ICTP School in Computational Condensed Matter Physics:
From Atomistic Simulations to Universal Model Hamiltonians September 2015

Lecture 1
 Stochastic series expansion (SSE) method for simulations of quantum spins

Anders W Sandvik, Boston University

Review article on quantum spin systems and numerical methods (incl. SSE): ArXiv:1101.3281

BOSTON UNIVERSITY

Lecture outline

- Intro to quantum Heisenberg model
- Path integrals on the lattice
- Stochastic Series expansion (alternative to path integral)
- Implementation for 2D $S=1 / 2$ Heisenberg antiferromagnet
- Look at program if we have time

Quantum antiferromagnets

Starting model for spin-isotropically interacting $S=1 / 2$ spins:
The Heisenberg model with nearest-neighbor <i,j> interactions

$$
H=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}, \quad J>0
$$

Lattices can be classified as:

Bipartite

- nearest-neighbors i,j always on different sublattices
- compatible with Neel order
- but other states possible

Non-bipartite

- no bipartition is possible
- frustrated antiferromagnetic interactions

- different kinds of order or no long-range order (spin liquid)

Order Parameter: Sublattice magnetization $\vec{m}_{s}=\frac{1}{N} \sum_{i=1}^{N} \phi_{i} \vec{S}_{i}, \quad \phi_{i}=(-1)^{x_{i}+y_{i}} \quad$ (2D square lattice)

- In a classical bipartite system at $\mathrm{T}=0:\left|\left\langle\vec{m}_{s}\right\rangle\right|=S$

- In finite system, symmetry not broken, use: $\left\langle m_{s}^{2}\right\rangle=S^{2}$
- At T >0 thermal fluctuations reduce order: $\left\langle m_{s}^{2}\right\rangle<S^{2}$

Quantum system: Fully ordered Neel state not an eigenstate of H even on a bipartite lattice

- $\left|\mathbf{m}_{\mathbf{s}}\right|<\mathbf{S}$ at $\mathrm{T}=0$ (can have $\left|\mathbf{m}_{\mathbf{s}}\right|=\mathbf{0}$)

Mermin-Wagner theorem

(on breaking a continuous symmetry):

- No Neel order in 1D quantum Heisenberg model
- Neel order possible only at T=0 in 2D system
- Order possible also at T>0 in 3D

Quantum Monte Carlo

Rewrite the quantum-mechanical expectation value into a classical form

$$
\langle A\rangle=\frac{\operatorname{Tr}\left\{A e^{-\beta H}\right\}}{\operatorname{Tr}\left\{e^{-\beta H}\right\}} \rightarrow \frac{\sum_{c} A_{c} W_{c}}{\sum W_{c}}
$$

Monte Carlo sampling in the space $\{\mathbf{c}\}$ with weights $\mathbf{W}_{\mathbf{c}}$ (if positive-definite...)

Different ways of doing it

("sign problem" if
not the case)

- World-line methods for spins and bosons
- Stochastic series expansion for spins and bosons
- Fermion determinant methods

For ground state calculations we can also do projection from a "trial state"

$$
\begin{array}{ll}
\left|\Psi_{m}\right\rangle \sim H^{m}\left|\Psi_{0}\right\rangle & \left|\Psi_{m}\right\rangle \rightarrow|0\rangle \text { when } m \rightarrow \infty \\
\left|\Psi_{\beta}\right\rangle \sim \mathrm{e}^{-\beta H}\left|\Psi_{0}\right\rangle & \left|\Psi_{\beta}\right\rangle \rightarrow|0\rangle \text { when } \beta \rightarrow \infty
\end{array}
$$

Particularly simple and efficient schemes exist for $S=1 / 2$ models

$$
H=-J \sum_{b=1}^{N_{b}}\left(\frac{1}{4}-\mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)}\right) \quad(+ \text { certain multi-spin terms })
$$

No sign problem on bipartite lattices

Path integrals on the lattice, imaginary time

We want to compute a thermal expectation value

$$
\langle A\rangle=\frac{1}{Z} \operatorname{Tr}\left\{A \mathrm{e}^{-\beta H}\right\}
$$

where $\beta=1 / \mathrm{T}$ (and possibly $\mathrm{T} \rightarrow 0$). How to deal with the exponential operator?
"Time slicing" of the partition function

$$
Z=\operatorname{Tr}\left\{\mathrm{e}^{-\beta H}\right\}=\operatorname{Tr}\left\{\prod_{l=1}^{L} \mathrm{e}^{-\Delta_{\tau} H}\right\} \quad \Delta_{\tau}=\beta / L
$$

