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1 Bayesian Inference and Estimators

Inference and data estimation is a fundamental interdisciplinary topic with many practical application. The
problem of inference is the following: we have a set of observations y, produced in some way (possibly noisy)
by an unknown signal s. From them we want to estimate the signal ~s. To be concrete, we have

~y = f(~s; noise) , (1)

and the objective is to produce an estimation ŝ = ŝ(y) that is (hopefully) accurate under some metric.
Inference is a huge field and different approaches are possible. It can be regarded as a subfield of statistics,

and lies at the merging of a number of areas of science and engineering, including data mining, machine
learning, signal processing, and inverse problems. Each of these disciplines provides some information on
how to model data acquisition, computation, and how best to exploit the hidden structure of the problem
of interest.

Numerous techniques and algorithms have been developed over a long period of time, and they often differ
in the assumptions and the objectives that they try to achieve. As an example, a few major distinctions to
keep in mind are the following.

Parametric versus non-parametric In parametric estimation, stringent assumptions are made about the un-
known object, hence reducing s to be determined by a small set of parameters. In contrast, non-
parametric estimation strives to make minimal modeling assumptions, resulting in θ being an high-
dimensional or infinite-dimensional object (for instance, a function).

Bayesian versus frequentist The Bayesian approach assumes s to be a random variable as well, whose ‘prior’
distribution plays an obviously important role. From a frequentist point of view, s is instead an
arbitrary point in a set of possibilities. In these lectures we shall mainly follow the Bayesian point of
view, as it fit more naturally the statistical physics approach, but the two are in fact closely related.

Statistical efficiency versus computational efficiency Within classical estimation theory, a specific estimator
ŝ is mainly evaluated in terms of its accuracy: How close (or far) is ŝ(y) to s for typical realizations
of the noise? We can broadly refer to this figure of merit as to ‘statistical efficiency.’ Within modern
applications, computational efficiency has arisen as a second central concern. Indeed s is often high-
dimensional: it is not uncommon to fit models with millions of parameters. The amounts of observations
has grown in parallel. It becomes therefore crucial to devise estimators whose complexity scales gently
with the dimensions, and with the amount of data.

These lectures will focus on a Bayesian-parametric approach and will talk mainly about performance
analysis (existence and study of phase transitions), and a bit about the analysis of some algorithms.

1.1 The Bayes formula

The Bayesian inference makes use of the Bayes formula, written for the first time by Rev. Thomas Bayes
(1702 - 1762). Indicating with P (A|B) the probability of having an event A conditioned to the event B, the
Bayes formula states that we can extract P (A|B) from the knowledge of P (B|A) simply as:

P (A|B) =
P (B|A)P (A)

P (B)
(2)

Translating this formula in the contest of statistical inference, if we know:

• P (~y|~s), often called likelihood, that is the probability of having a certain observation ~y given a signal ~s

• P (~s), called prior probability, that is the probability of the signal
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we extract the probability of the signal given the observation, called posterior probability as

P (~s|~y) =
P (~y|~s)P (~s)

Z
(3)

where Z is just the renormalization of the probability. In the prior we should insert the knowledge that we
have about the signal. If we don’t have any information, we can simply take a uniform distribution. Once we
have P (~s|~y), the last thing to do is to extract ~̂x that is the estimate of the signal ~s. Many kinds of estimators
exist. We will analyze some of them in the following.
However firstly we apply what we have said to a real example.

Example 1: Inferring a decay constant (from Ref. [1])
Unstable particles are emitted from a source and decay at a distance y, a real number that has an expo-

nential probability distribution with characteristic length λ. Decay events can only be observed if they occur
in a window extending from y = 1cm to x = 20cm. M decays are observed at locations {y1, ..., yM}. What
is λ?

Writing things in the inference language, ~y are our observations and λ is our signal ~s of dimension N = 1.
We know

P (y|λ) =

{
1
λe
−y/λ/Z(λ) if 1 < y < 20

0 otherwise
(4)

with Z(λ) =
∫ 20

1
dx 1

λe
−x/λ = e−1/λ − e−20/λ. From eq. (4) we can extract P (λ|~y) using the Bayes formula:

P (λ|~y) ∝ 1

(λZ(λ))
M
e−
∑M
i=1 yi/λP (λ) (5)

If we do not have any prior information on λ, we assume that P (λ) is a constant that just enters in the
normalization. P (λ|~y) is the final answer from Bayesian statistics. It contains all the information that we
have on λ in this approach.

For a dataset consisting of several points, e.g., the six points x = 1.5, 2, 3, 4, 5, 12, the likelihood function
is shown in the following plot, and it has a maximum in 3.7. This estimation of λ is called the maximum
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Figure 1

likelihood (ML) estimator, since it maximizes the so-called likelihood P (x|λ). However, the way we derived
it was instead to maximize the posterior probability P (λ|x), and it turned out equal to maximum likelihood
just because we used a uniform distribution for the prior P (λ).
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Probabilities are used here to quantify degrees of belief. To avoid possible confusions, it must be em-
phasized that λ is not a stochastic variable, and the fact that the Bayesian approachuses a probability
distribution does not mean that we think of the world as stochastically changing its nature between the
states described by the different hypotheses. The notation of probabilities is used here to represent the
beliefs about the mutually exclusive hypotheses (here, values of λ), of which only one is actually true. That
probabilities can denote degrees of belief, given assumptions, is at the hearth of Bayesian inference.

1.2 Probabilty reminder

1.2.1 A bit of probabilities

P (A|B)P (B) = P (A,B)∑
A P (A|B) = 1.∑
B P (A|B) = something???.∑
B P (A,B) = P (A) (marginalisation)

< A >=
∑
AAP (A) (mean)

< A2 > − < A >2 (variance)

1.2.2 Probability distribution∫
dxP (x) = 1

e.g. Gaussian distribution (or normal)∑
X P (x) = 1

e.g. Poisson distribution
P (k) = fracλke−λk!
mean and variance are given by lambda!
Exponentielle
P (x) = frace−x/λλ
mean is lambda and variance is λ2

1.2.3 A bit of random variables

Markov inequality : if x is a random positive variable P (x ≥ a) ≤ E(x)
a .

Chebyshevs: P (|X −m| ≥ kσ) ≤ 1
k2

1.3 Estimators

Now that probabilty is no longer a problem for us, let us come back to the problem. Is is clear that we
should have took the maximum probability? We could want to go further and infer a different value for λ.
How so?

Maximum a posteriori estimator (MAP). Maybe the simplest answer to the previous question is to
estimate λ as the value that maximizes the posterior probability, in formula:

x̂MAP = argmaxsP (~s|~y) (6)

This is reasonable in some cases, however what about a situation in which the posterior distribution is
the one in Fig. 2? The MAP estimator λ̂MAP chooses the value of λ that corresponds to the peak, but
indeed, extracting randomly λ from that distribution, the number of times in which we will extract λMAP is
really small. Thus at least in this case the MAP estimator doesn’t seem a good one.
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Figure 2: Example of a strange a posteriori probability and maximum a posteriori estimator

Minimal mean square error estimator (MMSE). A good estimator should have a low mean square
error (MSE) between the real signal and the estimation, defined as:

MSE =

N∑
i=1

(xi − si)2

N
(7)

Unfortunately we can not calculate the MSE because we do not know ~s. However we know P (~s|~y) and we
can estimate the risk for the MSE, defined as:

E (MSE) =

∫
d~sP (~s|~y)

N∑
i=1

(xi − si)2

N
(8)

If we try to minimize the risk for MSE imposing d
dxi

E(MSE) = 0, we end up with the MMSE estimator:

x̂iMMSE =

∫
dsiP (si|~y)si (9)

where P (si|~y) =
∫ ∏

j 6=i P (~s|~y) is the marginal probability of the variable si. Thus the MMSE estimator
is just the mean of the posterior probability component-wise. We can see that in the case of Fig. 2, this
estimator is more reasonable than the MAP one.

We can also choose to minimize other quantities than the MSE. For example if we choose to minimize

the risk of the observable
∑N
i=1

|xi−si|
N we end up with an estimator that is component-wise the median of

the marginals.

Minimal error assignments estimator (MARG). If we have a problem in which the signal can take
only discrete values, we can define the number of errors as:

num. of errors =

N∑
i=1

1− δ(si, xi)
N

(10)

If we minimize the risk on the number of errors:

E (errors) =

∫
d~sP (~s|~y)

N∑
i=1

1− δ(si, xi)
N

(11)
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we obtain the so called minimal error assignment estimator:

x̂iMARG = argmaxsiP (si|~y) (12)

that corresponds to the optimal Bayesian decision.
This estimator is deeply different from the MAP one. In fact for the MARG we take for each component

the value that maximizes the marginal of the posterior probability on that component, the operation is thus
done component-wise, while for the MAP one we chose the point ~s that maximizes the whole probability. In
a statistical physics approach we can say that the difference between the MAP estimator and the MMSE or
MARG ones is the same difference that occurs between the minimization of the energy or of the free-energy.
The MAP approach maximizes the total probability, but does not take into account the “entropic effects”.
We can make the connection with statistical physics more clear rewriting eq. (3) as:

P (~s|~y) =
elog(P (~y|~s))+log(P (~s))

Z
(13)

where P (~s|~y) is interpreted as the Boltzmann weight, the argument of the exponential is the Hamiltonian
(assuming β = −1) and Z is the partition function. In this language the marginal probability P (si|~y) has
the role of the magnetization.

1.4 A toy example in denoising

A typical example of inference is the denoising problem. A signal is transmitted trough a channel that is
noisy. We want to estimate the signal from the data measured at the end of the channel, namely from the
signal plus the noise.

1.4.1 Phase transition in an easy example

As first example we restrict the problem to an easy one: the original signal ~s, of length N , is sparse and in
particular only the i-th element is different from zero:

sj =

{
x∗ if j = i

0 if j 6= i
(14)

In the transmission, Gaussian noise is added. Thus we will observe a random signal ~y with probability

P (yj = E) =

{
δ(E − x∗) if j = i

1√
2π∆

e−
E2

2∆ if j 6= i
(15)

For simplicity we did not add noise on the i-th component of the signal. The average number of events that
lie in a small interval δE is:

N (E,E + δE) =
N√
2π∆

e−
E2

2∆ δE ∝ elog(N)
(

1− E2

2∆ logN

)
. (16)

Defining Ec =
√

2∆ logN , the exponent is negative for |E| > |Ec| and positive otherwise. Thus in the
large N limit, the average number of events (and consequently the probability of having at least one event)
is zero for |E| > |Ec|. One can define an entropy that in the large N limit takes values:

s(E) = log(N ) =

{
log(N)

(
1− E2

2∆ logN

)
if |E| < |Ec|

0 if |E| > |Ec|
(17)

and has the form shown in Fig. 3. Thus if the only non trivial component of the initial signal is larger
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Figure 3: Entropy for the denoising toy problem as defined in eq. (17)

than the threshold, namely |x∗| > Ec, we are able to recognize it. For this reason in Ref. [2] Donoho and
Jhonstone proposed the following universal thresholding : if yi = E with |E| < Ec, the estimated signal is
ŝi = 0, because there is no way to understand if the observation is signal or noise; if |yi| > Ec, the estimated
signal is ŝi = yi.

We have seen that even in this simple example we can clearly identify two phases: the first one, when
|x∗| > Ec, is the easy phase for the reconstruction of the signal, the second one, when |x∗| < Ec, is the hard
or impossible phase and the passage from one to another is sharp. Indeed it is a real phase transition.

1.4.2 The connection with Random Energy Model

The expert reader will have already recognized the connection with the Random Energy Model (REM),
introduced many years before Donoho and Johnstone by Derrida in Ref. [3]. In the REM we have n Ising
spins, thus the total number of configurations of the whole system is N = 2n. The energies associated to

these configurations are independent random variables extracted from a distribution P (E) = 1√
2π∆

e−
E2

2∆ ,

with ∆ = n/2. The Boltzmann weight of a certain configuration at temperature T (and inverse temperature

β) is P (E) = e−βE

Z . The entropy of this model is exactly the one in eq. (17). Now, using the thermodynamical

relation ds
dE = 1

T we can obtain the equilibrium energy at a given temperature: E(T ) = −∆
T . This is valid only

when E > −Ec, in fact we know that in the thermodynamic limit there are no states with E < −Ec. Thus
there is a critical temperature Tc = 1

2
√

log(2)
, obtained imposing E(T ) = −Ec, below which the equilibrium

energy is always Ec. Thus the Gibbs measure for T < Tc condensates only on a sub-extensive number of
states (because s(Ec) = 0). For T < Tc we are in the so called glassy phase.

