Lecture 1
Stochastic series expansion (SSE) method for simulations of quantum spins

Anders W Sandvik, Boston University

Review article on quantum spin systems and numerical methods (incl. SSE): ArXiv:1101.3281
Lecture outline

- Intro to quantum Heisenberg model
- Path integrals on the lattice
- Stochastic Series expansion (alternative to path integral)
- Implementation for 2D S=1/2 Heisenberg antiferromagnet
- Look at program if we have time
Quantum antiferromagnets

Starting model for spin-isotropically interacting S=1/2 spins:

The **Heisenberg model** with nearest-neighbor \(<i,j>\) interactions

\[H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j, \quad J > 0 \]

Lattices can be classified as:

Bipartite
- nearest-neighbors \(i,j\) always on different sublattices
- compatible with Neel order
- but other states possible

Non-bipartite
- no bipartition is possible
- frustrated antiferromagnetic interactions
- different kinds of order or no long-range order (spin liquid)
Order Parameter: Sublattice magnetization

\[\vec{m}_s = \frac{1}{N} \sum_{i=1}^{N} \phi_i \vec{S}_i, \quad \phi_i = (-1)^{x_i+y_i} \quad (2D \text{ square lattice}) \]

- In a classical bipartite system at T=0: \(|\langle \vec{m}_s \rangle| = S \)
- In finite system, symmetry not broken, use: \(\langle m_s^2 \rangle = S^2 \)
- At T > 0 thermal fluctuations reduce order: \(\langle m_s^2 \rangle < S^2 \)

Quantum system: Fully ordered Neel state not an eigenstate of H even on a bipartite lattice
- \(|m_s| < S \) at T=0 (can have \(|m_s| = 0 \))

Mermin-Wagner theorem
(on breaking a continuous symmetry):
- No Neel order in 1D quantum Heisenberg model
- Neel order possible only at T=0 in 2D system
- Order possible also at T>0 in 3D
Quantum Monte Carlo

Rewrite the quantum-mechanical expectation value into a classical form

$$\langle A \rangle = \frac{\text{Tr}\{A e^{-\beta H}\}}{\text{Tr}\{e^{-\beta H}\}} \rightarrow \frac{\sum_c A_c W_c}{\sum W_c}$$

Monte Carlo sampling in the space \{c\} with weights \(W_c\) (if positive-definite...)

Different ways of doing it
- World-line methods for spins and bosons
- Stochastic series expansion for spins and bosons
- Fermion determinant methods

For ground state calculations we can also do projection from a “trial state”

$$|\Psi_m\rangle \sim \frac{1}{H^m} |\Psi_0\rangle \quad |\Psi_m\rangle \rightarrow |0\rangle \text{ when } m \rightarrow \infty$$

$$|\Psi_\beta\rangle \sim e^{-\beta H} |\Psi_0\rangle \quad |\Psi_\beta\rangle \rightarrow |0\rangle \text{ when } \beta \rightarrow \infty$$

Particularly simple and efficient schemes exist for S=1/2 models

$$H = -J \sum_{b=1}^{N_b} \left(\frac{1}{4} - \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)} \right)$$

(+ certain multi-spin terms)

No sign problem on bipartite lattices
Path integrals on the lattice, imaginary time

We want to compute a thermal expectation value

$$\langle A \rangle = \frac{1}{Z} \text{Tr}\{Ae^{-\beta H}\}$$

where $\beta = 1/T$ (and possibly $T \to 0$). How to deal with the exponential operator?

