \ layers) \\ \hline High \ quality, \ perfect \ interface, \ versatile \ system \end{array}$

Double Layer Structures

GaAs/AlGaAs double-quantum-well structures have been studied for more than 20 years (in particular J. Eisenstein group, Caltech)

also Cavendish and Sandia Labs on e-h bilayers

T.J. Gramila et al, Phys. Rev. Lett. (1991)

Weakly coupled layers (d<<n^{-1/2}): e-e scattering (Coulomb drag) Strongly coupled layers: support coherent state (excitonic condensation) Tunnelling spectroscopy: details of bend structure

Graphene Double Layers vs Double Quantum Well

	GaAs/AlGaAs	Gr/BN/Gr
Separation	> 15 nm	>1 nm
Temperature range	< 5 K	up to room T
Contacts	Split gates needed	No need of split gate
Carriers	Either electrons or holes in each layer	Ambipolar (both e and h)
Size	a few mm	a few μ m (UCF at low T)
Mobility (cm ² /Vs)	> 1 000 000	> 100 000

Graphene double layers - strongly interacting regime ($k_Fd \sim 0.1-1$)

Graphene Double Layer Structures

Graphene as a tunable metal plate: Screening of charged impurities Metal-Insulator Transition

Ponomarenko et al., Nature Physics (2011)

Coulomb drag

Gorbachev et al. Nature Physics (2012) Titov et al. Rhys. Rev. Lett (2013)

Tunneling Transistors

Britnell et al., Science (2012) Georgiou et al. Nature Nano. (2013)

Tunable Metal-Insulator Transition

Top layer as a metallic plate with tunable density

Temperature dependence

Power-law rather than activation behaviour \Rightarrow no gap

$$\rho_{\max} \sim T^{-\alpha}, 1 < \alpha < 2$$

Field dependence

Screened-Out Puddles

on BN

Disorder results in e-h puddles

Yacoby, Nature Phys 2007 LeRoy, Nature Mat 2011 Crommie, Nano Lett 2011

Message: typical puc By screening puddles we can 10¹⁰cm⁻²) make graphene insulating

 $\rho \approx h/4e^2$ due to percolation of e-h puddles Falko et al PRL 2007; Das Sarma et al PNAS 2007; Fogler PRL 2009

second graphene acts as a metallic plate and screens out e-h puddles MAKING PUDDLES SHALLOWER THAN CRITICAL CAUSES THE LOCALIZATION TRANSITION

Tunnelling Transistor

Graphene doesn't have a band gap, but... Fermi level can be moved by ±0.2 eV easily

The barrier has to be insulating 2D-crystal

The second electrode can be any conductor, but graphene (or graphite) works the best.

Tunnelling Transistor

Increasing On/Off

MESSAGE TO TAKE AWAY

VERTICAL TUNNELING DEVICES OFFER ALTERNATIVE ROUTE TO GRAPHENE-BASED ELECTRONICS

remains to be evaluated by engineers

Coulomb Drag

Momentum transfer d is of the order of the distance between charge carriers

d ~ 1 nm of hBN (20 times smaller than in traditional GaAs systems)

> Direct measurements of e-e scattering rate in simple transport experiment

d as small as 1 nm of BN \Rightarrow k_Fd < 1 (strong interaction)

Drag in Double Layer Structures

$$R_{drag} = \frac{V_{drag}}{I_{drive}}$$

Two gates to control densities in both layers

Note: no tunnelling between graphene layers

Weakly coupled layers (d>>n^{-1/2}): e-e scattering (Coulomb drag) Strongly coupled layers: support coherent state (excitonic condensation)

T.J. Gramila et al, Phys. Rev. Lett. (1991)

Drag measurements

Drag resistance has a right sign.

Interlayer Excitons

Drag measurements

No significant difference between $n_t = n_b$ and $n_t = -n_b$ (no excitons at room T)

Temperature and Field Dependence

40 2,1 2,30 K 20 $ρ_{drag}$ (Ω) 1,2 V_{back} (V) 0 -1,-2 400.0 200.0 -20 -2,-2 0.000 -2,-1 -1,0 -200.0 -40 -400.0 -2 2 -1 V_{top} (V)

Temperature dependence is quadratic down to 40 K (no sign of exciton condensation) Between LLs drag vanishes

Large drag at the double neutrality point (0,0)

Conclusions

Graphene multi-layer structures: there is a lot of new and interesting physics beyond graphene

Vertical tunnelling transistors offer ON/OFF ratio suitable for digital applications.

By screening the charged impurities one can make graphene insulating

Coulomb drag in double-layer structures: towards excitonic Bose-Einstein condensation

Commensurate-incommensurate transition in graphene on hBN

Two types of G/hBN superlattices

Incommensurate: Not aligned <u>No global gap</u>

Ponomarenko et al., Nature, 497, 2013, 594.

Commensurate: Global A/B asymmetry <u>Global gap</u>

Woods et al., Nature Phys., 10, 2014, 451.

Massive Dirac Fermions in van der Waals Heterostructure

A gap opens at the Dirac point in aligned structures, $\Delta \sim 38 \text{ meV}$