We have seen that the critical energy that we found for the denoising problem is the same critical energy
that is linked to the glass transition in the REM. This is not an isolated case. For each inference problem the
critical threshold between the hard and the easy phases is linked to the critical point between paramagnetic
and spin-glass phase of the associated statistical-physics disordered model. We will study deeply this link in
the next section.
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2 Taking averages: quenched, annealed and planted ensembles

In statistical physics of disordered systems, we very often face —by definition— the following situation: we
have a Hamiltonian with spin variables S = ±1 that contains some disordered quantities whose distribution
we know. For instance, one can think about the seminal case of spin glasses where the Edwards-Anderson
(EA) [4] Hamiltonian reads:

H = −
∑
〈i,j〉

JijSiSj (18)

where the sum is over all pair of spins on a given graph. In general, we know that the Jij are taken random
from a given distribution, say for instance P (J) = 1

2δ(J − 1) + 1
2δ(J + 1). It is then difficult to compute the

partition sum, since we do not know the Hamiltonian explicitly but rather the probability of a given one! A
first solution is to consider a given instance of the problem, and to study this particular problem. In fact,
this is a strategy which, strangely enough, was only followed recently, however it brings statistical physics
to another level and allows deep connections with many problems of computer science. A second solution,
which we shall follow in this section, is averaging over many realizations of the disorder.

2.1 The Quenched ensemble

How to average is a problem that was solved a long time ago by Edwards himself in his work on spin glasses
and vulcanization (see the wonderful book Stealing the gold [5]). If one takes a large enough system, he
suggested, then the system becomes self-averaging : all extensive thermodynamic quantities have the same
values (in densities) for almost all realizations of the Hamiltonian. Therefore, one can average them and
compute the average free energy

fquenched =

[
F

N

]
= lim
N→∞

− 1

βN
[logZ] , (19)

where [ .] denotes the average over the disorder. Edwards did not stop here and also suggested (and gave
credit to Mark Kac for the original idea) a way to compute the average of the (very tricky) logarithm of Z,
known today as the replica trick, using the identity:

logZ = lim
n→0

Zn − 1

n
. (20)

The idea here is that, if averaging the logarithm of Z turns out to be difficult, the average of Zn is maybe
doable for any integer value of n, and performing a (risky!!) analytic continuation to n = 0, one might
compute the averaged free energy over the disorder as

fquenched = − 1

Nnβ
lim
n→0

([Zn]− 1) . (21)

This is called the quenched average, and we shall from now on refer to such computation as the quenched
computation. In fact, the self-averaging hypothesis for the free energy has been proven now rigorously in
many cases (in particular for all lattices in finite dimension [6] and for mean-field models [7]) for most
situations with discrete variables, so this is in fact the correct computation that one should do in physics.
It is, however, very difficult to solve this problem in general, and this is at the core of the statistical physics
of disordered systems. We shall indeed often encounter this situation in the following.

2.2 The Annealed ensemble

It is much easier to consider the so called annealed ensemble. This is a very different computation, and of
course, it has no reason to be equal to the quenched computation. In the annealed ensemble, one simply
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averages the partition sum and only then takes the logarithm:

fannealed = − 1

Nβ
log [Z]. (22)

It is important to see that this is wrong if one wants to do physics. The point is that the free energy is an
extensive quantity, so that the free energy per variable should be a quantity of O(1) with fluctuations going
in most situation ∝ (1/

√
N) (the exponent can be more complex, but the idea is that fluctuation are going

to zero as N → ∞.) The partition sum Z, however, is exponentially large in N , and so its fluctuation can
be quite large: averaging over them is then far from safe, as the average could be dominated by rare, but
large, fluctuations.

Consider for instance the situation where Z is exp (−βN) with probability 1/N and exp (−2βN) with
probability 1− 1/N . With high probability, if one picks up a large system, its free energy should be f = 2,
however in the quenched computation one finds

[Z] =
1

N
exp (−βN) +

(
1− 1

N

)
exp (−2βN) (23)

and to leading order, the annealed free energy turns out to be fannealed = 1.
One should not throw away the annealed computation right away, as it might be a good approximation

in some cases. Moreover, it turns out to be very convenient to prove theorems! Indeed, since the logarithm
is a concave function, the average of the logarithm is always smaller or equal to the logarithm of the average,
so that

fannealed ≤ fquenched. (24)

This is in fact a crucial property in the demonstrations of many results in the physics of disordered systems,
and in computer science as well (the celebrated ”first moment method” [8]).

Furthermore, there is a reason why, in physics, one should sometimes consider the annealed ensemble
instead of the quenched one: when the disorder is changing quickly in time, on timescales similar to those of
configuration changes, then we indeed need to average both over configurations and disorder and the annealed
average is the correct physical one: this is actually the origin of the name ”annealed” and ”quenched”
averages.

2.3 The Planted ensemble

In fact, a third ensemble of disorder can be defined, that seems odd at first sight, but which turns out to
be very interesting as well: the planted ensemble. Following André Gide, we shall first consider a solution
and then create the problem: The idea of planting is precisely to first generate a configuration of spins
that we want to be an equilibrium one, and then to create the disorder in the Hamiltonian such that this
is precisely an equilibrium configuration. This is very practical, as we are generating at the same time an
equilibrium configuration and a realization of the disorder (while doing the opposite is the very difficult task
of Monte-Carlo (MC) simulation)! However, like in the annealed case, problems created this way have no
reason to be typical ones —that is, the realization of the disorder will have different statistical properties
than the quenched one— and indeed in general they are not: Hamiltonian created by this procedure defines
a new ensemble.

The planted ensemble has many fascinating properties, and can be used in many ways, as we shall see.
It sometimes allows to prove results on the quenched ensemble and to simulate it at zero computational
cost. It is also the hidden link between the (complex) theory of the glass transition and the (much more
understood) theory of first order transition. Maybe more importantly, it is standing at the roots of the link
between statistical physics and Bayesian inference problems that we mentioned in the previous section.

In this chapter, we shall discuss briefly the properties of the planted ensemble, and its relation with the
quenched and annealed one (and to another one, called the Nishimori ensemble which will turn out to be
the planted one in disguise). We shall then show how to use it and discuss the wonderful applications we
have just mentioned.
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2.4 The fundamental properties of planted problems

2.4.1 The two golden rules

Consider for the sake of the discussion the Edwards-Anderson spin glass with N spins and Hamiltonian in
eq. (18). We first generate a configuration of spins C totally at random (each of the 2N configurations has a
probability 2−N to appear). We now create the disorder average, by choosing each link Jij = ±1 such that
the probability of a given realization of the disorder {J} is

P ({J}|C) ∝ e−βHJ (C). (25)

This can be done easily by taking each link with the probability Plink(J) = e−βJS
C
i S
C
j /(2 coshβ) where SCi

and SCj are the values of spins i and j in the planted configuration C. We have now created a planted
problem. Let us see what is the relation of the planted configuration with the planted problem. In order to
do this, we use the Bayes theorem:

P ({J}|C) = P (C|{J}) P ({J})
P (C)

∝ P (C|{J})P ({J}) (26)

since the distribution P (C) is uniform. At this point, we thus have

P (C|{J}) ∝ e−βHJ (C)

P ({J})
, (27)

and by normalization, we thus obtain

P (C|{J}) =
e−βHJ (C)

Z{J}
, (28)

P ({J}) ∝ Z{J} =
∑
C′
e−βHJ(C′). (29)

We now see the two fundamental properties of the planted ensemble:

• The planted configuration is an equilibrium one (its probability is precisely given by the Boltzmann
factor).

• The realization of the disorder of the planted problem is not chosen uniformly, as in the quenched
ensemble, but instead each planted problem appears with a probability proportional to its partition
sum: P ({J}) = A({J})·Z{J}. To ensure normalization of the probability, we require that

∑
{J}A({J})·

Z{J} = 1. In full generality we take A({J}) =
Pquenched({J})∑

{J} Pquenched({J})Z{J} . Thus at the end one has

Pplanted({J}) =
Z{J}

Zannealed
Pquenched({J}), (30)

where Zannealed =
∑
{J} Z{J} · Pquenched({J}).

We shall precise in the next section the relation between the planted, annealed and quenched ensembles, and
with a fourth one, the Nishimori one.

2.5 The planted ensemble is the annealed ensemble, but the planted free energy
is not the annealed free energy

From now on, we shall always precise which ensemble (quenched, planted or annealed) is used in order to
compute the averages.
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The average energy in the planted ensemble can be easily computed by averaging over all realizations:

[〈E〉]planted =
∑
{J}

Pplanted({J})
∑
C

e−βHJ (C)

Z{J}
HJ (C) (31)

=
∑
{J}

Z{J}
Zannealed

Pquenched({J})
∑
C

e−βHJ (C)

Z{J}
HJ (C) (32)

=
∑
{J}

Pquenched({J})
∑
C

e−βHJ (C)

Zannealed
HJ (C) (33)

= [〈E〉]annealed (34)

The equilibrium energy is simply the same as in the annealed ensemble. In fact, this computation could be
repeated for many quantities, and this create a deep link between the annealed and planted ensemble. The
reason why it is so is that, in the Edwards-Anderson spin glass, choosing a configuration at random and
a set of couplings from the planted ensemble is totally equivalent to sampling a configuration and a set of
couplings in the annealed ensemble. Indeed, the joint distribution in the annealed ensemble is by definition

Pannealed ({J}, C) ∝ eβHJ (C), (35)

and since we have generated the configuration with a uniform measure in the planted ensemble, we have

Pplanted ({J}, C) = Pplanted ({J}|C)Pplanted (C) ∝ eβHJ (C). (36)

Sampling from the planted ensemble is totally equivalent to sampling from the annealed ensemble! One
could thus say that these are the same ensembles, but there is quite an important difference: the planted
free energy may be totally different from the annealed free energy (notice for instance that one cannot
repeat the former trick for the free energy1). Indeed, in the planted ensemble, we generate a problem which
is typical for this ensemble, and we compute the free energy of this problem. In the annealed ensemble, we
do something very different in the computation of the free energy since we average over both configurations
and disorder, so we are not looking at the free energy of a typical instance at all! In fact, the annealed
computation is not something one should interpret as the free energy of a single, representative, instance.
The best proof of this is that the annealed computation display sometime negative entropies (see for instance
the case of the Random Energy Model [3]!). This is impossible for a given problem, and this demonstrates
that the annealed free energy should not, in general, be regarded as the typical free energy of an instance
chosen in the annealed ensemble.

This is the source of the subtle, yet important, distinction between the annealed and planted ensembles.

2.6 Equivalence between the planted and the Nishimori ensemble

We will now show that the planted ensemble can be mapped to a quenched ensemble but with a slightly
modified distribution of couplings, which satisfies the so-called Nishimori condition [9]. Consider again the
planted ensemble we have just described. We have generated a configuration at random, and then created
a distribution of disorder correlated with this configuration. Notice now that the original Hamiltonian of
Edwards-Anderson in eq. (18) satisfies the following gauge invariance:

Si → Siτi, (37)

Jij → Jijτiτj , (38)

1This might sound surprising, given the energy is the same, but one needs to keep in mind that in changing the temperature,
we also change the problem, so that we cannot simply perform thermodynamic integration to compute the free energy in the
planted problem.
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for any set of {τ} = ±1. Consider now the very particular set of variables {τ} such that τi = Si. If we apply
this gauge transformation, then the planted configuration is transformed into a uniform one where all spin
are up, with value S′i = 1 for all i. But what has happened to the couplings? Since the energy of each link
has not been changed by the gauge transform, the situation is simple: if the link was frustrated, then it is
still a frustrated link with respect to the uniform configuration and thus J = −1. If it was not frustrated,
then J = 1. In other words, we have now a problem where each link has been assigned independently, with
probability Plink(J) = e−βJ/(2 coshβ). Since β ≥ 0, most of these links are in fact positive (all of them are
positive at β =∞ and half of them at β = 0). So we see that, after the gauge transformation has been done,
the disorder has been changed so that:

P (J) =
e−β

2 coshβ
δ(J − 1) +

eβ

2 coshβ
δ(J + 1). (39)

This is in fact a well known ensemble, called the Nishimori ensemble, and the line in the plane tempera-
ture/fraction of positive J defined by eq. (39) is called the Nishimori line [9]. It has been the subject of
many studies, because of its particular properties; and we now see that it is simply the planted ensemble
in disguise. In fact, almost (if not all) results on the Nishimori line can be understood right away once
one notices that the planted configuration (that is, the uniform S = 1 one after the gauge transform) is an
equilibrium one.