“Time slicing” of the partition function

$$Z = \text{Tr}\{e^{-\beta H}\} = \text{Tr}\left\{\prod_{l=1}^{L} e^{-\Delta \tau H}\right\} \quad \Delta \tau = \beta / L$$

Choose a basis and insert complete sets of states;

$$Z = \sum_{\alpha_0} \sum_{\alpha_1} \cdots \sum_{\alpha_{L-1}} \langle \alpha_0 | e^{-\Delta \tau H} | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | e^{-\Delta \tau H} | \alpha_1 \rangle \langle \alpha_1 | e^{-\Delta \tau H} | \alpha_0 \rangle$$

Use approximation for imaginary time evolution operator. Simplest way

$$Z \approx \sum_{\{\alpha\}} \langle \alpha_0 | 1 - \Delta \tau H | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | 1 - \Delta \tau H | \alpha_1 \rangle \langle \alpha_1 | 1 - \Delta \tau H | \alpha_0 \rangle$$

Leads to error $\propto \Delta \tau$. Limit $\Delta \tau \to 0$ can be taken
Example: hard-core bosons

\[H = K = - \sum_{\langle i,j \rangle} K_{ij} = - \sum_{\langle i,j \rangle} (a_j^\dagger a_i + a_i^\dagger a_j) \quad n_i = a_i^\dagger a_i \in \{0, 1\} \]

Equivalent to S=1/2 XY model

\[H = -2 \sum_{\langle i,j \rangle} (S_i^x S_j^x + S_i^y S_j^y) = - \sum_{\langle i,j \rangle} (S_i^+ S_j^- + S_i^- S_j^+), \quad S^z = \pm \frac{1}{2} \sim n_i = 0, 1 \]

“World line” representation of

\[Z \approx \sum_{\{\alpha\}} \langle \alpha_0 | 1 - \Delta_\tau H | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | 1 - \Delta_\tau H | \alpha_1 \rangle \langle \alpha_1 | 1 - \Delta_\tau H | \alpha_0 \rangle \]

\[Z = \sum_{\{\alpha\}} W(\{\alpha\}), \quad W(\{\alpha\}) = \Delta_{\tau}^{n_K} \quad n_K = \text{number of “jumps”} \]

world line moves for Monte Carlo sampling
Expectation values

\[\langle A \rangle = \frac{1}{Z} \sum_{\{\alpha\}} \langle \alpha_0 | e^{-\Delta \tau} | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | e^{-\Delta \tau H} | \alpha_1 \rangle \langle \alpha_1 | e^{-\Delta \tau H} A | \alpha_0 \rangle \]

We want to write this in a form suitable for MC importance sampling

\[\langle A \rangle = \frac{\sum_{\{\alpha\}} A(\{\alpha\}) W(\{\alpha\})}{\sum_{\{\alpha\}} W(\{\alpha\})} \quad \rightarrow \quad \langle A \rangle = \langle A(\{\alpha\}) \rangle_W \]

\[W(\{\alpha\}) = \text{weight} \]
\[A(\{\alpha\}) = \text{estimator} \]

For any quantity diagonal in the occupation numbers (spin z):

\[A(\{\alpha\}) = A(\alpha_n) \quad \text{or} \quad A(\{\alpha\}) = \frac{1}{L} \sum_{l=0}^{L-1} A(\alpha_l) \]

Kinetic energy (here full energy). Use

\[K e^{-\Delta \tau K} \approx K \]
\[K_{ij}(\{\alpha\}) = \frac{\langle \alpha_1 | K_{ij} | \alpha_0 \rangle}{\langle \alpha_1 | 1 - \Delta \tau K | \alpha_0 \rangle} \in \{0, \frac{1}{\Delta \tau}\} \]

Average over all slices \(\rightarrow\) count number of kinetic jumps

\[\langle K_{ij} \rangle = \frac{n_{ij}}{\beta}, \quad \langle K \rangle = -\frac{n_K}{\beta} \quad \langle K \rangle \propto N \rightarrow \langle n_K \rangle \propto \beta N \]

There should be of the order \(\beta N\) “jumps” (regardless of approximation used)
Including interactions

For any diagonal interaction V (Trotter, or split-operator, approximation)

$$e^{-\Delta \tau H} = e^{-\Delta \tau K} e^{-\Delta \tau V} + \mathcal{O}(\Delta^2) \rightarrow \langle \alpha_{l+1} | e^{-\Delta \tau H} | \alpha_l \rangle \approx e^{-\Delta \tau V_l} \langle \alpha_{l+1} | e^{-\Delta \tau K} | \alpha_l \rangle$$

Product over all times slices \rightarrow

$$W(\{\alpha\}) = \Delta^{n_K} \exp \left(-\Delta \tau \sum_{l=0}^{L-1} V_l \right)$$

$$P_{acc} = \min \left[\Delta^2 \exp \left(-\frac{V_{new}}{V_{old}} \right), 1 \right]$$

The continuous time limit

Limit $\Delta \tau \to 0$: number of kinetic jumps remains finite, store events only

Special methods (loop and worm updates) developed for efficient sampling of the paths in the continuum

local updates (problem when $\Delta \tau \to 0$?)

