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Lecture outline

- Intro to quantum Heisenberg model

- Path integrals on the lattice

- Stochastic Series expansion (alternative to path integral)

- Implementation for 2D S=1/2 Heisenberg antiferromagnet

- Look at program if we have time
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Quantum antiferromagnets

The Heisenberg model with nearest-neighbor <i,j> interactions

Non-bipartite
- no bipartition is possible 
- frustrated antiferromagnetic interactions
- different kinds of order or no long-range order (spin liquid)

Lattices can be classified as:
SA

SB

FIGURE 48. Effective description of the rotationally invariant Néel vector ms in terms of two large
spins, SA, SB, corresponding to the sum of the spins on the two sublattices. There is an effective antiferro-
magnetic coupling between these spins, leading to a singlet ground state and a “tower” of quantum rotor
excitations of total spin S = 1,2, . . . at energies ΔS ∼ S(S+1)/N above the ground state.

thus allowing for the symmetry breaking that is the starting point for spin-wave theory. In
the thermodynamic limit, the direction of the ordering vector is fixed (as the time scale
associated with its rotations diverges [169]), and the quantum rotor-states are then in
practice not accessed. They are neglected in standard spin-wave calculations (discussed
in Sec. 2.1) from the outset because the order is by construction locked to the z direction.
One can still access the rotor energies in spin-wave theory, by considering systems in
an external magnetic field, tuned to give a ground state with total magnetization Sz = S
[170, 171]. The rotor states are of great significance in finite clusters.
The effective coupling Jeff in (219) for a given system can be determined if we can

relate it to some physical quantity which depends on the rotor excitations. An obvious
choice is the uniform magnetic susceptibility, χ = d〈mz〉/dh. Calculating it for the two-
spin model when T → 0 gives χ = 3/Jeff. For the real Heisenberg model on a finite
cluster in dimensions d ≥ 2, χ should be dominated by the quantum rotor states when
T & 1/L, because the lowest spin wave energy scales as ∝ 1/L (while the quantum
rotor states scale as 1/Ld). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as

ΔS =
S(S+1)
3χN

, (220)

where χ should be evaluated in the limitN→∞ (first) and T → 0. Note that I= (3/2)Nχ
here plays the role of a moment of inertia, giving an analogy between (220) and the
energy spectrum of a rigid rotor in quantum mechanics.
The relation (220) can also be used as a way to compute the susceptibility of a

Heisenberg models numerically; by extracting the lowest energies as a function of S (for
small S, where the quantum-rotor mapping should apply). More precisely, the small-S
energies gives an estimate for χ as the N→ ∞, S→ 0 limit of the quantity χ(S,N):

1
χ(S,N)

=
3NS(ES−E0)
S(S+1)

. (221)

Here ES denotes the lowest energy for total spin S. Note that we have to subtract the
ground state energy (S = 0) because in the two-spin effective model we only computed
the excitation energies ΔS with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expect an S-independent behavior
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Bipartite 
- nearest-neighbors i,j always 
  on different sublattices
- compatible with Neel order
- but other states possible

H = J
X

hi,ji

~Si · ~Sj , J > 0

Starting model for spin-isotropically interacting S=1/2 spins:
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Quantum system: Fully ordered Neel state not an eigenstate 
of H even on a bipartite lattice
- |ms|<S at T=0 (can have |ms|=0) 

Mermin-Wagner theorem
(on breaking a continuous symmetry):
- No Neel order in 1D quantum Heisenberg model
- Neel order possible only at T=0 in 2D system
- Order possible also at T>0 in 3D

SA
SB

FIGURE 48. Effective description of the rotationally invariant Néel vector ms in terms of two large
spins, SA, SB, corresponding to the sum of the spins on the two sublattices. There is an effective antiferro-
magnetic coupling between these spins, leading to a singlet ground state and a “tower” of quantum rotor
excitations of total spin S = 1,2, . . . at energies ΔS ∼ S(S+1)/N above the ground state.