Following eq. (30), one can obtain new interesting properties by simply averaging the partition sum to
the power n. We find

[Zn]planted =
[Zn+1]quenched

[Z]quenched
. (40)

This identity was known on the Nishimori line (which, as we just saw, is nothing but the planted ensemble)
already from the work of [10]. We now understood how it appears more generally in the planted ensemble.
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3 Inference on spin-glasses

3.1 Spin-glasses solution

We already introduced the spin-glass model with Hamiltonian as in Eq. (18). In the mean-field version of
this model, the Sherrington-Kirkpatrick (SK) model [14], every spin is connected to all the others. In this
case the solution of the model in the quenched ensemble is known and we briefly explain it in this Section.
Above a certain critical temperature Tc there is a paramagnetic (PM) phase, caracterized by all the local
magnetizations mi =< si > that are null. In this region indeed the quenched and the annealed computation
for the free energy lead to the same result. Under the critical temperature Tc the phase space is divided
in many different equilibrium pure states, separated by barriers of divergent height in the thermodynamic
limit. If we extract a certain realization of the disorder, and then we create two replicas of the system with
the same disorder that evolve independently with a certain equilibrium dynamics, than the two replicas
will fall in different states. Each pure state α has a certain weight wα in the partition function and it is
characterized by certain magnetizations {mα

i }. The spins of the system will thus freeze in their position in
a given state, but there will be no preferential orientation, and the total magnetization will be M = 0. The
overlap parameter qαβ measures how much two different states α and β are similar:

qαβ =
1

N

∑
i

mα
i m

β
i , −1 ≤ qαβ ≤ 1.

To characterize a phase of a system, one can use the overlap distribution, that measures if the system has
different states and how much they are similar:

P (q) =
∑
αβ

wαwβδ(qαβ − q).

In the ferromagnet, there are only two states of equilibrium, with opposite magnetization. Thus the P (q)
is trivial; it has two peaks, at m2 and −m2, related by the obvious Z2 symmetry. For the spin glass the order
parameter is no more the magnetization but the overlap distribution that is not trivial [15, 16]. The P (q)
has a continuous support q ∈ [0, qEA], where qEA = 1

N

∑
im

α
i m

α
i is the self-overlap inside a state. Looking

at this function we can learn that in the SK model below Tc there are many states, with different distances.
This mean field theory is called the Replica Symmetry Breaking (RSB) theory, and it predicts a ther-

modynamic transition also in magnetic field h at a finite temperature. In this framework, a transition line,
called deAlmeida-Thouless (AT) [17] line, can be identified in the T − h plane between PM and SG phase.
It starts at (T, h) = (Tc, 0) and it ends at (T, h) = (0, hc). hc = ∞ for the SK model. The SK transition is
a continuous one, in fact qEA grows in a continuous way from 0 at Tc.

But there exists also some particular disordered models that have a discontinuous transition. The paradig-
matic example is the so called p-spin model [18, 19, 20], that has Hamiltonian:

H = −
∑
〈i1,...ip〉

Ji1...ipSi1 ...Sip (41)

with Ji1...ip taken random from a given distribution. In the mean-field, fully-connected case, for high enough
temperature, the stable state is the paramagnet, while it undergoes a static transition towards a low tem-
perature spin-glass phase at Ts. The structure of P (q) is quite different from the case of the SK model. In
fact it has a single peak at q = 0 in the PM phase, and discontinuously develops a second peak at q1 6= 0 at
Ts. However the height of this new peak in P (q) is zero at the transition and grows continuously lowering
the temperature. This form of P (q) is due to the fact that below Ts there are different states that dominate
the partition function. The self-overlap inside a state is q1 while the overlap between two different states is
zero. The fact that q1 is well distinct from 0 at Ts means that at the static transition the states are already
well formed. There is another temperature that is important for this kind of systems: the dynamical one,
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Td > Ts. If we perform a dynamical simulation of our system, we will see that as we approach Td from
above, there will be a slowing down, and the system will take longer and longer time to relax to equilibrium
(or to decorrelate from its initial configuration). At Td the system is no more ergodic, and it will not relax
anymore to equilibrium. What happens between Ts and Td is that an exponential number of metastable
states exists: N ∼ eNΣ, where Σ is called complexity or configurational entropy These states are the ones
who are trapping the system, because each of them is surrounded by an infinite energy barrier. But they
are just metastable, so not detected by a thermodynamic calculation that will find a transition only at Ts.
At Ts in fact Σ = 0, the partition function is dominated by a subexponential number of states,

3.2 Phase diagrams of the planted spin-glass

We now want to make the connection between the planted ensemble and inference problems more explicit.
Thus we will ask the following question: If we choose a configuration C and we extract a special configu-
ration of the couplings from the planted ensemble with probability P ({J}|C) as in eq. (25) such that the
configuration C is an equilibrium one for example for the EA model at inverse temperature β, is it possible
to identify the planted C from the only knowledge of the couplings {J}?

This is exactly a problem of inference. From the knowledge of the observables {J} and of the likelihood

P ({J}|C), we can extract the posterior probability P (C|{J}) = e−βHJ (C)

Z{J}
, as explained in Sec. 2.4.1. Being

the spins discrete variables, the best choice to infer C is the use of the MARG estimator, introduced in Sec.
1.3:

ŝi = argmaxsiP (si|{J}). (42)

We can use for example a MC simulation to sample P (si|{J}) and extract the estimate ŝi. We expect two
different situations:

• If all the local magnetizations are zero (that is what happens for example in the PM phase of a
spin glass in the quenched ensemble, that is equivalent to the planted one in the PM phase because
the annealed and the quenched free energies are the same, we do not have enough information to
extract the planted configuration and P (si) = 1

2δ(si + 1) + 1
2δ(si − 1). This means that the extracted

couplings were not enough correlated to C. The limit case for example is when β = 0. In that case
P (J) = 1

2δ(J + 1) + 1
2δ(J − 1), the extracted couplings are not at all correlated with the planted

configuration, thus there is no hope to find it.

• If the local magnetizations are not zero we can hope that our estimators will give a result that is
correlated to the planted solution.

We can define the overlap between the estimated and the planted configuration as:

q =

∑N
i=1

(
ŝi − sCi

)
N

− 1

2
(43)

The subtraction of 1
2 assures that the random choice in the thermodynamic limit has zero overlap with the

planted configuration. There are two possible situations:

• A second order phase transition between an impossible phase at high temperature, T > Tc, where
q = 0 and a phase in which the reconstruction is easy, for T < Tc, and we have a positive overlap.

This is for example the situation of the planted EA model and illustrated in the left part of Fig. 4.

• A first order phase transition, that has a more complex scenario. At high temperature, for T > TPT
the free energy associated to the inference problem has a unique solution at q = 0 (or two solutions
with the one at q = 0 with the lowest free-energy). This is an impossible phase for the reconstruction.
For Tsp < T < TPT the free energy has a lower minimum at q 6= 0 and a highest one at q = 0. This is
a possible but hard phase. In fact in principle one could find a configuration correlated to the planted
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Figure 4: II order phase transition (left) and I order phase transition (right) for the overlap between the
estimator and the planted configuration as a function of the temperature in different inference problems

one, but usually it will take a very large time, because one is attracted by the q = 0 solution. For
T < Tsp the free energy has a unique solution at q 6= 0 (we are below the spinodal point). This is the
easy phase.

This is for example the situation of spin-glass models whit p-spin interactions, p > 2, and it is illustrated
in the right panel of Fig. 4.

The value Tc at which the planted EA model undergoes the phase transition between possible and
impossible phases is exactly the same temperature at which the quenched EA model has a phase transition
between a paramagnetic and a spin-glass phase. We have already view such phenomenon in Sec. 1.4, where
the threshold for the denoising problem was exactly the same as the threshold for the REM to enter in the
spin-glass phase.

However there is no spin glass phase in the planted EA problem (and neither in the denoising one). There
is an intuitive reason for that: we know that for T < Tc we enter in a phase in which the magnetizations are
correlated to the planted configuration. Thus there can not exist many different states, as in the spin-glass
phase: Indeed the transition will be towards a ferromagnetic phase, polarized in the direction of the planted
solution. We have previously seen that the planted ensemble is the analogous of the Nishimori ensemble up
to a gauge transformation. On the Nishimori line it has been proved that no RSB can exist, that implies
that the low temperature phase of the planted model is not a spin-glass phase.

There are also other things that have been proved (with a lot of work) on the Nishimori line and are quite
intuitive if viewed in the planted ensemble. For example one can define an overlap between two different
configurations a and b of the problem at equilibrium: qab = 〈sai sbi 〉. It can be demonstrated that on the
Nishimori line the equality: qab = m = 〈si〉 holds, where m is the local magnetization. In the planted
ensemble one can interpret this result easily: One can chose an equilibrium configuration as the planted
one, and we have seen that the magnetization of the system below Tc is just the overlap with the planted
configuration. 2

3.3 Belief Propagation

We have said that in general in an inference problem we need to compute the posterior marginal probabilities,
as in eq. (42). We can do it with a MC simulation. However we know that MC is often slow and in

2Another analogous relation that holds on the Nishimori line is the equivalence between the spin-glass and the ferromagnetic
susceptibilities: χSG = χF
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inference problems time is important. In this section we will analyze another method to compute marginal
probabilities, that is exact on random graphs, and is much faster than MC. Indeed often the spatial structure
in inference problems is similar to that of a random graph (for example when one want to analyze real
networks like friends on Facebook).

Let us consider an Erdos-Renyi random graph G(N,E) with N vertices and E edges. To each vertex is
associated a variable σi and to each edge an interaction ψij(σi, σj). To be concrete, for an Ising spins system
we have ψij(σi, σj) = exp(−βJijσiσj). Such a random graph can be considered locally as a tree since it
can be proven that the typical loops have a length of order logN . In the following computations we will
therefore pretend to be in the very bulk of an actual tree. As we will see, these computations are correct
as long as the system does not “feel” the presence of loops through long range correlations. We define the
quantity Zi→j(σi), for two adjacent sites i and j, as the partial partition function for the sub-tree rooted at
i, excluding the branch directed towards j, with a fixed value σi of the spin variable on the site i. We also
introduce Zi(σi), the partition function of the whole tree with a fixed value of σi. These quantities can be
computed according to the following recursion rules:

Zi→j(σi) =
∏

k∈∂i\j

(∑
σk

Zk→i(σk)ψik(σi, σk)

)
, Zi(σi) =

∏
j∈∂i

∑
σj

Zj→i(σj)ψij(σi, σj)

 , (44)

where ∂i \ j indicates all the neighbors of i except spin j. We can rewrite these equations in terms of
normalized quantities which can be interpreted as probability laws for the random variable σi, namely
ηi→j(σi) = Zi→j(σi)/

∑
σ′ Zi→j(σ

′) and ηi(σi) = Zi(σi)/
∑
σ′ Zi(σ

′). The quantity ηi→j(σi) is the marginal
probability law of variable σi in a modified system where the link 〈i, j〉 has been removed. The recursion
equations read

ηi→j(σi) =
1

zi→j

∏
k∈∂i\j

(∑
σk

ηk→i(σk)ψik(σi, σk)

)
, ηi(σi) =

1

zi

∏
j∈∂i

∑
σj

ηj→i(σj)ψij(σi, σj)

 , (45)

where zi→j and zi are normalization constants:

zi→j =
∑
σi

∏
k∈∂i\j

(∑
σk

ηk→i(σk)ψik(σi, σk)

)
, zi =

∑
σi

∏
j∈∂i

∑
σj

ηj→i(σj)ψij(σi, σj)

 . (46)

The quantity ηi(σi) is exactly the marginal probability law of the Gibbs-Boltzmann distribution, hence
the local magnetizations can be computed as mi = 〈σi〉 =

∑
σ ηi(σ)σ. Finally, it is useful to define the object

zij =
∑
σi,σj

ηj→i(σj)ηi→j(σi)ψij(σi, σj) =
zj
zj→i

=
zi
zi→j

, (47)

where the last two equalities are easily derived using Eqs. (45).
We can now write the free energy of the system. Clearly, for any spin σi the total partition function is

Z =
∑
σi
Zi(σi). Note that using Eqs. (45) and (46), we obtain

zi =
∑
σi

∏
j∈∂i

∑
σj

ηj→i(σj)ψij(σi, σj)

 =
∑
σi

∏
j∈∂i

∑
σj

Zj→i(σj)∑
σ′ Zj→i(σ

′)
ψij(σi, σj)

 =

∑
σi
Zi(σi)∏

j∈∂i
∑
σj
Zj→i(σj)

,

(48)
and along the same steps

zj→i =

∑
σj
Zj→i(σj)∏

k∈∂j\i
∑
σk
Zk→j(σk)

. (49)
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So we can start from an arbitrary spin i and

Z =
∑
σi

Zi(σi) = zi
∏
j∈∂i

∑
σj

Zj→i(σj)

 = zi
∏
j∈∂i

zj→i ∏
k∈∂j\i

∑
σk

Zk→j(σk)

 , (50)

and we can continue to iterate this relation until we reach the leaves of the tree. Using Eq. (47), we finally
obtain

Z = zi
∏
j∈∂i

zj→i ∏
k∈∂j\i

zk→j · · ·

 = zi
∏
j∈∂i

 zj
zij

∏
k∈∂j\i

zk
zjk
· · ·

 =

∏
i zi∏

〈i,j〉 zij
(51)

and the free energy is

F = −T logZ =
∑
i

fi −
∑
〈i,j〉

fij ,

fi = −T log zi ,

fij = −T log zij .