Choose a basis and insert complete sets of states;

$$
Z=\sum_{\alpha_{0}} \sum_{\alpha_{1}} \cdots \sum_{\alpha_{L}-1}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{0}\right\rangle
$$

Use approximation for imaginary time evolution operator. Simplest way

$$
Z \approx \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| 1-\Delta_{\tau} H\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| 1-\Delta_{\tau} H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| 1-\Delta_{\tau} H\left|\alpha_{0}\right\rangle
$$

Leads to error $\propto \Delta_{\tau}$. Limit $\Delta_{\tau} \rightarrow 0$ can be taken

Example: hard-core bosons

$$
H=K=-\sum_{\langle i, j\rangle} K_{i j}=-\sum_{\langle i, j\rangle}\left(a_{j}^{\dagger} a_{i}+a_{i}^{\dagger} a_{j}\right) \quad n_{i}=a_{i}^{\dagger} a_{i} \in\{0,1\}
$$

Equivalent to $\mathrm{S}=1 / 2 \mathrm{XY}$ model

$$
H=-2 \sum_{\langle i, j\rangle}\left(S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right)=-\sum_{\langle i, j\rangle}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right), \quad S^{z}= \pm \frac{1}{2} \sim n_{i}=0,1
$$

"World line" representation of

$$
Z \approx \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| 1-\Delta_{\tau} H\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| 1-\Delta_{\tau} H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| 1-\Delta_{\tau} H\left|\alpha_{0}\right\rangle
$$

world line moves for Monte Carlo sampling

$$
Z=\sum_{\{\alpha\}} W(\{\alpha\}), \quad W(\{\alpha\})=\Delta_{\tau}^{n_{K}} \quad \mathrm{n}_{\mathrm{K}}=\text { number of "jumps" }
$$

Expectation values

$$
\langle A\rangle=\frac{1}{Z} \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H} A\left|\alpha_{0}\right\rangle
$$

We want to write this in a form suitable for MC importance sampling

$$
\begin{array}{lll}
\qquad\langle A\rangle=\frac{\sum_{\{\alpha\}} A(\{\alpha\}) W(\{\alpha\})}{\sum_{\{\alpha\}} W(\{\alpha\})} \longrightarrow & \langle A\rangle=\langle A(\{\alpha\})\rangle_{W} \\
& W(\{\alpha\})=\text { weight } \\
\text { For any quantity diagonal in the } & & A(\{\alpha\})=\text { estimator } \\
\text { occupation numbers (spin z): } & &
\end{array}
$$

$$
A(\{\alpha\})=A\left(\alpha_{n}\right) \text { or } A(\{\alpha\})=\frac{1}{L} \sum_{l=0}^{L-1} A\left(\alpha_{l}\right)
$$

Kinetic energy (here full energy). Use

$$
K \mathrm{e}^{-\Delta_{\tau} K} \approx K \quad K_{i j}(\{\alpha\})=\frac{\left\langle\alpha_{1}\right| K_{i j}\left|\alpha_{0}\right\rangle}{\left\langle\alpha_{1}\right| 1-\Delta_{\tau} K\left|\alpha_{0}\right\rangle} \in\left\{0, \frac{1}{\Delta_{\tau}}\right\}
$$

Average over all slices \rightarrow count number of kinetic jumps

$$
\left\langle K_{i j}\right\rangle=\frac{\left\langle n_{i j}\right\rangle}{\beta}, \quad\langle K\rangle=-\frac{\left\langle n_{K}\right\rangle}{\beta} \quad\langle K\rangle \propto N \rightarrow\left\langle n_{K}\right\rangle \propto \beta N
$$

There should be of the order $\beta \mathrm{N}$ "jumps" (regardless of approximation used)

Including interactions

For any diagonal interaction V (Trotter, or split-operator, approximation)

$$
\mathrm{e}^{-\Delta_{\tau} H}=\mathrm{e}^{-\Delta_{\tau} K} \mathrm{e}^{-\Delta_{\tau} V}+\mathcal{O}\left(\Delta_{\tau}^{2}\right) \rightarrow\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{l}\right\rangle \approx \mathrm{e}^{-\Delta_{\tau} V_{l}}\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} K}\left|\alpha_{l}\right\rangle
$$