thus allowing for the symmetry breaking that is the starting point for spin-wave theory. In
the thermodynamic limit, the direction of the ordering vector is fixed (as the time scale
associated with its rotations diverges [169]), and the quantum rotor-states are then in
practice not accessed. They are neglected in standard spin-wave calculations (discussed
in Sec. 2.1) from the outset because the order is by construction locked to the z direction.
One can still access the rotor energies in spin-wave theory, by considering systems in
an external magnetic field, tuned to give a ground state with total magnetization Sz = S
[170, 171]. The rotor states are of great significance in finite clusters.
The effective coupling Jeff in (219) for a given system can be determined if we can

relate it to some physical quantity which depends on the rotor excitations. An obvious
choice is the uniform magnetic susceptibility, χ = d〈mz〉/dh. Calculating it for the two-
spin model when T → 0 gives χ = 3/Jeff. For the real Heisenberg model on a finite
cluster in dimensions d ≥ 2, χ should be dominated by the quantum rotor states when
T & 1/L, because the lowest spin wave energy scales as ∝ 1/L (while the quantum
rotor states scale as 1/Ld). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as

ΔS =
S(S+1)
3χN

, (220)

where χ should be evaluated in the limitN→∞ (first) and T → 0. Note that I= (3/2)Nχ
here plays the role of a moment of inertia, giving an analogy between (220) and the
energy spectrum of a rigid rotor in quantum mechanics.
The relation (220) can also be used as a way to compute the susceptibility of a

Heisenberg models numerically; by extracting the lowest energies as a function of S (for
small S, where the quantum-rotor mapping should apply). More precisely, the small-S
energies gives an estimate for χ as the N→ ∞, S→ 0 limit of the quantity χ(S,N):

1
χ(S,N)

=
3NS(ES−E0)
S(S+1)

. (221)

Here ES denotes the lowest energy for total spin S. Note that we have to subtract the
ground state energy (S = 0) because in the two-spin effective model we only computed
the excitation energies ΔS with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expect an S-independent behavior
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⌃ms =
1
N

N�

i=1

�i
⌃Si, �i = (�1)xi+yi (2D square lattice)

Order Parameter: Sublattice magnetization

- At T > 0 thermal fluctuations reduce order: hm2
si < S2

|h~msi| = S- In a classical bipartite system at T=0:

hm2
si = S2- In finite system, symmetry not broken, use:
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Quantum Monte Carlo

hAi = Tr{Ae��H}
Tr{e��H} !

P
c AcWcP
Wc

Rewrite the quantum-mechanical expectation value into a classical form

Different ways of doing it
- World-line methods for spins and bosons
- Stochastic series expansion for spins and bosons
- Fermion determinant methods
For ground state calculations we can also do projection from a “trial state”
| mi ⇠ Hm| 0i

| �i ⇠ e��H | 0i

| mi ! |0i when m ! 1

| �i ! |0i when � ! 1

Monte Carlo sampling in the space {c} with weights Wc (if positive-definite...)
(“sign problem” if
not the case)

Particularly simple and efficient schemes exist for S=1/2 models

H = �J

NbX

b=1

�1
4
� Si(b) · Sj(b)

�

No sign problem on bipartite lattices

(+ certain multi-spin terms)
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Path integrals on the lattice, imaginary time

⇤A⌅ =
1
Z

Tr{Ae��H}

We want to compute a thermal expectation value

where β=1/T (and possibly T→0). How to deal with the exponential operator?

Z =
�

�0

�

�1

· · ·
�

�L�1

⇥�0|e��� H |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� H |�0⇤

Choose a basis and insert complete sets of states;

Z = Tr{e��H} = Tr

�
L⇤

l=1

e��� H

⇥
“Time slicing” of the partition function

�� = �/L

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧

Use approximation for imaginary time evolution operator. Simplest way

Leads to error           . Limit                 can be taken �� � 0� ��
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Example: hard-core bosons

H = K = �
�

�i,j⇥

Kij = �
�

�i,j⇥

(a†jai + a†iaj) ni = a†iai � {0, 1}

Equivalent to S=1/2 XY model 
H = �2

�

⇥i,j⇤

(Sx
i Sx

j + Sy
i Sy

j ) = �
�

⇥i,j⇤

(S+
i S�

j + S�
i S+

j ), Sz = ±1
2
⇤ ni = 0, 1

world line moves for 
Monte Carlo sampling

“World line” representation of

Z =
�

{�}

W ({�}), W ({�}) = �nK
⇥ nK = number of “jumps”