(52)

The advantage of this expression of F is that it does not depend on the arbitrary choice of the initial site i
we made above.

3.3.1 Stability of the paramagnetic solution

Let us consider a spin glass on a Bethe Lattice. Through belief propagation we can write the effective
“cavity” field acting on a central bulk spin 0 as (see Fig. 5)

βh0 =

k∑
i=1

atanh[tanh(βJij) tanh(βhi)] +H. (53)

A first, simple, way to check the appearance of a spin glass phase is to compute the temperature where
the spin-glass susceptibility diverges, or equivalently where the solution found with the method presented in
the preceding section is locally unstable. When this happens, a continuous phase transition towards a spin
glass phase arises. This is due to the appearance of long range correlations that make the presence of loops
relevant to the problem. A line is separating the paramagnetic and the spin glass phase, which is called
the de Almeida-Thouless line (AT) [21]. In order to compute the AT line, one should consider the onset of
the divergence of the spin-glass susceptibility [22, 23]. For a given spin S0, due to the homogeneous local
tree-like structure of the graph, the spin glass susceptibility can be written as

χSG = β
∑
i

〈S0Si〉2c ≈ β
∞∑
r=0

kr〈S0Sr〉2c . (54)
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In eq. (54) · · · represents a spatial average over the whole graph, whereas 〈· · ·〉 represents a thermal average
and k = c − 1. Note that Xc is the connected version of a correlation function X. Using the Fluctuation-
Dissipation relation, one obtains

β〈S0Si〉2c =

(
∂〈Si〉
∂〈h0〉

)2

. (55)

Since the physical field is a function of the cavity fields, we can monitor the propagation of the response
using the chain rule

∂〈Sr〉
∂〈hc

0〉
=
∂〈Sr〉
∂〈hr〉

∂〈hr〉
∂〈hr−1〉

∂〈hr−1〉
∂〈hr−2〉

· · · ∂〈h1〉
∂〈h0〉

. (56)

To check whether or not the susceptibility defined in eq. (54) diverges, it is thus convenient to consider the
large-distance behavior of the following stability parameter

λ(r) = kr
(
∂〈hr〉
∂〈h0〉

)2

(57)

with
∂h0

∂hi
=

tanh(βJi0)[1− tanh2(βhi)]

1− tanh2(βJi0) tanh2(βhi)
. (58)

If λ(r) vanishes for large r, then the system is paramagnetic, otherwise the spin-glass susceptibility diverges.
Repeating this computation for different values of H and T the complete AT line can be determined point
by point with an excellent precision.

In the case of zero external field eq. (58) can be simplified since in the paramagnetic phase h = 0 all over
the sample, and therefore the stability condition factorizes and reads(

∂〈hi〉
∂〈hj〉

)2

< 1. (59)

Using eq. (53), the critical point is thus given by

ktanh(βcJ)2 = 1, (60)

as was first found by Thouless in Ref. [21]. For a discrete spin glass with e.g., bimodal interactions, we
obtain

T±Jc (k) =

[
atanh

1√
k

]−1

, (61)

while for Gaussian disorder one has to use numerical tools to obtain Tc.
It is also interesting to consider the large-connectivity limit of these computations, where k is large and

where we rescale the couplings so that Jij =
εij√
k

where εij ∈ {±1} with equal probability in order to keep

the free energy extensive [22, 23]. We obtain:

βh0 =

k∑
i=1

atanh

(
β√
k
εij tanh(βhi)

)
+H (62)

≈
k∑
i=1

β√
k
εij tanh(βhi) +H. (63)

In order to make the connection with the well known result of de Almeida and Thouless, it is convenient to
use the cavity magnetization of a spin mi = tanhβhi for which the recursion reads

m0 = tanh

(
k∑
i=1

β√
k
εijmj +H

)
. (64)
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For large k, the argument of the tanh is a sum of uncorrelated variables and thus follows a Gaussian
distribution. Denoting m and q the mean and the variance of the distribution of mi, two self-consistent
equations can be derived

m =
1√
2π

∫
e−z

2/2 tanh
(
βq1/2z + βH

)
dz (65)

q =
1√
2π

∫
e−z

2/2 tanh2
(
βq1/2z + βH

)
dz (66)

In the previous equations the replica symmetric relations for the magnetization and the spin overlap in
the Sherrington-Kirkpatrick model[14, 24] are apparent. In addition, the condition for the stability of the
solution, applied to the magnetization after one iteration, now reads

k

(
∂m0

∂mi

)2

< 1 (67)

from which we immediately obtain

β2

√
2π

∫
e−z

2/2sech4
(
βq1/2z + βH

)
< 1. (68)

This is precisely the original result obtained by de Almeida and Thouless,[25] i.e., the cavity approach
reproduces these results in the large-connectivity limit exactly: a proof, if needed of the coherence of the
method.
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4 Community detection

A useful application of what we said in the previous sections is the problem of community detection (for
a review see e.g. [26]). In the study of complex networks, a network is said to have community structure
if it divides naturally into groups of nodes with denser connections within groups and sparser connections
between groups. This type of structure, where nodes are more likely to connect to others of the same type
as in a ferromagnet, is called assortative. The goal is to detect the communities. In other cases the network
can be disassortative, with denser connections between different groups than within groups. For instance, a
set of predators might form a functional group in a food web, not because they eat each other, but because
they eat similar prey.

The problem of community detection consists in finding the labeling for each node (the group they belong
to) given the graph. This has a widely applications: on-line communities, biological or metabolic networks,
financial market...

The first naive idea to solve the problem in an assortative case is the so called graph partitioning problem:
we try to make a partition minimizing the number of links between the two groups. However this is a NP
complete problem! Our naive idea is not so simple to implement!

The problem can be stated also in another way: given the adjacency matrix of the graph, we want to
find its hidden structure reshuffling the elements in a proper way.

In the literature there are two classes of solving methods:

• Spectral clustering methods, based on the computation of the top eigenvalues of different matrices
associated to the graph (adjacency matrix, random-walk matrix, ...) that should be related to the
groups.

• Modularity maximization, that consists in finding the labeling that minimizes a given cost function,
for example

Q =
∑
ij

[
Aij −

didj
2N

]
δsiδsj (69)

where Aij is the adjacency matrix, di is the degree of node i and si is the label that we assign to node
i. This method is equivalent to minimize the free energy of a given Potts model.

There are two main problems for these methods:

• Extract the number of real groups present in the graphs

• Understand when there is no information in the graph avoiding overfitting. These methods will find
communities even when the graph is simply an Erdos-Renyi random graph with no communities.

In the next section we will introduce a new method based on Bayesian inference, following ref. [27].

4.1 The stochastic block model

To apply Bayesian inference we first need a model. The simplest one is the stochastic block model, defined
as follows. It has parameters q (the number of groups), {na} (the expected fraction of nodes in each group
a, for 1 ≤ a ≤ q), and a q × q affinity matrix pab (the probability of an edge between group a and group
b). We generate a random graph G on N nodes, with adjacency matrix Aij = 1 if there is an edge from i
to j and 0 otherwise, as follows. Each node i has a label ti ∈ {1, . . . , q}, indicating which group it belongs
to. These labels are chosen independently, where for each node i the probability that ti = a is na. Between
each pair of nodes i, j, we then include an edge from i to j with probability pti,tj , setting Aij = 1, and set
Aij = 0 with probability 1− pti,tj . We forbid self-loops, so Aii = 0.

We let Na denote the number of nodes in each group a. Since Na is binomially distributed, in the limit
of large N we have Na/N = na with high probability. The average number of edges from group a to group
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b is then Mab = pabNaNb, or Maa = paaNa(Na − 1) if a = b. Since we are interested in sparse graphs where
pab = O(1/N), we will often work with a rescaled affinity matrix cab = Npab. In the limit of large N , the
average degree of the network is then

c =
∑
a,b

cabnanb . (70)

In the undirected case Aij , pab, and cab are symmetric. A special case is when

cab =

{
cin a = b

cout a 6= b
(71)

4.2 Inferring the group assignment

The first problem that we can analyze is the following: given the graph, that was generated from the
stochastic block model with known parameters θ = {q, {na}, {pab}} we want to infer the group assignment

{qi} for each node. The prior probability is just P ({qi}) =
∏N
i=1 nqi . The likelihood is

P (G|{qi}) =
∏
i 6=j

[
pAijqi,qj (1− pqi,qj )

1−Aij
]

(72)

from which we can extract the posterior probability

P ({qi}|G) =
P (G|{qi})P ({qi})

Z
=
e−H({qi}|G)

Z
, (73)

where in the last equality we are emphasizing that in the language of statistical physics, this distribution is
the Boltzmann distribution of a generalized Potts model with Hamiltonian

H({qi}|G) = −
∑
i

log nqi −
∑
i6=j

[
Aij log cqi,qj + (1−Aij) log

(
1−

cqi,qj
N

)]
. (74)

The labels qi are Potts spins taking one of the q possible values, and the logarithms of the group sizes nqi
become local magnetic fields. In the sparse case cab = O(1), there are strong O(1) interactions between
connected nodes, Aij = 1, and weak O(1/N) interactions between nodes that are not connected, Aij = 0.
Thus the resulting Potts model is fully connected even if the original graph was sparse.

At this point we can infer the labels using the MARG estimator:

q̂i = argmaxqiνi(qi|G) (75)

where νi(qi|G) is the marginal probability on node i, the local magnetization of the Potts variable.
The solution of the inference problem seems simple in this setting. There is however a strong assumption,

as usual in Bayesian inference, that is that the graph was created from the stochastic block model. This is
a quite strong assumption. However, if it was actually created from this model, this is the best estimator
we can obtain. In practice we can simulate the model with Hamiltonian in eq. (74) using a MC simulation
to extract µ(qi|G). However the model is now fully connected. This means that each MC step takes O(N2)
time. However we can rewrite eq. (74) as:

H({qi}|G) = −
∑
i

log nqi −
∑

i 6=j:Aij 6=0

(
log cqi,qj + log

(
1−

cqi,qj
N

))
+
∑
i 6=j

log
(

1−
cqi,qj
N

)
. (76)

The first two terms are local and the last term depends only on the total number of spins that are in a
certain color, thus can be updated easily at each step. In this way the time for each MC step is O(N).
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4.3 Learning the parameters of the model

The second problem that we want to solve is to assign the labels if we do not know the parameters of the
block model θ. We make use once more of the Bayes formula. In general we do not have any information on
the parameters, thus the prior probability is constant and the posterior probability is just:

P (θ|G) ∝ P (G|θ) =
∑
{qi}

P (G, {qi}|θ) (77)

where the sum runs over all possible group assignments. The last term is just the partition function Z in
eq. (73), for the case in which we know the parameters θ.

Thus maximizing P (θ | G) over θ is equivalent to maximizing the partition function over θ, or equivalently
minimizing the free energy density f of the Potts model (74) as a function of θ. If the function f(θ) has a
non-degenerate minimum, then in the thermodynamic limit this minimum is achieved with high probability
at precisely the values of the parameters that were used to generate the network. Extracting the free energy
in a MC simulation is usually a long and difficult task, because it requires to calculate the averaged energy

as a function of the temperature and then to compute f from the relation ∂(βf)
∂β = E. For this reason, rather

than minimizing f(θ) directly, it is useful to write explicit conditions for the stationarity of f(θ). Taking the
derivative of f(θ) with respect to na for 1 ≤ a ≤ q, subject to the condition

∑
a na = 1, and setting these

derivatives equal to zero gives

1

N

∑
i

〈δqi,a〉 =
〈Na〉
N

= na ∀a = 1, . . . , q , (78)

where by 〈f({qi})〉 =
∑
{qi} f({qi})µ({qi}|G, θ) we denote the thermodynamic average. Thus for each group

a, the most likely value of na is the average group size; an intuitive result, but one that deserves to be stated.
Analogously, taking the derivative of f(θ) by the affinities cab gives

1

Nnanb

∑
(i,j)∈E

〈δqi,aδqj ,b〉 =
〈Mab〉
Nnanb

= cab ∀a, b . (79)

Meaning that the most likely value of cab is proportional to the average number of edges from group a to
group b. More to the point, the most likely value of pab = cab/N is the average fraction of the NaNb potential
edges from group a to group b that in fact exist. In the undirected case, for a = b we have

1

Nn2
a/2

∑
(i,j)∈E

〈δqi,aδqj ,a〉 =
〈Maa〉
Nn2

a/2
= caa ∀a . (80)

The stationarity conditions (78–80) naturally suggest an iterative way to search for the parameters θ that
minimize the free energy. We start with arbitrary estimates of θ (actually not completely arbitrary, for a
more precise statement see subsequent sections), measure the mean values 〈Na〉 and 〈Mab〉 in the Boltzmann
distribution with parameters θ, and update θ according to (78–80) . We then use the resulting θ to define a
new Boltzmann distribution, again measure 〈Na〉 and 〈Mab〉, and so on until a fixed point is reached.