- consider probability of inserting/removing events within a time window

\leftarrow Evertz, Lana, Marcu (1993), Prokofev et al (1996)
Beard & Wiese (1996)
Series expansion representation

Start from the Taylor expansion (no approximation)

\[Z = \text{Tr}\{e^{-\beta H}\} = \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \sum_{\alpha_0} \langle \alpha_0 | H^n | \alpha_0 \rangle \]

Define index sequences (string) referring to terms of H

\[H = \sum_{i=1}^{m} H_i \quad S_n = (a_1, a_2, \ldots, a_n), \quad a_i \in \{1, \ldots, m\} \]

Break up \(H^n \) into strings:

\[Z = \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \sum_{\alpha_0} \sum_{S_n} \langle \alpha_0 | H_{a_n} \cdots H_{a_2} H_{a_1} | \alpha_0 \rangle \]

We should have (always possible): \(H_i | \alpha_j \rangle \propto | \alpha_k \rangle \)
- no branching during propagation with operator string
- some strings not allowed (illegal operations)

For hard-core bosons the (allowed) path weight is:

\[W(S_n, \alpha_0) = \frac{\beta^n}{n!} \]
We can make this look more similar to a path integral by introducing partially propagated states: $|\alpha_p\rangle = H_a p \cdots H_a 2 H_a 1 |\alpha_0\rangle$

$$Z = \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \sum_{\alpha_0} \sum_{S_n} \langle \alpha_0 | H_{a n} | \alpha_{n-1} \rangle \langle \alpha_{n-2} | \cdots | \alpha_2 \rangle \langle \alpha_1 | H_{a 1} | \alpha_0 \rangle$$

$|\alpha_n\rangle = |\alpha_0\rangle$

Same-looking paths, different-looking weights - but become equivalent with time continuum in path integral

Energy:

$$\langle H \rangle = \frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \sum_{\alpha_0} \langle \alpha_0 | H^n H | \alpha_0 \rangle$$

Relabel terms of n-sum: replace n+1 by n

$$\langle H \rangle = -\frac{1}{Z} \sum_{n=1}^{\infty} \frac{(-\beta)^n}{n!} \frac{n}{\beta} \sum_{\alpha_0} \langle \alpha_0 | H^n | \alpha_0 \rangle$$

Therefore the energy is: $E = -\langle n \rangle / \beta$

Can also derive specific heat:

$$C = \langle n^2 \rangle - \langle n \rangle^2 - \langle n \rangle$$

Follows: $\langle n \rangle \propto \beta N$, $\sigma_n \propto \sqrt{\beta N}$
Fixed string-length scheme

• n fluctuating → varying size of the sampled configurations
• the expansion can be truncated at some $n_{\text{max}}=L$
 (exponentially small error if large enough)
• cutt-off at $n=L$, fill in operator string with unit operators $H_0=I$

$n=10$ \[\text{H}_4 \text{H}_7 \text{H}_1 \text{H}_6 \text{H}_2 \text{H}_1 \text{H}_8 \text{H}_3 \text{H}_3 \text{H}_5 \] \[\implies \]

$M=14$ \[\text{H}_4 \text{I} \text{H}_7 \text{I} \text{H}_1 \text{H}_6 \text{I} \text{H}_2 \text{H}_1 \text{H}_8 \text{H}_3 \text{H}_3 \text{I} \text{H}_5 \]