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧
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⇥A⇤ =
1
Z

�

{�}

⇥�0|e��� |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� HA|�0⇤

Expectation values

⇧A⌃ =

�
{�} A({�})W ({�})
�

{�} W ({�}) �⇥ ⇧A⌃ = ⇧A({�})⌃W

We want to write this in a form suitable for MC importance sampling

W ({�}) = weight
A({�}) = estimatorFor any quantity diagonal in the 

occupation numbers (spin z):

A({�}) = A(�n) or A({�}) =
1
L

L�1�

l=0

A(�l)

There should be of the order βN “jumps” (regardless of approximation used)

Kinetic energy (here full energy). Use

Ke��� K � K
1
0
1

Kij({�}) =
⇧�1|Kij |�0⌃

⇧�1|1 ���K|�0⌃
⇥ {0,

1
��

}

Average over all slices → count number of kinetic jumps

⇤K⌅ ⇥ N � ⇤nK⌅ ⇥ �N⇥Kij⇤ =
⇥nij⇤

�
, ⇥K⇤ = �⇥nK⇤

�
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Including interactions
For any diagonal interaction V (Trotter, or split-operator, approximation)

e��� H = e��� Ke��� V + O(�2
� ) ⇥ ⌅�l+1|e��� H |�l⇧ � e��� Vl⌅�l+1|e��� K |�l⇧

Product over all times slices →

W ({�}) = �nK
� exp

�
���

L�1⇤

l=0

Vl

⇥

local updates (problem when Δτ→0?)
•consider probability of inserting/removing 

events within a time window

The continuous time limit
Limit Δτ→0: number of kinetic jumps remains finite, store events only

Special methods (loop
and worm updates)
developed for efficient
sampling of the paths
in the continuum

⇐ Evertz, Lana, Marcu (1993), Prokofev et al (1996)
     Beard & Wiese (1996)

Pacc = min
⇤
�2

�exp
�
�Vnew

Vold

⇥
, 1

⌅
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Series expansion representation
Start from the Taylor expansion (no approximation)

Z = Tr{e��H} =
1X

n=0

(��)n

n!

X

↵0

h↵0|Hn|↵0i

Define index sequences (string) referring to terms of H

Sn = (a1, a2, . . . , an), ai 2 {1, . . . ,m}H =
mX

i=1

Hi

We should have (always possible):
- no branching during propagation with operator string 
- some strings not allowed (illegal operations)

Hi|↵ji / |↵ki

For hard-core bosons the (allowed) path weight is: W (Sn,↵0) =
�n

n!

Break up Hn into strings:

Z =
1X

n=0

(��)n

n!

X

↵0

X

Sn

h↵0|Han · · ·Ha2Ha1 |↵0i
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We can make this look more similar to a path integral by
introducing partially propagated states: |↵pi = Hap · · ·Ha2Ha1 |↵0i

Same-looking paths, different-looking weights
- but become equivalent with time continuum in path integral

Relabel terms of n-sum: replace n+1 by n

hHi = � 1

Z

1X

n=1

(��)n

n!

n

�

X

↵0

h↵0|Hn|↵0i

Therefore the energy is: E = �hni/�

C = hn2i � hni2 � hniCan also derive specific heat: 

Follows: hni / �N, �n /
p
�N

hHi = 1

Z

1X

n=0

(��)n

n!

X

↵0

h↵0|HnH|↵0iEnergy:

Z =
1X

n=0

(��)n

n!

X

↵0

X

Sn

h↵0|Han |↵n�1ih↵n�2| · · · |↵2ih↵1|Ha1 |↵0i

|↵ni = |↵0i
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Fixed string-length scheme
• n fluctuating → varying size of the sampled configurations
• the expansion can be truncated at some nmax=L 
   (exponentially small error if large enough)
• cutt-off at n=L, fill in operator string with unit operators H0=I

Here n is the number of Hi, i>0  instances in the sequence of L ops
- the summation over n is now implicit

�
L

n

⇥�1

=
n!(L� n)!

L!
- conisider all possible locations in the sequence
- overcounting of original strings, correct by

=�

Z =
X

↵0

X

SL

(��)n(L� n)!