In statistical physics, the stationarity conditions (78–80) can be interpreted as the equality of the quenched
and annealed magnetization and correlations. In models of spin glasses (e.g. [28]) they are referred to as
the Nishimori conditions (see Sec. 2.6). This iterative way of looking for a maximum of the free energy is
equivalent to the well-known expectation-maximization (EM) method in statistics [29].

4.4 Belief propagation equations

In Sec. 3.3 we have introduced Belief Propagation equations, that is an alternative and more effective method
with respect to MC to compute marginal probabilities on random graphs and we want to apply them in this
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case. Note that in our case the “network of interactions” is fully connected, since in the Hamiltonian (74)
there are weak interactions even along the non-edges, i.e., between pairs of nodes that are not connected.
However, as we will see these weak interactions can be replaced with a “mean field”, limiting the interactions
to the sparse network.

We define conditional marginals, or messages, denoted ψi→jqi as the marginal probability that the node i
belongs to group qi in the absence of node j. The cavity method assumes that the only correlations between
i’s neighbors are mediated through i, so that if i were missing—or if its label were fixed— the distribution
of its neighbors’ states would be a product distribution. In that case, we can compute the message that i
sends to j recursively in terms of the messages that i receives from its other neighbors k:

ψi→jti =
1

Zi→j
nti

∏
k 6=i,j

[∑
tk

cAiktitk

(
1− ctitk

N

)1−Aik
ψk→itk

]
, (81)

where Zi→j is a normalization constant ensuring
∑
ti
ψi→jti = 1. We apply (81) iteratively until we reach a

fixed point {ψi→jqi }. Then the marginal probability is estimated to be νi(ti) = ψiti , where

ψiti =
1

Zi
nti
∏
k 6=i

[∑
tk

cAiktitk

(
1− ctitk

N

)1−Aik
ψk→itk

]
. (82)

Since we have nonzero interactions between every pair of nodes, we have potentially N(N − 1) messages.
However, this gives an algorithm where even a single update takes O(N2) time, making it suitable only
for networks of up to a few thousand nodes. Happily, for large sparse networks, i.e., when N is large and
cab = O(1), we can neglect terms of sub-leading order in N . In that case we can assume that i sends the
same message to all its non-neighbors j, and treat these messages as an external field, so that we only need
to keep track of 2M messages where M is the number of edges. In that case, each update step takes just
O(M) = O(N) time.

To see this, suppose that (i, j) /∈ E. We have

ψi→jti =
1

Zi→j
nti

∏
k/∈∂i\j

[
1− 1

N

∑
tk

ctktiψ
k→i
tk

] ∏
k∈∂i

[∑
tk

ctktiψ
k→i
tk

]
= ψiti +O

(
1

N

)
. (83)

Hence the messages on non-edges do not depend to leading order on the target node j. On the other hand,
if (i, j) ∈ E we have

ψi→jti =
1

Zi→j
nti

∏
k/∈∂i

[
1− 1

N

∑
tk

ctktiψ
k→i
tk

] ∏
k∈∂i\j

[∑
tk

ctktiψ
k→i
tk

]
. (84)

The belief propagation equations can hence be rewritten as

ψi→jti =
1

Zi→j
ntie

−hti
∏

k∈∂i\j

[∑
tk

ctktiψ
k→i
tk

]
, (85)

where we neglected terms that contribute O(1/N) to ψi→j , and defined an auxiliary external field

hti =
1

N

∑
k

∑
tk

ctktiψ
k
tk
. (86)

This simplification is analogous to the one that leads to eq. (76) from eq. (74). In order to find a fixed point
of Eq. (85) in linear time we update the messages ψi→j , recompute ψj , update the field hti by adding the
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new contribution and subtracting the old one, and repeat. The estimate of the marginal probability νi(ti)
is then

ψiti =
1

Zi
ntie

−hti
∏
j∈∂i

∑
tj

ctjtiψ
j→i
tj

 . (87)

When the cavity approach is asymptotically exact then the true marginal probabilities obey νi(ti) = ψiti .
We can also calculate the free energy using eq. (52). Now that we have the marginals we chose the labeling
{q̂i} according to eq. (75). The overlap with the original group assignment {qi} can be defined as:

Q({q̂i}, {qi}) = max
π

1
N

∑
i δq̂i,π(qi) −maxa na

1−maxa na
, (88)

where π ranges over the permutations on q elements. The overlap is defined so that if q̂i = qi for all i,
i.e., if we find the exact labeling, then Q = 1. If on the other hand the only information we have are the
group sizes na, and we assign each node to the largest group to maximize the probability of the correct
assignment of each node, then Q = 0. We will say that a labeling {q̂i} is correlated with the original one
{qi} if in the thermodynamic limit N → ∞ the overlap is strictly positive. The marginals νi(ti) can also
be used to distinguish nodes that have a very strong group preference from those that are uncertain about
their membership (this is usually not possible with other clustering methods).

4.5 Phase transitions in group assignment

In this section we will analyze the different phase transitions that exist in group assignment with known
parameters θ.

The factorized solution and its stability. The first observation to make about the belief propagation
equations (85) is that

ψi→jti = nti (89)

is always a fixed point, as can be verified by plugging (89) into (85). In the literature, a fixed point where
messages do not depend on the indexes i, j is called a factorized fixed point, hence our name for this case of
the block model. The free energy density at this fixed point is

ffactorized =
c

2
(1− log c) . (90)

For the factorized fixed point we have ψiti = nti , in which case the overlap (88) is Q = 0. This fixed point does
not provide any information about the original assignment—it is no better than a random guess. It is what
we called paramagnetic fixed point in Sec. 3.2. If this fixed point gives the correct marginal probabilities
and the correct free energy, we have no hope of recovering the original group assignment. For which values
of q and cab is this the case? We can study its stability under random perturbations of the messages with
the method of Sec. 3.3.1.

In the sparse case where cab = O(1), graphs generated by the block model are locally treelike in the sense
that almost all nodes have a neighborhood which is a tree up to distance O(logN). Consider such a tree
with d levels, in the limit d→∞. Assume that on the leaves the factorized fixed point is perturbed as

ψkt = nt + εkt , (91)

and let us investigate the influence of this perturbation on the message on the root of the tree, which we
denote k0. There are, on average, cd leaves in the tree where c is the average degree. The influence of each
leaf is independent, so let us first investigate the influence of the perturbation of a single leaf kd, which is
connected to k0 by a path kd, kd−1, . . . , k1, k0. We define a kind of transfer matrix

T abi ≡
∂ψkia

∂ψ
ki+1

b

∣∣∣
ψt=nt

=

[
ψkia cab∑
r carψ

ki+1
r

− ψkia
∑
s

ψkis csb∑
r csrψ

ki+1
r

]∣∣∣∣∣
ψt=nt

= na

(cab
c
− 1
)
. (92)
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where this expression was derived from (85) to leading order in N . The perturbation εk0
t0 on the root due to

the perturbation εkdtd on the leaf kd can then be written as

εk0
t0 =

∑
{ti}i=1,...,d

[
d−1∏
i=0

T
ti,ti+1

i

]
εkdtd (93)

We observe in (92) that the matrix T abi does not depend on the index i. Hence (93) can be written as
εk0 = T dεkd . When d→∞, T d will be dominated by T ’s largest eigenvalue λ, so εk0 ≈ λdεkd .

Now let us consider the influence from all cd of the leaves. The mean value of the perturbation on the
leaves is zero, so the mean value of the influence on the root is zero. For the variance, however, we have〈(

εk0
t0

)2〉
≈

〈 cd∑
k=1

λdεkt

2〉
≈ cdλ2d

〈(
εkt
)2〉

. (94)

This gives the following stability criterion,
cλ2 = 1 . (95)

For cλ2 < 1 the perturbation on leaves vanishes as we move up the tree and the factorized fixed point is
stable. On the other hand, if cλ2 > 1 the perturbation is amplified exponentially, the factorized fixed point
is unstable, and the communities are easily detectable.

Consider the case with q groups of equal size, where caa = cin for all a and cab = cout for all a 6= b. If there
are q groups, then cin + (q − 1)cout = qc. The transfer matrix T ab has only two distinct eigenvalues, λ1 = 0
with eigenvector (1, 1, . . . , 1), and λ2 = (cin−cout)/(qc) with eigenvectors of the form (0, . . . , 0, 1,−1, 0, . . . , 0)
and degeneracy q − 1. The factorized fixed point is then unstable, and communities are easily detectable, if

|cin − cout| > q
√
c . (96)

For the case when q = 2 it was proved rigorously in Ref. [30] that it is indeed impossible to cluster if
|cin − cout| < q

√
c and it is impossible even to estimate the model parameters from the graph. The other

part, that indeed it is possible to have reconstruction if |cin − cout| > q
√
c is proved rigorously in Ref. [31].

Continuous transition Fig. 6 (from ref. [27] represents two examples where the overlap Q is computed
on a randomly generated graph with q groups of the same size and an average degree c, with caa = cin and
cab = cout for all a 6= b, varying the ratio ε = cout/cin. If ε = 1 the probability of connection inside and
outside a group is the same, thus we expect that we can not distinguish the communities, the graph is an
Erdős-Rényi random graph. ε = 0 gives completely separated groups. The continuous line is the overlap
resulting from the BP fixed point obtained by converging from a random initial condition (i.e., where for
each i, j the initial messages ψi→jti are random normalized distributions on ti). The points in Fig. 6 are
results obtained from Gibbs sampling with MC.

We can distinguish two phases:

• If |cin − cout| < q
√
c, the graph does not contain any significant information about the original group

assignment, and community detection is impossible, Q = 0. BP and MC converge to the factorized
solution, with free energy (90). To understand how is it possible to have no information even if ε 6= 1,
note that from the expressions for the free energy, it follows that the network generated with the block
model is thermodynamically indistinguishable from an Erdős-Rényi random graph of the same average
degree, in the sense that typical thermodynamic properties of the two ensembles are the same.

• If |cin−cout| > q
√
c, the graph contains significant information about the original group assignment, and

using BP or MC yields an assignment that is strongly correlated with the original one. There is some
intrinsic uncertainty about the group assignment due to the entropy, but if the graph was generated
from the block model there is no better method for inference than the marginalization introduced by
Eq. (75).
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Figure 6: The overlap (88) between the original assignment and its best estimate given the structure of the
graph, computed by the marginalization (75) in Ref. [27]. Graphs were generated using N nodes, q groups
of the same size, average degree c, and different ratios ε = cout/cin. Results from belief propagation (85) for
large graphs (red line) are compared to Monte Carlo simulations (data points). The agreement is good, with
differences in the low-overlap regime attributed to finite size fluctuations. On the right we also compare to
results from the full BP (81) and MC for smaller graphs with N = 128, averaged over 400 samples. The finite
size effects are not very strong in this case, and BP is reasonably close to the exact (MC) result even on small
graphs that contain many short loops. For N → ∞ and ε > εc = (c −

√
c)/[c +

√
c(q − 1)] it is impossible

to find an assignment correlated with the original one based purely on the structure of the graph. For two
groups and average degree c = 3 this means that the density of connections must be ε−1

c (q = 2, c = 3) = 3.73
greater within groups than between groups to obtain a positive overlap.

Fig. 6 hence illustrates a continuous phase transition in the detectability of communities that is the analogous
of what happens in the EA model, described in the left part of Fig. 4.