Product over all times slices \rightarrow

$$
\left.W(\{\alpha\})=\Delta_{\tau}^{n_{K}} \exp \left(-\Delta_{\tau} \sum_{l=0}^{L-1} V_{l}\right)\right\} P_{\mathrm{acc}}=\min \left[\Delta_{\tau}^{2} \exp \left(-\frac{V_{\mathrm{new}}}{V_{\text {old }}}\right), 1\right]
$$

The continuous time limit

Limit $\Delta_{T} \rightarrow 0$: number of kinetic jumps remains finite, store events only

Special methods (loop and worm updates) developed for efficient sampling of the paths in the continuum
(a)

local updates (problem when $\Delta_{T} \rightarrow 0$?)
-consider probability of inserting/removing events within a time window
\Leftarrow Evertz, Lana, Marcu (1993), Prokofev et al (1996) Beard \& Wiese (1996)

Series expansion representation

Start from the Taylor expansion (no approximation)

$$
Z=\operatorname{Tr}\left\{\mathrm{e}^{-\beta H}\right\}=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\alpha_{0}}\left\langle\alpha_{0}\right| H^{n}\left|\alpha_{0}\right\rangle
$$

Define index sequences (string) referring to terms of H

$$
H=\sum_{i=1}^{m} H_{i} \quad S_{n}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad a_{i} \in\{1, \ldots, m\}
$$

Break up H^{n} into strings:

$$
Z=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\alpha_{0}} \sum_{S_{n}}\left\langle\alpha_{0}\right| H_{a_{n}} \cdots H_{a_{2}} H_{a_{1}}\left|\alpha_{0}\right\rangle
$$

We should have (always possible): $H_{i}\left|\alpha_{j}\right\rangle \propto\left|\alpha_{k}\right\rangle$

- no branching during propagation with operator string
- some strings not allowed (illegal operations)

For hard-core bosons the (allowed) path weight is: $W\left(S_{n}, \alpha_{0}\right)=\frac{\beta^{n}}{n!}$

We can make this look more similar to a path integral by introducing partially propagated states: $\left|\alpha_{p}\right\rangle=H_{a_{p}} \cdots H_{a_{2}} H_{a_{1}}\left|\alpha_{0}\right\rangle$

$$
\begin{aligned}
& \quad Z=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\alpha_{0}} \sum_{S_{n}}\left\langle\alpha_{0}\right| H_{a_{n}}\left|\alpha_{n-1}\right\rangle\left\langle\alpha_{n-2}\right| \cdots\left|\alpha_{2}\right\rangle\left\langle\alpha_{1}\right| H_{a_{1}}\left|\alpha_{0}\right\rangle \\
& \text { Same-looking paths, different-looking weights } \quad\left|\alpha_{n}\right\rangle=\left|\alpha_{0}\right\rangle
\end{aligned}
$$

- but become equivalent with time continuum in path integral

Energy: $\langle H\rangle=\frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\alpha_{0}}\left\langle\alpha_{0}\right| H^{n} H\left|\alpha_{0}\right\rangle$
Relabel terms of n -sum: replace $\mathrm{n}+1$ by n

$$
\langle H\rangle=-\frac{1}{Z} \sum_{n=1}^{\infty} \frac{(-\beta)^{n}}{n!} \frac{n}{\beta} \sum_{\alpha_{0}}\left\langle\alpha_{0}\right| H^{n}\left|\alpha_{0}\right\rangle
$$

Therefore the energy is: $E=-\langle n\rangle / \beta$
Can also derive specific heat: $C=\left\langle n^{2}\right\rangle-\langle n\rangle^{2}-\langle n\rangle$
Follows: $\langle n\rangle \propto \beta N, \quad \sigma_{n} \propto \sqrt{\beta N}$