L!
h↵0|Ham · · ·Ha2Ha1 |↵0i

L can be chosen automatically by the simulation
12



Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

H = J
Nb�

b=1

Si(b) · Sj(b),

H1,b = 1
4 � Sz

i(b)S
z
j(b),

H2,b = 1
2 (S+

i(b)S
�
j(b) + S�i(b)S

+
j(b)).

Diagonal (1) and off-diagonal (2) bond operators

H = �J
Nb�

b=1

(H1,b �H2,b) +
JNb

4

⇤�i(b)⇥j(b) |H1,b| �i(b)⇥j(b)⌅ = 1
2 ⇤⇥i(b)�j(b) |H2,b| �i(b)⇥j(b)⌅ = 1

2

⇤⇥i(b)�j(b) |H1,b| ⇥i(b)�j(b)⌅ = 1
2 ⇤�i(b)⇥j(b) |H2,b| ⇥i(b)�j(b)⌅ = 1

2

Four non-zero matrix elements

2D square lattice
bond and site labels

Z =
⌅

�

⇥⌅

n=0

(�1)n2
⇥n

n!

⌅

Sn

⇥
�

�����

n�1⇧

p=0

Ha(p),b(p)

����� �

⇤Partition function

Sn = [a(0), b(0)], [a(1), b(1)], . . . , [a(n� 1), b(n� 1)]Index sequence:

n2 = number of a(i)=2
(off-diagonal operators)
in the sequence
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Propagated states: |�(p)⇥ �
p�1�

i=0

Ha(i),b(i) |�⇥

For fixed-length scheme

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

In a program:

s(p) = operator-index string
• s(p) = 2*b(p) + a(p)-1
• diagonal; s(p) = even
• off-diagonal; s(p) = off

σ(i) = spin state, i=1,...,N
• only one has to be stored

W>0 (n2 even) for bipartite lattice 
Frustration leads to sign problem

SSE effectively provides a discrete representation of the time continuum 
• computational advantage; only integer operations in sampling

Z =
⌅

�

⌅

SL

(�1)n2
⇥n(L� n)!

L!

⇥
�

�����

L�1⇧

p=0

Ha(p),b(p)

����� �

⇤
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Linked vertex storage

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

The “legs” of a  vertex represents 
the spin states before (below) and 
after (above) an operator has acted

X( ) = vertex list
• operator at p→X(v)
   v=4p+l, l=0,1,2,3
• links to next and
   previous leg

Spin states between operations are redundant; represented by links
• network of linked vertices will be used for loop updates of vertices/operators
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Monte Carlo sampling scheme

Change the configuration; (�, SL)� (��, S�
L)

Attempt at p=0,...,L-1. Need to know |α(p)>
• generate by flipping spins when off-diagonal operator

Diagonal update: [0, 0]p � [1, b]p

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

Paccept([0, 0]⇥ [1, b]) = min
�

�Nb

2(L� n)
, 1

⇥

Paccept([1, b]⇥ [0, 0]) = min
�
2(L� n + 1)

�Nb
, 1

⇥

Acceptance probabilities

W (a = 0)
W (a = 1)

=
L� n + 1

�/2
W (a = 1)
W (a = 0)

=
�/2

L� n

n is the current power
• n → n+1 (a=0 → a=1)
• n → n-1  (a=1 → a=0)

Pselect(a = 0� a = 1) = 1/Nb, (b ⇥ {1, . . . , Nb})
Pselect(a = 1� a = 0) = 1

Paccept = min
�
W (��, SL)
W (�, SL)

Pselect(��, S�
L � �, SL)

Pselect(�, SL � ��, S�
L)

, 1
⇥
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do p = 0 to L � 1
if (s(p) = 0) then

b = random[1, . . . , Nb]
if �(i(b)) = �(j(b)) cycle

if (random[0 � 1] < P
insert

(n)) then s(p) = 2b; n = n + 1 endif

elseif (mod[s(p), 2] = 0) then

if (random[0 � 1] < P
remove

(n)) then s(p) = 0; n = n � 1 endif

else

b = s(p)/2; �(i(b)) = ��(i(b)); �(j(b)) = ��(j(b))
endif

enddo

Pseudocode: Sweep of diagonal updates

• To insert operator, bond b generated at random among 1,...,Nb
   - can be done only if connected spins i(b),j(b) are anti-parallel
   - if so, do it with probability Pinsert(n)
• Existing diagonal operator can always be removed
   - do it with probability Premove(n)
• If off-diagonal operator, advance the state
   - extract bond b, flip spins at i(b),j(b)
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Off-diagonal updates