Discontinuous transition The situation illustrated in Fig. 6 is, however, not the most general one. Fig. 7
(from ref. [27]) illustrates the case of planted coloring with q = 5, cin = 0, and cout = qc/(q − 1). In this
case the condition for stability (96) leads to a threshold value c` = (q − 1)2. The overlap obtained with
BP is plotted, using two different initializations: the random one, and the planted one corresponding to the
original assignment. In the latter case, the initial messages are

ψi→jqi = δqiti , (97)

where ti is the original assignment. The corresponding BP free energies are also plotted. As the average
degree c increases, we see four different phases in Fig. 7:

I. For c < cd, both initializations converge to the factorized fixed point, so the graph does not contain
any significant information about the original group assignment. The ensemble of assignments that
have the proper number of edges between each pair of groups is thermodynamically indistinguishable
from the uniform ensemble. The original assignment is one of these configurations, and there is no
possible way to tell which one it is without additional knowledge.

II. For cd < c < cc, the planted initialization converges to a fixed point with positive overlap, and its free
energy is larger than the annealed free energy. In this phase there are exponentially many basins of
attraction (states) in the space of assignments that have the proper number of edges between each pair
of groups. These basins of attraction have zero overlap with each other, so none of them yield any
information about any of the others, and there is no way to tell which one of them contains the original
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Figure 7: Left: graphs generated with q = 5, cin = 0, and N = 105. We compute the overlap (88) and
the free energy with BP for different values of the average degree c. The green crosses show the overlap of
the BP fixed point resulting from using the original group assignment as the initial condition, and the blue
crosses show the overlap resulting from random initial messages. The red stars show the difference between
the factorized free energy (90) and the free energy resulting from the planted initialization. We observe
three important points where the behavior changes qualitatively: cd = 12.84, cc = 13.23, and c` = 16. We
discuss the corresponding phase transitions in the text. Right: the case q = 10 and c = 10. We plot the
overlap as a function of ε; it drops down abruptly from about Q = 0.35. The inset zooms in on the critical
region. We mark the stability transition ε`, and data points for N = 5 ·105 for both the random and planted
initialization of BP. In this case the data are not so clear. The overlap from random initialization becomes
positive a little before the asymptotic transition. We think this is due to strong finite size effects. From our
data for the free energy it also seems that the transitions εc and εd are very close to each other (or maybe
even equal, even though this would be surprising). These subtle effects are, however, relevant only in a very
narrow region of ε and are, in our opinion, not likely to appear for real-world networks.

assignment. The annealed free energy is still the correct total free energy, the graphs generated by the
block model are thermodynamically indistinguishable from Erdős-Rényi random graphs, and there is
no way to find a group assignment correlated with the original one.

III. For cc < c < c`, the planted initialization converges to a fixed point with positive overlap, and its free
energy is smaller than the annealed free energy. There might still be exponentially many basins of
attraction in the state space with the proper number of edges between groups, but the one corresponding
to the original assignment is the one with the largest entropy and the lowest free energy. Therefore,
if we can perform an exhaustive search of the state space, we can infer the original group assignment.
However, this would take exponential time, and initializing BP randomly almost always leads to the
factorized fixed point. In this phase, inference is possible, but exponentially hard; the state containing
the original assignment is, in a sense, hidden below a glass transition. Based on the physics of glassy
systems, we predict that no polynomial-time algorithm can achieve a positive overlap with the original
group assignment.

IV. For c > c`, both initializations converge to a fixed point with positive overlap, strongly correlated with
the original assignment. Thus inference is both possible and easy, and BP achieves it in linear time.
Indeed, in this easy phase, many efficient algorithms will be able to find a group assignment strongly
correlated with the original one.

The case q = 5, cin = 0, illustrated in Fig. 7, is also investigated with MC. For the planted initialization,
its performance is generally similar to BP. For the random initialization, MC agrees with BP only in phases
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(I) and (IV). It follows from results on glassy systems [32] that in phases (II) and (III), the equilibration
time of MC is exponentially large as a function of N , and that its performance in linear time, i.e., CN for
any constant C, does not yield any information about the original group assignment.

The boundaries between different phases correspond to well-known phase transitions in the statistical
physics of spin glasses as mentioned in Sec. 3.2 and the discontinuous phase transition of this case is the
analogous of the right part of Fig. 4 for the p-spin glass. Specifically, cd is the dynamical transition or
reconstruction threshold, see e.g. [33, 34]. The detectability threshold cc corresponds to the condensation
transition or the Kauzmann temperature. Finally, c` is the easy/hard transition in planted models introduced
in [12].

The problem of clustering is thus an example in which statistical inference and the tools developed in
the contest of statistical mechanics of disordered systems are really useful to characterize the problem and
identify phase transitions. This is not important only at the theoretical level, but can really help to reach
a deep understanding of the problem and to develop useful algorithms if it is the case. In fact previous
methods like spectral methods are not so good as the algorithm proposed in this section.
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5 Compressed sensing

Images taken from a common camera are usually compressible. In fact in a proper basis (the wavelet one),
the signal is sparse. This is for example, how data compression works in JPEG 2000: if an image of
N = 106 pixels is acquired, once put in the wavelet basis only a limited number of components, say M = 104

components, will be sensibly different from zero. Thus only these components are maintained, with a great
gain in memory. However, this brings a question: why we need to record initially N components and then
throw away many of them? The answer is simple: Because we do not know in advance which are the good
ones. Data compression is the standard way to compress signals. However there is an alternative way,
compressed sensing. The idea is to record directly a compressed signal, of M < N components. This will
allow to save time (recording is a slow process, so it is better to record a smaller amount of data, and plus we
do not need to compress the signal a-posteriori, because it is already compressed) and memory (we do not
have to store the original signal). However we will need an algorithm that allows us to recover the original
signal a posteriori. This alternative way of acquisition will have many applications: speeding up magnetic
resonance imaging without the loss of resolution, fast data compressions, gain of weight using smaller hard
disks to store data in telescopes and so on.

5.1 The problem

The idea of compressed sensing (CS) is the following: The signal (the real image) is a vector ~s of N
components. The measurements are grouped into a M -component vector ~y, which is obtained from ~s by
a linear transformation ~y = G~s. G is thus a M × N matrix. Of course M < N if we want to compress
the signal. The observer knows the matrix G and the measurements ~y. His aim is to reconstruct ~s. The
inverse relation ~s = G−1~y can not be used because G is not invertible, being M < N . The system is
underdetermined and usually has infinitely many solutions.

But we can use another information: we know that in a proper basis the signal is sparse. Let us call
A the matrix for the changing of basis. Thus ~s = A~x, where ~x is sparse, and ~y = F~x, with F = G ·A a
new M × N matrix. At this point we can think to choose among the infinite solutions of the problem the
one that gives the sparsest ~x. Unfortunately this is a NP-hard problem. In the following we will mainly
talk about asymptotic results, thus we will be interested in the case of large signals N →∞, keeping signal
density ρ and measurement rate α of order one. We also want to keep the components of the signal and of
the measurements of order one, hence we consider the elements of the measurement matrix to have mean
and variance of order O(1/N).

5.2 Exhaustive algorithm and possible-impossible reconstruction

Which is the theoretical limit for the reconstruction of ~x given ~y and F? If K is the number of non-zero
components of ~x, we will demonstrate the following claim: We can identify ~x as long as M ≥ K. To
demonstrate it we construct the following algorithm: We want to find the K components of ~x that are
different from zero. For this scope we analyze exhaustively all the

(
N
K

)
possible K-component vectors ~r

constructed choosing randomly K components from ~x. Calling R the M × K matrix constructed from F
picking only the columns corresponding to the chosen components of ~r, we have to solve the new system
~y = R~r, where we know ~y and R as before. If M = K, if our choice for ~r is the correct one, that means,
if ~r does not have zero elements, the solution of the system is only one and we have solved our problem. If
M > K, the system is overdetermined and in principle there are no solutions. However, if our choice for ~r
is the correct one, there is one solution of the problem, because we know that in the problem there is the
planted solution, the original one, we constructed the problem (multiplying ~x by F and obtaining ~y) starting
from the planted solution.

Thus if M ≥ K the solution of the system ~y = R~r is unique if and only if ~r is the correct one, namely it
contains all the non-zero elements of ~x.
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This algorithm is able to reconstruct the signal as long as M ≥ K. However it has a problem: it takes
an exponential time in N , it is not useful for practical scopes when N is large. However it shows us that
the possible-impossible threshold for the correct reconstruction of the signal is αc = ρ, where α = M

N and

ρ = K
N .

5.3 The `1 minimization

Summarizing, the problem of compressed sensing is to infer x̂ that solves the equation |~y−F~x| = 0, minimizing
the `0 norm: |~x|0 = number of components of ~x different from 0. However this is a NP-hard problem. Thus
we can think to minimize some other norms, for example the `1 or `2 norms, where the `r norm of a vector ~x
is defined as |~x|r =

∑N
i=1 |xi|r. This is a much easier problem. In fact one should minimize the cost function:

C = |~y−F~x|+Γ|~x|1,2 (Γ is a constant that should be taken small). The function C is a convex one, thus it can
be minimized in a polynomial time. In practice the `1 norm is used, because it tends to find sparse solutions,
this is not the case for the `2 norm. If one tries to reconstruct the signal using the `1 minimization, one
actually find that this is possible up to α`1 > ρ. The theoretical threshold for reconstruction is not reached.
For α`1 < ρ, `1 and `0 minimization actually give two different results.

5.4 Bayesian reconstruction

In this Section we will apply Bayesian inference introduced in the previous Sections to the CS problem. We
can add a Gaussian white noise ξµ on the measurement with variance ∆µ. Thus the problem becomes:

yµ =

N∑
i=1

Fµixi + ξµ µ = 1, . . . ,M , (98)

Using as usual the Bayes formula (eq. 3), we can write the posterior probability to have a signal x if we
observe the measurement y and we know the matrix F as:

P (x|F,y) =
1

Z

N∏
i=1

[(1− ρ)δ(xi) + ρφ(xi)]

M∏
µ=1

1√
2π∆µ

e
− 1

2∆µ
(yµ−

∑N
i=1 Fµixi)

2

, (99)

where Z, the partition function, is a normalization constant and

P (x) = (1− ρ)δ(x) + ρφ(x) (100)

is the sparse prior on the signal. We model the signal as stochastic with iid entries, the fraction of non-zero
entries being ρ > 0 and their distribution being φ. In general the signal properties are not known. In the
following we will assume that we know the exact parameters (ρ, φ, ∆) of the model. If this is not the case,
we can infer them by the Expectation Maximization procedure described in Sec. 4.3.

Eq. (99) can be seen as the Boltzmann measure on the disordered system with Hamiltonian

H(x) = −
N∑
i=1

log [(1− ρ)δ(xi) + ρφ(xi)] +

M∑
µ=1

(yµ −
∑N
i=1 Fµixi)

2

2∆µ
, (101)

where the “disorder” comes from the randomness of the measurement matrix Fµi and the results yµ. Stated
this way, once again, the problem is similar to a spin glass with N particles interacting with a long-range
disordered potential. The real signal is a very special configuration of these particles, the “planted” one,
which was used to generate the problem (i.e. the value of the vector y).
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5.5 Variational Approaches to Reconstruction in Compressed Sensing: Mean-
field varionational Bayes

Consider an inference problem where we need to estimate the posterior

P (~x|~y) =
P (~y|~x)P (~x)

Z
(102)

In full generality, the expression of the Gibbs free energy, using a ”variational” distributon Pvar is

L = [log (P (~y|~x)P (~x))]Pvar −
∫
d~xPvar(~x) logPvar(~x) = [−E(~y, ~x)]Pvar −

∫
d~xPvar(~x) logPvar(~x) (103)

with E = − log (P (~y|~x)P (~x)). The mean field approach amounts in using a factorized form:

Pvar(~x) =
∏
i

Qi(xi) (104)

for which L can be written

LMF = [−E(~y, ~x)]Pvar −
∑
i

∫
dxiQi(xi) logQi(xi) (105)

Consider one of these variable, say xi. What is the maximization condition for Qi(xi)? Clearly it must
maximize the following (we denote ~̄xi all variables x that are not xi) expression:

[−E(~y, ~x)]Pvar −
∫
dxiQi(xi) logQi(xi) (106)

=

∫
dxiQi(xi)

∫
~̄xiQ(~̄xi)(−E(~y, ~x))−

∫
dxiQi(xi) logQi(xi) (107)

=

∫
dxiQi(xi) [−E(~y, ~x)]Q(x̄) −

∫
dxiQi(xi) logQi(xi) (108)

=

∫
dxiQi(xi) log exp [−E(~y, ~x)]Q(x̄) −

∫
dxiQi(xi) logQi(xi) (109)

=

∫
dxiQi(xi)

(
log exp [−E(~y, ~x)]Q(x̄) − logQi(xi)

)
(110)

=

∫
dxiQi(xi) log

exp [−E(~y, ~x)]Q(x̄)

Qi(xi)
(111)

One recognize that this is (minus) the KL divergence. The KL divergence is minimal (and thus its negative
maximal) for

Qi(xi) =
1

Zi
exp [−E(~y, ~x)]Q(x̄) (112)

which is indeed the expected mean-field equation.