Fixed string-length scheme

- n fluctuating \rightarrow varying size of the sampled configurations
- the expansion can be truncated at some $\mathrm{n}_{\max }=\mathrm{L}$ (exponentially small error if large enough)
- cutt-off at $n=L$, fill in operator string with unit operators $\mathrm{H}_{0}=\mathrm{I}$

$$
\begin{aligned}
& \mathrm{n}=10 \quad \mathrm{H}_{4}\left|\mathrm{H}_{7}\right| \mathrm{H}_{1}\left|\mathrm{H}_{6}\right| \mathrm{H}_{2}\left|\mathrm{H}_{1}\right| \mathrm{H}_{8}\left|\mathrm{H}_{3}\right| \mathrm{H}_{3} \mid \mathrm{H}_{5} \Longrightarrow \\
& \begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\mathrm{M}=14 & \mathrm{H}_{4} & \mathrm{I} & \mathrm{H}_{7} & \mathrm{I} & \mathrm{H}_{1} & \mathrm{H}_{6} & \mathrm{I} & \mathrm{H}_{2} & \mathrm{H}_{1} & \mathrm{H}_{8} & \mathrm{H}_{3} & \mathrm{H}_{3} & \mathrm{I} & \mathrm{H}_{5} \\
\hline
\end{array}
\end{aligned}
$$

$$
Z=\sum_{\alpha_{0}} \sum_{S_{L}} \frac{(-\beta)^{n}(L-n)!}{L!}\left\langle\alpha_{0}\right| H_{a_{m}} \cdots H_{a_{2}} H_{a_{1}}\left|\alpha_{0}\right\rangle
$$

Here n is the number of $\mathrm{H}_{\mathrm{i}}, \mathrm{i}>0$ instances in the sequence of L ops

- the summation over n is now implicit

L can be chosen automatically by the simulation

Stochastic Series expansion (SSE): $\mathrm{S}=1 / 2$ Heisenberg model

Write H as a bond sum for arbitrary lattice

$$
H=J \sum_{b=1}^{N_{b}} \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)},
$$

Diagonal (1) and off-diagonal (2) bond operators

$$
\begin{aligned}
& H_{1, b}=\frac{1}{4}-S_{i(b)}^{z} S_{j(b)}^{z}, \\
& H_{2, b}=\frac{1}{2}\left(S_{i(b)}^{+} S_{j(b)}^{-}+S_{i(b)}^{-} S_{j(b)}^{+}\right) . \\
& H=-J \sum_{b=1}^{N_{b}}\left(H_{1, b}-H_{2, b}\right)+\frac{J N_{b}}{4}
\end{aligned}
$$

2D square lattice bond and site labels

Four non-zero matrix elements

$$
\begin{aligned}
\left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{1, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{2, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} \\
\left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{1, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{2, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2}
\end{aligned}
$$

Partition function

$$
Z=\sum_{\alpha} \sum_{n=0}^{\infty}(-1)^{n_{2}} \frac{\beta^{n}}{n!} \sum_{S_{n}}\langle\alpha| \prod_{p=0}^{n-1} H_{a(p), b(p)}|\alpha\rangle \quad \begin{aligned}
& \begin{array}{l}
\mathrm{n}_{2}=\text { number of } a(\mathbf{i})=2 \\
\text { (offfodiagonal operators) } \\
\text { in the sequence }
\end{array}
\end{aligned}
$$

Index sequence: $S_{n}=[a(0), b(0)],[a(1), b(1)], \ldots,[a(n-1), b(n-1)]$

For fixed-length scheme

$$
Z=\sum_{\alpha} \sum_{S_{L}}(-1)^{n_{2}} \frac{\beta^{n}(L-n)!}{L!}\langle\alpha| \prod_{p=0}^{L-1} H_{a(p), b(p)}|\alpha\rangle \quad W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

Propagated states: $|\alpha(p)\rangle \propto \prod_{i=0}^{p-1} H_{a(i), b(i)}|\alpha\rangle$

$$
\begin{array}{rlrrrrrrrr}
i & = & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\sigma(i) & =-1 & +1 & -1 & -1 & +1 & -1 & +1 & +1
\end{array}
$$

0	0	0	0	0	0	0	0	p	$a(p)$	$b(p)$	$s(p)$
0	0	0	0	0	0	0	0	11	1	2	4
0	0	0	0	0	0	0	0	10	0	0	0
0	0	0	0	0	0	0	0	9	2	4	9
0	0	0	0	0	0	0	0	8	2	6	13
0	0	0	0	0	0	0	0	7	1	3	6
0	0	0	0	0	0	0	0	6	0	0	0
0	0	0	0	0	0	0	0	5	0	0	0
0	0	0	0	0	0	0	0	4	1	2	4
0	0	0	0	0	0	0	0	3	2	6	13
0	0	0	0	0	0	0	0	2	0	0	0
0	0	0	0	0	0	0	0	1	2	4	9
0	0	0	0	0	0	0	0	0	1	7	14