Operator-loop 
update
• Many spins  

and operators 
can be 
changed 
simultaneously

• can change 
winding 
numbers

Local update
Change the type
of two operators
• constraints
• inefficient
• cannot change 

winding 
numbers
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do v0 = 0 to 4L� 1 step 2
if (X(v0) < 0) cycle
v = v0
if (random[0� 1] < 1

2 ) then
traverse the loop; for all v in loop, set X(v) = �1

else
traverse the loop; for all v in loop, set X(v) = �2
flip the operators in the loop

endif
enddo

 constructing all loops, flip probability 1/2

 construct and flip a loop

v = v0
do

X(v) = �2
p = v/4; s(p) = flipbit(s(p), 0)
v� = flipbit(v, 0)
v = X(v�); X(v�) = �2
if (v = v0) exit

enddo

Pseudocode: Sweep of loop updates

• by flipping bit 0 of s(p), 
the operator changes 
from diagonal to off-
diagonal, or vise versa

• moving on the vertex to 
  the adjacent spin is also
  done with a bit flip  

19



We also have to modify the stored spin state after the loop update
• we can use the information in Vfirst() and X() to determine spins to be flipped
• spins with no operators, Vfirst(i)=−1, flipped with probability 1/2

do i = 1 to N
v = Vfirst(i)
if (v = �1) then

if (random[0-1]< 1/2) �(i) = ��(i)
else

if (X(v) = �2) �(i) = ��(i)
endif

enddo

v=Vfirst(i) is the location of the first vertex leg on site i
• flip the spin if X(v)=−2
• (do not flip it if X(v)=−1)
• no operation on i if vfirst(i)=−1; then it is flipped with probability 1/2
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Vfirst(:) = �1; Vlast(:) = �1
do p = 0 to L� 1

if (s(p) = 0) cycle
v0 = 4p; b = s(p)/2; s1 = i(b); s2 = j(b)
v1 = Vlast(s1); v2 = Vlast(s2)
if (v1 ⇥= �1) then X(v1) = v0; X(v0) = v1 else Vfirst(s1) = v0 endif
if (v2 ⇥= �1) then X(v2) = v0; X(v0) = v2 else Vfirst(s2) = v0 + 1 endif
Vlast(s1) = v0 + 2; Vlast(s2) = v0 + 3

enddo

Constructing the linked vertex list

creating the last links across the “time” boundary
do i = 1 to N

f = Vfirst(i)
if (f ⇥= �1) then l = Vlast(i); X(f) = l; X(l) = f endif

enddo

Use arrays to keep track of the first and 
last (previous) vertex leg on a given spin
• Vfirst(i) = location v of first leg on site i
• Vlast(i) = location v of last (currently) leg
• these are used to create the links
• initialize all elements to −1

Traverse operator list s(p), p=0,...,L−1
• vertex legs v=4p,4p+1,4p+2,4p+3
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Determination of the cut-off L
• adjust during equilibration
• start with arbitrary (small) n

Keep track of number of operators n
• increase L if n is close to current L
• e.g., L=n+n/3

Example 
•16×16 system, β=16 ⇒
• evolution of L
• n distribution after 
equilibration

• truncation is no 
approximation
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Does it work?
Compare with exact results
• 4×4 exact diagonalization
• Bethe Ansatz; long chains

⇐ Energy for long 1D chains
• SSE results for 106 sweeps
• Bethe Ansatz ground state E/N
• SSE can achieve the ground
   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒
• SSE results from 1010 sweeps
• improved estimator gives smaller
   error bars at high T (where the
   number of loops is larger)
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Basic SSE code (Fortran90) available on-line:

https://physics.bu.edu/~sandvik/trieste15/

Simulation of the 2D Heisenberg model with N=Lx*Ly spins
- periodic boundary conditions
- Ly=1 for a chain (only x-periodic)
- Ly=2 for a 2-leg ladder (only x-periodic)

Calculates:
- energy and specific heat per site
- uniform magnetic susceptibility
- squared sublattice magnetization
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