Mean-Field Equations for compressed sensing

Let us now move to compressed sensing. Here we have logP (~y|~x) = − 1
2∆

∑
µ(yµ −

∑
i Fµixi)

2. In this case,
the energy for the variable i reads

−Ei(~y, ~x) = − 1

2∆

∑
µ

(yµ −
∑
j 6=i

Fµjxj − Fµixi)2 +
∑
j 6=i

logP priorj (xj) + logP priori (xi) (113)
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Its average under Q(x̄) reads

[−Ei(~y, ~x)]Q(x̄) = − 1

2∆

∑
µ

(yµ −
∑
j 6=i

Fµjxj − Fµixi)2 +
∑
j 6=i

logP priorj (xj) + logP priori (xi)


Q(x̄)

(114)

(115)

so that (keeping only the relevant terms)

exp
(

[−Ei(~y, ~x)]Q(x̄)

)
∝ P prior(xi) exp− 1

2∆

∑
µ

(yµ −
∑
j 6=i

Fµjxj − Fµixi)2


Q(x̄)

(116)

We recognise at this point that the variational distribution is a product of the prior times a Gaussian form:

Qi(xi) =
1

Zi
P prior(xi)e

− (xi−Ri)
2

2Σ2
i

√
2πΣ2 (117)

Let us denote by ai and vi the mean and variance of the variable xi under this measure and concentrate now

of the remaning term in the exponential, that is − 1
2∆

[∑
µ(yµ −

∑
j 6=i Fµjxj − Fµixi)2

]
Q(x̄)

. We have

− 1

2∆

∑
µ

(yµ −
∑
j 6=i

Fµjxj − Fµixi)2


Q(x̄)

(118)

= cst− 1

2∆

∑
µ

(Fµixi)
2 − 2(Fµixi)(yµ −

∑
j 6=i

Fµjxj)


Q(x̄)

(119)

= cst− 1

2∆

∑
µ

(Fµixi)
2 − 2(Fµixi)(yµ −

∑
j 6=i

Fµjaj)

 (120)

= cst− x2
i

2∆

(∑
µ

F 2
µi

)
+

xi
2∆

2Fµi(yµ −
∑
j 6=i

Fµjaj)

 = cst− x2
i

2∆
A+

2xi
2∆

B (121)

(122)

with A =
(∑

µ F
2
µi

)
and B =

∑
µ Fµi(yµ −

∑
j 6=i Fµjaj). It is practical to put this equation under the form

of eq(117) using − 1
2Σ2 (x−R)2 = cst− x2

2Σ2 + 2Rx
2Σ2 . We thus identify

(Σ2)−1 =

∑
µ F

2
µi

∆
(123)

R =

∑
µ Fµi(yµ −

∑
j 6=i Fµjaj)∑

µ F
2
µi

(124)

The final algortimh thus reads:

ai = fa(Ri,Σi) (125)

(Σ2
i )
−1 =

∑
µ F

2
µi

∆
(126)

Ri =

∑
µ Fµi(yµ −

∑
j 6=i Fµjaj)∑

µ F
2
µi

= ai +

∑
µ Fµi(yµ −

∑
j Fµjaj)∑

µ F
2
µi

(127)
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The interesting point is that, if using using
∑
µ F

2
µi = 1, these are EXACTLY the itereative equations

used by Maleki-Donoho. Indeed, using x to denote a and fa, we have the so-called Iterative Thresolding
algortimh, which is therefore just a Bayesian variational one:

xt+1 = f(A∗zt + xt,∆) (128)

zt = y −Axt (129)

One can check that the equation for f is indeed the soft and hard thresholding one (when doing the
proper, subtle, limit ∆→ 0) for `1 adn `0 respectivly.

Expression for the Mean-Field free energy

Let us rewrite slghtly the free energy as

L = [log (P (~y|~x))]Pvar −
∫
dxPvar(~x) (logPvar(~x)− logP (~x)) (130)

= [log (P (~y|~x))]Pvar −
∫
dxPvar(~x)

(
log

Pvar(~x)

P (~x)

)
(131)

= [log (P (~y|~x))]Pvar −DKL(Pvar(~x)||P (~x)) (132)

(133)

the first term is easy to compute. The divergence one also; Given a prior P (xi), our algoritmh estimates
the distribution as eq.117 and assume the xi are decorrelated. We thus compute the KL divergence separatly
for each terms. It reads

Di
KL =

∫
dx

1

Z̃i
P (xi)e

− (xi−Ri)
2

2Σ2
i log

(
1

Z̃i
e
− (xi−Ri)

2

2Σ2
i

)
(134)

= − log Z̃i −
∫
dxiPvar(xi)

(xi −Ri)2

2Σ2
i

= − log Z̃i −
1

2Σ2
i

(
< x2

i > +R2
i − 2Ri < xi >

)
(135)

= − log Z̃i −
ci + a2

i +R2
i − 2Riai

2Σ2
i

= − log Z̃i −
ci + (ai −Ri)2

2Σ2
i

(136)

This expression is very convenient, as it involves only the norm (which we always need to compute anyway
when we perform the integral) and the average and variance of the distribution.

The full cost function thus yields

LMF = −
∑
µ

(yµ −
∑
i Fµiai)

2 +
∑
i F

2
µici

2∆
−
∑
µ

1

2
log ∆µ +

∑
i

log Z̃i +
∑
i

ci + (ai −Ri)2

2Σ2
i

(137)

Mean-Field Reloaded

The nice thing with eq.(137) is that if one forget that ai and ci are actually a fonction of Ri and Σi, then
one can recover the mean field algorithm very easyly by just deriving the fonction.
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A steepest descent appraoch to MF

Let us first derive a number of identity. We need first to know the properties of the derivative of the logZ̃i.
We have

dlog Z̃i
dRi

=
fa(Ri,Σi)−Ri

Σ2
i

(138)

dlog Z̃i
dΣ2

i

=
(fa(Ri,Σi)−Ri)2 + fc(Ri,Σi)

2Σ4
i

(139)

(140)

Then one needs to estimate the derivative of a and c with respect to R and Z.

dai(Ri,Σi)

dRi
=

ci
Σ2
i

(141)

dai(Ri,Σi)

dΣ2
i

=
ci
Σ4
i

(ai −R) (142)

dci(Ri,Σi)

dRi
= fd(Ri, ,Σi) (143)

dci(Ri,Σi)

dΣ2
i

=
1

Σ2

[
fd(ai −R) +

c2i
Σ2

]
(144)

(145)

So we just need a new fonction fd(Ri, ,Σi) = dci(Ri,Σi)
dRi

.
At this point, one can compute the derivative of the free energy:

dLMF

dRi
=

∑
µ

2(yµ −
∑
i Fµiai)Fµi

dai(Ri,Σi)
dRi

− F 2
µi
dci(Ri,Σi)

dRi

2∆
+
ai −Ri

Σ2
2

+
1

2Σ2
i

[
dci(Ri,Σi)

dRi
+ 2(ai −Ri)(

dai(Ri,Σi)

dRi
− 1)

]
(146)

dLMF

dΣ2
i

=
∑
µ

2(yµ −
∑
i Fµiai)Fµi

dai(Ri,Σi)
dΣ2

i
− F 2

µi
dci(Ri,Σi)

dΣ2
i

2∆
+

(ai −Ri)2

2Σ4
i

+
1

2Σ2
i

[
dci(Ri,Σi)

dΣ2
i

+ 2(ai −Ri)
dai(Ri,Σi)

dΣ2
i

]
− 1

2Σ4
i

[
ci + (ai −Ri)2

]
(147)

so that the algoritmh reads

Rt+1
i = Rti + γ

dLMF

dRi
(148)

(Σ2
i )
t+1 = (Σ2

i )
t+1 + γ

dLMF

dΣ2
i

(149)

(150)

with γ a properly choosen dampening factor.

EM for the noise

Now, imagine we would learn the value of the noise. In this case EM leads to

∆ =
1

M

∑
µ

[yµ −∑
i

Fµiai

]2

+
∑
i

Fµivi

 (151)
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Which is what we would expect naivly.

5.6 The belief propagation reconstruction algorithm for compressed sensing

Exact computation of the averages requires exponential time and is thus intractable. To approximate the
expectations we will use a variant of the belief propagation (BP) algorithm [35, 36]. Indeed, message passing
has been shown very efficient in terms of both precision and speed for the CS problem.

5.6.1 Belief Propagation recursion

The canonical BP equations for the probability measure P (x|F,y), Eq. (99), are expressed in terms of
2MN “messages”, mj→µ(xj) and mj→µ(xj), which are probability distribution functions (see fig. 8 for the
underlying graphical model). They read:

mµ→i(xi) =
1

Zµ→i

∫ ∏
j 6=i

dxje
− 1

2∆µ
(
∑
j 6=i Fµjxj+Fµixi−yµ)2 ∏

j 6=i
mj→µ(xj) , (152)

mi→µ(xi) =
1

Zi→µ
[(1− ρ)δ(xi) + ρφ(xi)]

∏
γ 6=µ

mγ→i(xi) , (153)

where Zµ→i and Zi→µ are normalization factors ensuring that
∫

dximµ→i(xi) =
∫

dximi→µ(xi) = 1. These
coupled integral equations for the messages are too complicated to be of any practical use. However, in the
large N limit, when the matrix elements Fµi scale like 1/

√
N , one can simplify these canonical equations.

Using the Hubbard-Stratonovich transformation

e−
ω2

2∆ =
1√

2π∆

∫
dλ e−

λ2

2∆ + iλω
∆ , (154)

for ω = (
∑
j 6=i Fµjxj) we can simplify Eq. (152) as

mµ→i(xi) =
1

Zµ→i
√

2π∆
e
− 1

2∆µ
(Fµixi−yµ)2

∫
dλe

− λ2

2∆µ

∏
j 6=i

[∫
dxjmj→µ(xj)e

Fµjxj
∆µ

(yµ−Fµixi+iλ)
]
. (155)

Now we expand the last exponential around zero because the term Fµj is small in N , we keep all terms that
are of O(1/N). Introducing means and variances as new ”messages”

ai→µ ≡
∫

dxi ximi→µ(xi) , (156)

vi→µ ≡
∫

dxi x
2
i mi→µ(xi)− a2

i→µ , (157)
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we obtain

mµ→i(xi) =
1

Zµ→i
√

2π∆µ

e
− 1

2∆µ
(Fµixi−yµ)2

∫
dλe

− λ2

2∆µ

∏
j 6=i

[
e
Fµjaj→µ

∆µ
(yµ−Fµixi+iλ)+

F2
µjvj→µ

2∆2
µ

(yµ−Fµixi+iλ)2

]
.