W>0 (n_{2} even) for bipartite lattice Frustration leads to sign problem

Linked vertex storage

The "legs" of a vertex represents the spin states before (below) and after (above) an operator has acted

44	18
40	-
36	31
32	14
28	19
24	-
20	-
16	46
12	34
8	-
4	38
0	35
$=0$	

45	30
41	-
37	7
33	15
29	6
25	-
21	-
17	47
13	2
9	-
5	39
1	3

46	16	47	17
42	-	43	-
38	4	39	5
34	12	35	0
30	45	31	36
26	-	27	-
22	-	23	-
18	44	19	28
14	32	15	33
10	-	11	-
6	29	7	37
2	13	3	1
$l=$			

$X()=$ vertex list

- operator at $\mathrm{p} \rightarrow \mathrm{X}(\mathrm{v})$ $v=4 p+l, l=0,1,2,3$
- links to next and previous leg

Spin states between operations are redundant; represented by links

- network of linked vertices will be used for loop updates of vertices/operators

Monte Carlo sampling scheme

Change the configuration; $\left(\alpha, S_{L}\right) \rightarrow\left(\alpha^{\prime}, S_{L}^{\prime}\right)$

$$
W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

$$
P_{\text {accept }}=\min \left[\frac{W\left(\alpha^{\prime}, S_{L}\right)}{W\left(\alpha, S_{L}\right)} \frac{P_{\text {select }}\left(\alpha^{\prime}, S_{L}^{\prime} \rightarrow \alpha, S_{L}\right)}{P_{\text {select }}\left(\alpha, S_{L} \rightarrow \alpha^{\prime}, S_{L}^{\prime}\right)}, 1\right]
$$

Diagonal update: $[0,0]_{p} \leftrightarrow[1, b]_{p}$

Attempt at $p=0, \ldots, L-1$. Need to know $\mid a(p)>$

- generate by flipping spins when off-diagonal operator

$$
\begin{aligned}
& P_{\text {select }}(a=0 \rightarrow a=1)=1 / N_{b}, \quad\left(b \in\left\{1, \ldots, N_{b}\right\}\right) \\
& P_{\text {select }}(a=1 \rightarrow a=0)=1
\end{aligned}
$$

n is the current power

$$
\frac{W(a=1)}{W(a=0)}=\frac{\beta / 2}{L-n} \quad \frac{W(a=0)}{W(a=1)}=\frac{L-n+1}{\beta / 2}
$$

$$
\text { - } n \rightarrow n+1(a=0 \rightarrow a=1)
$$

$$
\text { - } \mathrm{n} \rightarrow \mathrm{n}-1 \quad(\mathrm{a}=1 \rightarrow \mathrm{a}=0)
$$

Acceptance probabilities

$$
\begin{aligned}
& P_{\text {accept }}([0,0] \rightarrow[1, b])=\min \left[\frac{\beta N_{b}}{2(L-n)}, 1\right] \\
& P_{\text {accept }}([1, b] \rightarrow[0,0])=\min \left[\frac{2(L-n+1)}{\beta N_{b}}, 1\right]
\end{aligned}
$$

Pseudocode: Sweep of diagonal updates

do $p=0$ to $L-1$
if $(s(p)=0)$ then
$b=\operatorname{random}\left[1, \ldots, N_{b}\right]$
if $\sigma(i(b))=\sigma(j(b))$ cycle
if $\left(\operatorname{random}[0-1]<P_{\text {insert }}(n)\right)$ then $s(p)=2 b ; n=n+1$ endif
elseif $(\bmod [s(p), 2]=0)$ then
if $\left(\operatorname{random}[0-1]<P_{\text {remove }}(n)\right)$ then $s(p)=0 ; n=n-1$ endif
else
$b=s(p) / 2 ; \sigma(i(b))=-\sigma(i(b)) ; \sigma(j(b))=-\sigma(j(b))$
endif
enddo

- To insert operator, bond b generated at random among 1,..., N_{b}
- can be done only if connected spins i(b),j(b) are anti-parallel
- if so, do it with probability Pinsert(n)
- Existing diagonal operator can always be removed
- do it with probability $P_{\text {remove }}(n)$
- If off-diagonal operator, advance the state
- extract bond b, flip spins at i(b),j(b)