- consider all possible locations in the sequence
- overcounting of original strings, correct by

$$\binom{L}{n}^{-1} = \frac{n!(L-n)!}{L!}$$

$$Z = \sum_{\alpha_0} \sum_{S_L} \left(-\beta \right)^n \frac{(L-n)!}{L!} \langle \alpha_0 | H_{a_m} \cdots H_{a_2} H_{a_1} | \alpha_0 \rangle$$

Here n is the number of H_i, $i>0$ instances in the sequence of L ops
- the summation over n is now implicit

L can be chosen automatically by the simulation
Stochastic Series expansion (SSE): S=1/2 Heisenberg model

Write H as a bond sum for arbitrary lattice

\[
H = J \sum_{b=1}^{N_b} S_{i(b)} \cdot S_{j(b)},
\]

Diagonal (1) and off-diagonal (2) bond operators

\[
\begin{align*}
H_{1,b} &= \frac{1}{4} - S_{i(b)}^z S_{j(b)}^z, \\
H_{2,b} &= \frac{1}{2} (S_{i(b)}^+ S_{j(b)}^- + S_{i(b)}^- S_{j(b)}^+).
\end{align*}
\]

\[
H = -J \sum_{b=1}^{N_b} (H_{1,b} - H_{2,b}) + \frac{J N_b}{4}.
\]

Four non-zero matrix elements

\[
\begin{align*}
\langle \uparrow i(b) \downarrow j(b) | H_{1,b} | \uparrow i(b) \downarrow j(b) \rangle &= \frac{1}{2}, \\
\langle \downarrow i(b) \uparrow j(b) | H_{1,b} | \downarrow i(b) \uparrow j(b) \rangle &= \frac{1}{2}, \\
\langle \downarrow i(b) \uparrow j(b) | H_{2,b} | \downarrow i(b) \uparrow j(b) \rangle &= \frac{1}{2}, \\
\langle \uparrow i(b) \downarrow j(b) | H_{2,b} | \uparrow i(b) \downarrow j(b) \rangle &= \frac{1}{2}.
\end{align*}
\]

Partition function

\[
Z = \sum_{\alpha} \sum_{n=0}^{\infty} (-1)^{n_2} \frac{\beta^n}{n!} \sum_{S_n} \left\langle \alpha \right| \prod_{p=0}^{n-1} H_{a(p),b(p)} \left| \alpha \right\rangle
\]

Index sequence: \(S_n = [a(0), b(0)], [a(1), b(1)], \ldots, [a(n-1), b(n-1)] \)
For fixed-length scheme

\[
Z = \sum_{\alpha} \sum_{S_L} (-1)^{n_2} \frac{\beta^n (L - n)!}{L!} \left\langle \alpha \left| \prod_{p=0}^{L-1} H_{a(p),b(p)} \right| \alpha \right\rangle
\]

Propagated states: \(|\alpha(p)\rangle \propto \prod_{i=0}^{p-1} H_{a(i),b(i)} |\alpha\rangle \)

\[
W(\alpha, S_L) = \left(\frac{\beta}{2} \right)^n \frac{(L - n)!}{L!}
\]

W>0 (n_2 even) for bipartite lattice
Frustration leads to **sign problem**

In a program:

- \(s(p) = \) operator-index string
- \(s(p) = 2*b(p) + a(p)-1 \)
- diagonal; \(s(p) = \text{even} \)
- off-diagonal; \(s(p) = \text{off} \)

\(\sigma(i) = \) spin state, \(i=1,...,N \)
- only one has to be stored

SSE effectively provides a discrete representation of the time continuum
- computational advantage; only integer operations in sampling
Linked vertex storage

The “legs” of a vertex represents the spin states before (below) and after (above) an operator has acted.

\[
\begin{align*}
X(\cdot) &= \text{vertex list} \\
& \text{operator at } p \rightarrow X(v) \\
& v = 4p + l, \ l = 0,1,2,3 \\
& \text{links to next and previous leg}
\end{align*}
\]

Spin states between operations are redundant; represented by links.