(158)
Performing the Gaussian integral over λ, we obtain

mµ→i(xi) =
1

Z̃µ→i
e−

x2
i
2 Aµ→i+Bµ→ixi , Z̃µ→i =

√
2π

Aµ→i
e
B2
µ→i

2Aµ→i , (159)

where the normalization Z̃µ→i contains all the xi-independent factors, and we have introduced the scalar
messages:

Aµ→i =
F 2
µi

∆µ +
∑
j 6=i F

2
µjvj→µ

, (160)

Bµ→i =
Fµi(yµ −

∑
j 6=i Fµjaj→µ)

∆µ +
∑
j 6=i F

2
µjvj→µ

, (161)

The noiseless case corresponds to ∆µ = 0.
To close the equations on messages ai→µ and vi→µ we notice that

mi→µ(xi) =
1

Z̃i→µ
[(1− ρ)δ(xi) + ρφ(xi)] e

− x
2
i
2

∑
γ 6=µ Aγ→i+xi

∑
γ 6=µ Bγ→i . (162)

Messages ai→µ and vi→µ are respectively the mean and variance of the probability distribution mi→µ(xi).
It is also useful to define the local beliefs ai and vi as

ai ≡
∫

dxi ximi(xi) , (163)

vi ≡
∫

dxi x
2
i mi(xi)− a2

i , (164)

where

mi(xi) =
1

Z̃i
[(1− ρ)δ(xi) + ρφ(xi)] e

− x
2
i
2

∑
γ Aγ→i+xi

∑
γ Bγ→i . (165)

For a general function φ(xi) let us define the probability distribution

Mφ(Σ2, R, x) =
1

Ẑ(Σ2, R)
[(1− ρ)δ(x) + ρφ(x)]

1√
2πΣ

e−
(x−R)2

2Σ2 , (166)

where Ẑ(Σ2, R) is a normalization. We define the average and variance of Mφ as

fa(Σ2, R) ≡
∫

dxxM(Σ2, R, x) , (167)

fc(Σ
2, R) ≡

∫
dxx2M(Σ2, R, x)− f2

a (Σ2, R) , (168)

(where we do not write explicitly the dependence on φ). Notice that:

fa(Σ2, R) = R+ Σ2 d

dR
log Ẑ(Σ2, R) , (169)

fc(Σ
2, R) = Σ2 d

dR
fa(Σ2, R) . (170)
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The closed form of the BP update is

ai→µ = fa

(
1∑

γ 6=µAγ→i
,

∑
γ 6=µBγ→i∑
γ 6=µAγ→i

)
, ai = fa

(
1∑

γ Aγ→i
,

∑
γ Bγ→i∑
γ Aγ→i

)
, (171)

vi→µ = fc

(
1∑

γ 6=µAγ→i
,

∑
γ 6=µBγ→i∑
γ 6=µAγ→i

)
, vi = fc

(
1∑

γ Aγ→i
,

∑
γ Bγ→i∑
γ Aγ→i

)
. (172)

For a general signal model φ(xi) the functions fa and fc can be computed using a numerical integration
over xi. In special cases, like the case of Gaussian φ these functions are easily computed analytically.
Eqs. (156-157) together with (160-161) and (162) then lead to closed iterative message passing equations,
which can be solved by iterations. There equations can be used for any signal s, and any matrix F. When a
fixed point of the BP equations is reached, the elements of the original signal are estimated as x∗i = ai, and
the corresponding variance vi can be used to quantify the correctness of this estimate. Perfect reconstruction
is found when the messages converge to a fixed point such that ai = si and vi = 0.

The use of mean and variances instead of the canonical BP messages is exact in the large N limit, thanks
to the fact that the matrix is not sparse (a sum like

∑
i Fµixi contains of order N non-zero terms), and each

element of the matrix F scales as O(1/
√
N).

5.6.2 The TAP form of the message passing algorithm

In the message-passing form of BP described above, 2M ×N messages are sent, one between each variable
component i and each measurement, in each iteration. In fact, it is possible to rewrite the BP equations
in terms of N + M messages instead of 2 M × N , always within the assumption that the F matrix is not
sparse, and that all its elements scale as O(1/

√
N). In statistical physics terms, this corresponds to the

Thouless-Anderson-Palmer equations (TAP) [37] used in the study of spin glasses. In the large N limit,
these are asymptotically equivalent (only o(1) terms are neglected) to the BP equations. Going from BP to
TAP is, in the compressed sensing literature, the step to go from the rBP [38] to the AMP [39] algorithm.
Let us now show how to take this step.

In the large N limit, it is clear from (171-172) that the messages ai→µ and vi→µ are nearly independent
of µ. However, one must be careful to keep the correcting “Onsager reaction terms”. Let us define

ωµ =
∑
i

Fµiai→µ , Vµ =
∑
i

F 2
µivi→µ , (173)

Σ2
i =

1∑
µAµ→i

, Ri =

∑
µBµ→i∑
µAµ→i

. (174)

Then we have

Σ2
i =

[∑
µ

F 2
µi

∆µ + Vµ − F 2
µivi→µ

]−1

=

[∑
µ

F 2
µi

∆µ + Vµ

]−1

, (175)

Ri =

[∑
µ

Fµi(yµ − ωµ + Fµiai→µ)

∆µ + Vµ − F 2
µivi→µ

][∑
µ

F 2
µi

∆µ + Vµ − F 2
µivi→µ

]−1

= ai +

∑
µ Fµi

(yµ−ωµ)
∆µ+Vµ∑

µ F
2
µi

1
∆µ+Vµ

. (176)

In order to compute ωµ =
∑
i Fµiai→µ, we see that when expressing ai→µ in terms of ai we need to keep all

corrections that are linear in the matrix element Fµi

ai→µ = fa

(
1∑

ν Aν→i −Aµ→i
,

∑
ν Bν→i −Bµ→i∑
ν Aν→i −Aµ→i

)
= ai −Bµ→iΣ2 ∂fa

∂R

(
Σ2
i , Ri

)
. (177)
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Therefore

ωµ =
∑
i

Fµiai −
(yµ − ωµ)

∆µ + Vµ

∑
i

F 2
µivi . (178)

The computation of Vµ is similar, this time all the corrections are negligible in the limit N →∞.
Finally, we get the following closed system of iterative TAP equations that involve only matrix multipli-

cation:

V t+1
µ =

∑
i

F 2
µi v

t
i , (179)

ωt+1
µ =

∑
i

Fµi a
t
i −

(yµ − ωtµ)

∆µ + V tµ

∑
i

F 2
µi v

t
i , (180)

(Σt+1
i )2 =

[∑
µ

F 2
µi

∆µ + V t+1
µ

]−1

, (181)

Rt+1
i = ati +

∑
µ Fµi

(yµ−ωt+1
µ )

∆µ+V t+1
µ∑

µ

F 2
µi

∆µ+V t+1
µ

, (182)

at+1
i = fa

(
(Σt+1

i )2, Rt+1
i

)
, (183)

vt+1
i = fc

(
(Σt+1

i )2, Rt+1
i

)
. (184)

We see that the signal model P (xi) = (1− ρ)δ(xi) + ρφ(xi) assumed in the probabilistic approach appears
only through the definitions (167-168) of the two functions fa and fc . In the case where the signal model
is chosen as Gauss-Bernoulli. Equations (179-184) are equivalent to the (generalized) approximate message
passing of [39, 40].

A reasonable initialization of these equations is

at=0
i = ρ

∫
dxxφ(x) , (185)

vt=0
i = ρ

∫
dxx2 φ(x)−

(
at=0
i

)2
, (186)

ωt=0
µ = yµ . (187)

5.6.3 Further simplification for measurement matrices with random entries

For some special classes of random measurement matrices F, the TAP equations (179-182) can be simplified
further. Let us start with the case of a homogeneous matrix F with iid random entries of zero mean and
variance 1/N (the distribution can be anything as long as the mean and variance are fixed). The simplification
can be understood as follows. Consider for instance the quantity Vµ. Let us define V as the average of Vµ
with respect to different realizations of the measurement matrix F .

V =

N∑
i=1

F 2
µivi =

1

N

N∑
i=1

vi . (188)

The variance is

varV ≡ (Vµ − V )2 =
∑
i 6=j

(
F 2
µi −

1

N

)(
F 2
µj −

1

N

)
vivj +

N∑
i=1

(
F 2
µi −

1

N

)2

v2
i

= 0 +
2

N

(
1

N

N∑
i=1

v2
i

)
= O

(
1

N

)
. (189)
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Since the average is of order one and the variance of order 1/N , in the limit of large N we can hence neglect
the dependence on the index µ and consider all Vµ equal to their average. The same argument can be
repeated for all the terms that contain F 2

µi. Hence for the homogeneous matrix F with iid random entries of

zero mean and variance 1/N , one can effectively “replace” every F 2
µi by 1/N in Eqs. (181-182) and (179-180).

The iteration equations then take the simpler form (assuming for simplicity that ∆µ = ∆)

V =
1

N

∑
i

vi , (190)

ωµ =
∑
i

Fµiai −
(yµ − ωµ)

∆ + V

[
1

N

∑
i

vi

]
, (191)

Σ2 =
∆ + V

α
, (192)

Ri = ai +
∑
µ

Fµi
(yµ − ωµ)

α
. (193)

ai = fa
(
Σ2, Ri

)
, (194)

vi = fc
(
Σ2, Ri

)
. (195)

These equations can again be solved by iteration. They only involve 2(M +N + 1) variables. For a general
matrix F one iteration of the above algorithm takes O(NM) steps (and in practice we observed that the
number of iterations needed for convergence is basically independent of N). For matrices that can be
computed recursively (i.e. without storing all their NM elements) a speed up of this algorithm is possible,
as the message passing loop takes only O(M +N) steps.

5.6.4 The phase diagram for noiseless measurements and the optimal Bayes case

In this section we turn the equations from the previous section into phase diagrams to display the performance
of belief propagation in CS reconstruction. We mainly discuss the noiseless case, with random homogeneous
measurement matrices, this is a benchmark case that has been widely used to demonstrate the power of
the `1 reconstruction. We use measurement matrices with iid entries with zero mean and variance 1/N (we
remind that our approach is independent of the distribution of the iid matrix elements and depends only on
their mean and variance). We assume to know exactly the distribution of the signal (the prior is exact).

In Fig. 9 we show the free entropy density Φ(D) at fixed squared distance D between the inferred signal
and the real one. φ is Gaussian with zero mean and unit variance. The free entropy Φ(D) is computed
using the replica method. The dynamics of the message passing algorithm (without learning) is a gradient
dynamics leading to a maximum of the free-entropy Φ(D) starting from high distance D. As expected, we
see in Fig. 9 that Φ(D) has a global maximum at D = 0 if and only if α > ρ, which confirms that the
Bayesian optimal inference is in principle able to reach the theoretical limit α = ρ for exact reconstruction.
The figure shows the existence of a critical measurement rate αBP(ρ) > ρ, below which a secondary local
maximum of Φ(D) appears at D > 0. When this secondary maximum exists, the BP algorithm converges
instead to it, and does not reach exact reconstruction. The threshold αBP(ρ) is obtained analytically as the
smallest value of α such that Φ(D) is monotonic. The behavior of Φ(D) is typical of a first order transition.
The equilibrium transition appears at a number of measurement per unknown α = ρ, which is the point
where the global maximum of Φ(D) switches discontinuously from being at D = 0 (when α > ρ0) to a value
D > 0. In this sense the value α = αBP(ρ0) appears like a spinodal point: it is the point below which the
global maximum of Φ(D) is no longer reached by the dynamics. Instead, in the regime below the spinodal
(α < αBP(ρ), the dynamical evolution is attracted to a metastable non-optimal state with D > 0.

The spinodal transition is the physical reason that limits the performance of the BP algorithm. The
convergence time of BP diverges around the spinodal transition αBP.

Notice that the `1 transition at α`1 is continuous (second order), whereas the spinodal transition is
discontinuous (first order). The transition at αBP is called a spinodal transition in the mean field theory of
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Figure 9: Left: The free entropy, Φ(D), is plotted as a function of D =
〈∑

i(x̂i − xi)
2/N

〉
for ρ = 0.4

and several measurement rates α in the Bayesian approach (when both the signal and the signal model
are described by a Gauss-Bernoulli distribution). The evolution of the BP algorithm is basically a steepest
ascent in Φ(D) starting from a large value of D. Such ascent goes to the global maximum at D = 0 for large
value of α but is blocked in the local maximum that appears for α < αBP(ρ = 0.4) ≈ 0.59. For α < ρ, the
global maximum is not at D = 0 and exact inference is impossible.

first order phase transitions. It is similar to the one found in the cooling of liquids which go into a super-cooled
glassy state instead of crystallizing, and appears in the decoding of error correcting codes [41, 42] as well.
This difference might seem formal, but it is absolutely essential for what concerns the possibility of achieving
the theoretically optimal reconstruction with the use of seeding measurement matrices (as discussed in the
next section).

In Fig. 10 we show how the critical value αBP depends on the signal density ρ and on the type of the
signal, for several Gauss-Bernoulli signals. In this figure we still assume that the signal distribution is known.
We compare to the Donoho-Tanner phase transition α`1 that gives the limit for exact reconstruction with
the `1 minimization [43, 39, 44], and to the information-theoretical limit for exact reconstruction α = ρ.

Note that for some signals, e.g. the mixture of Gaussians Φ(x) = [N (−1, 0.1) + N (1, 0.1)]/2, there is
a region of signal densities (here ρ ' 0.8) for which the BP reconstruction is possible down to the optimal
subsampling rates α = ρ.
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Figure 10: Phase diagram for the BP reconstruction in the optimal Bayesian case when the signal model is
matching the empirical distribution of signal elements. The elements of the M × N measurement matrix
F are iid variables with zero mean and variance 1/N . The spinodal transition αBP(ρ) is computed with
the asymptotic replica analysis and plotted for the following signal distributions: φ(x) = N (0, 1) (green),
φ(x) = N (1, 1) (blue) φ(x) = [N (−1, 0.1) + N (1, 0.1)]/2. The data are compared to the Donoho-Tanner
phase transition α`1(ρ) (dashed) for `1 reconstruction that does not depend on the signal distribution, and
to the theoretical limit for exact reconstruction α = ρ (red). The left hand side represents the undersampling
rate α as a function of the signal density ρ0.
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