- network of linked vertices will be used for loop updates of vertices/operators.
Monte Carlo sampling scheme

Change the configuration: \((\alpha, S_L) \rightarrow (\alpha', S'_L)\)

\[
W(\alpha, S_L) = \left(\frac{\beta}{2}\right)^n \frac{(L-n)!}{L!}
\]

\[
P_{\text{accept}} = \min \left[\frac{W(\alpha', S'_L)}{W(\alpha, S_L)} \frac{P_{\text{select}}(\alpha', S'_L \rightarrow \alpha, S_L)}{P_{\text{select}}(\alpha, S_L \rightarrow \alpha', S'_L)}, 1 \right]
\]

Diagonal update: \([0, 0]_p \leftrightarrow [1, b]_p\)

Attempt at \(p=0,\ldots,L-1\). Need to know \(|\alpha(p)\rangle\)

- generate by flipping spins when off-diagonal operator
 \[
P_{\text{select}}(a = 0 \rightarrow a = 1) = \frac{1}{N_b}, \quad (b \in \{1, \ldots, N_b\})
 \]
 \[
P_{\text{select}}(a = 1 \rightarrow a = 0) = 1
 \]

\[
W(a = 1) = \frac{\beta/2}{L-n} \quad W(a = 0) = \frac{L-n+1}{\beta/2}
\]

Acceptance probabilities

\[
P_{\text{accept}}([0, 0] \rightarrow [1, b]) = \min \left[\frac{\beta N_b}{2(L-n)}, 1 \right]
\]

\[
P_{\text{accept}}([1, b] \rightarrow [0, 0]) = \min \left[\frac{2(L-n+1)}{\beta N_b}, 1 \right]
\]

\(n\) is the current power

- \(n \rightarrow n+1\) (a=0 \(\rightarrow\) a=1)
- \(n \rightarrow n-1\) (a=1 \(\rightarrow\) a=0)
Pseudocode: Sweep of diagonal updates

```plaintext
do p = 0 to L - 1
  if (s(p) = 0) then
    b = random[1, \ldots, N_b]
    if \sigma(i(b)) = \sigma(j(b)) cycle
    if (random[0 - 1] < P_{\text{insert}}(n)) then s(p) = 2b; n = n + 1 endif
  elseif (mod[s(p), 2] = 0) then
    if (random[0 - 1] < P_{\text{remove}}(n)) then s(p) = 0; n = n - 1 endif
  else
    b = s(p)/2; \sigma(i(b)) = -\sigma(i(b)); \sigma(j(b)) = -\sigma(j(b))
  endif
endo
```

- To insert operator, bond b generated at random among 1,...,N_b
 - can be done only if connected spins i(b),j(b) are anti-parallel
 - if so, do it with probability P_{\text{insert}}(n)
- Existing diagonal operator can always be removed
 - do it with probability P_{\text{remove}}(n)
- If off-diagonal operator, advance the state
 - extract bond b, flip spins at i(b),j(b)
Off-diagonal updates

(a) Many spins and operators can be changed simultaneously

(b) cannot change winding numbers

Local update
Change the type of two operators
- constraints
- inefficient
- cannot change winding numbers

Operator-loop update
- Many spins and operators can be changed simultaneously
- can change winding numbers
Pseudocode: Sweep of loop updates

constructing all loops, flip probability 1/2

do \(v_0 = 0 \) to \(4L - 1 \) step 2
 if \(X(v_0) < 0 \) cycle
 \(v = v_0 \)
 if (random[0 - 1] < \(\frac{1}{2} \)) then
 traverse the loop; for all \(v \) in loop, set \(X(v) = -1 \)
 else
 traverse the loop; for all \(v \) in loop, set \(X(v) = -2 \)
 flip the operators in the loop
 endif
enddo

construct and flip a loop

\(v = v_0 \)
do
 \(X(v) = -2 \)
 \(p = v/4; s(p) = \text{flipbit}(s(p), 0) \)
 \(v' = \text{flipbit}(v, 0) \)
 \(v = X(v'); X(v') = -2 \)
 if (\(v = v_0 \)) exit
endo
We also have to modify the stored spin state after the loop update

- we can use the information in $V_{\text{first}}()$ and $X()$ to determine spins to be flipped
- spins with no operators, $V_{\text{first}}(i)=−1$, flipped with probability 1/2

```plaintext
do $i = 1$ to $N$
  $v = V_{\text{first}}(i)$
  if ($v = −1$) then
    if (random[0-1] < 1/2) $\sigma(i) = −\sigma(i)$
  else
    if ($X(v) = −2$) $\sigma(i) = −\sigma(i)$
  endif
endo
```

$v=V_{\text{first}}(i)$ is the location of the first vertex leg on site i

- flip the spin if $X(v)=−2$
- (do not flip it if $X(v)=−1$)
- no operation on i if $v_{\text{first}}(i)=−1$; then it is flipped with probability 1/2
Constructing the linked vertex list

Traverse operator list \(s(p) \), \(p=0,\ldots,L-1 \)

- vertex legs \(v=4p,4p+1,4p+2,4p+3 \)

Use arrays to keep track of the first and last (previous) vertex leg on a given spin

- \(V_{\text{first}}(i) \) = location \(v \) of first leg on site \(i \)
- \(V_{\text{last}}(i) \) = location \(v \) of last (currently) leg
- these are used to create the links
- initialize all elements to \(-1\)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(v)</th>
<th>(X(v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>35</td>
</tr>
</tbody>
</table>

\(l=0 \) \(l=1 \) \(l=2 \) \(l=3 \)

\[V_{\text{first}}(:) = -1; \ V_{\text{last}}(:) = -1 \]
\[\text{do } p = 0 \text{ to } L - 1 \]
\[\quad \text{if } (s(p) = 0) \text{ cycle} \]
\[\quad v_0 = 4p; \ b = s(p)/2; \ s_1 = i(b); \ s_2 = j(b) \]
\[\quad v_1 = V_{\text{last}}(s_1); \ v_2 = V_{\text{last}}(s_2) \]
\[\quad \text{if } (v_1 \neq -1) \text{ then } X(v_1) = v_0; \ X(v_0) = v_1 \text{ else } V_{\text{first}}(s_1) = v_0 \text{ endif} \]
\[\quad \text{if } (v_2 \neq -1) \text{ then } X(v_2) = v_0; \ X(v_0) = v_2 \text{ else } V_{\text{first}}(s_2) = v_0 + 1 \text{ endif} \]
\[\quad V_{\text{last}}(s_1) = v_0 + 2; \ V_{\text{last}}(s_2) = v_0 + 3 \]
\[\text{enddo} \]

creating the last links across the “time” boundary

\[\text{do } i = 1 \text{ to } N \]
\[\quad f = V_{\text{first}}(i) \]
\[\quad \text{if } (f \neq -1) \text{ then } l = V_{\text{last}}(i); \ X(f) = l; \ X(l) = f \text{ endif} \]
\[\text{enddo} \]
Determination of the cut-off L
- adjust during equilibration
- start with arbitrary (small) n

Keep track of number of operators n
- increase L if n is close to current L
- e.g., $L = n + n/3$

Example
- 16×16 system, $\beta = 16 \Rightarrow$
- evolution of L
- n distribution after equilibration
- truncation is no approximation
Does it work?
Compare with exact results
- 4×4 exact diagonalization
- Bethe Ansatz; long chains

Susceptibility of the 4×4 lattice ⇒
- SSE results from 10^{10} sweeps
- improved estimator gives smaller error bars at high T (where the number of loops is larger)

⇔ Energy for long 1D chains
- SSE results for 10^{6} sweeps
- Bethe Ansatz ground state E/N
- SSE can achieve the ground state limit (T→0)
Basic SSE code (Fortran90) available on-line:

https://physics.bu.edu/~sandvik/trieste15/

Simulation of the 2D Heisenberg model with $N=L_x*L_y$ spins
- periodic boundary conditions
- $L_y=1$ for a chain (only x-periodic)
- $L_y=2$ for a 2-leg ladder (only x-periodic)

Calculates:
- energy and specific heat per site
- uniform magnetic susceptibility
- squared sublattice magnetization