Pseudocode: Sweep of loop updates

constructing all loops, flip probability 1/2

```
do \(v_{0}=0\) to \(4 L-1\) step 2
    if \(\left(X\left(v_{0}\right)<0\right)\) cycle
    \(v=v_{0}\)
    if (random \([0-1]<\frac{1}{2}\) ) then
        traverse the loop; for all \(v\) in loop, set \(X(v)=-1\)
    else
```

 traverse the loop; for all \(v\) in loop, set \(X(v)=-2\)
 flip the operators in the loop
 endif
 enddo
construct and flip a loop

```
\(v=v_{0}\)
do
    \(X(v)=-2\)
    \(p=v / 4 ; s(p)=\operatorname{flipbit}(s(p), 0)\)
    \(v^{\prime}=\operatorname{flipbit}(v, 0)\)
    \(v=X\left(v^{\prime}\right) ; X\left(v^{\prime}\right)=-2\)
    if \(\left(v=v_{0}\right)\) exit
enddo
```

- by flipping bit 0 of $s(p)$, the operator changes from diagonal to offdiagonal, or vise versa
- moving on the vertex to the adjacent spin is also done with a bit flip

We also have to modify the stored spin state after the loop update

- we can use the information in $\mathrm{V}_{\text {first }}$) and X0 to determine spins to be flipped
- spins with no operators, $\mathrm{V}_{\text {first }}(\mathrm{i})=-1$, flipped with probability $1 / 2$

```
do \(i=1\) to \(N\)
    \(v=V_{\text {first }}(i)\)
    if \((v=-1)\) then
        if \((\) random \([0-1]<1 / 2) \sigma(i)=-\sigma(i)\)
    else
        if \((X(v)=-2) \sigma(i)=-\sigma(i)\)
    endif
enddo
```

$v=V_{\text {first }}(\mathrm{i})$ is the location of the first vertex leg on site i

- flip the spin if $X(v)=-2$
- (do not flip it if $X(v)=-1$)
- no operation on i if $\mathrm{vfirst}(\mathrm{i})=-1$; then it is flipped with probability $1 / 2$

Constructing the linked vertex list

Traverse operator list $s(p), p=0, \ldots, L-1$

- vertex legs $v=4 p, 4 p+1,4 p+2,4 p+3$

Use arrays to keep track of the first and last (previous) vertex leg on a given spin

- $V_{\text {first }}(i)=$ location v of first leg on site i
- $V_{\text {last }}(i)=$ location v of last (currently) leg
- these are used to create the links
- initialize all elements to -1


```
\(V_{\text {first }}(:)=-1 ; V_{\text {last }}(:)=-1\)
do \(p=0\) to \(L-1\)
    if \((s(p)=0)\) cycle
    \(v_{0}=4 p ; b=s(p) / 2 ; s_{1}=i(b) ; s_{2}=j(b)\)
    \(v_{1}=V_{\text {last }}\left(s_{1}\right) ; v_{2}=V_{\text {last }}\left(s_{2}\right)\)
    if \(\left(v_{1} \neq-1\right)\) then \(X\left(v_{1}\right)=v_{0} ; X\left(v_{0}\right)=v_{1}\) else \(V_{\text {first }}\left(s_{1}\right)=v_{0}\) endif
    if \(\left(v_{2} \neq-1\right)\) then \(X\left(v_{2}\right)=v_{0} ; X\left(v_{0}\right)=v_{2}\) else \(V_{\text {first }}\left(s_{2}\right)=v_{0}+1\) endif
    \(V_{\text {last }}\left(s_{1}\right)=v_{0}+2 ; V_{\text {last }}\left(s_{2}\right)=v_{0}+3\)
```

enddo
creating the last links across the "time" boundary

```
do }i=1\mathrm{ to }
```



```
    if (f\not=-1) then l= V last (i); X(f)=l;X(l)=f endif
enddo
```

Determination of the cut-off L

- adjust during equilibration
- start with arbitrary (small) n

Keep track of number of operators n

- increase L if n is close to current L
- e.g., L=n+n/3

Example

- 16×16 system, $\beta=16 \Rightarrow$
- evolution of L
- n distribution after equilibration
- truncation is no approximation

Does it work?

Compare with exact results

- 4×4 exact diagonalization
- Bethe Ansatz; long chains

Susceptibility of the 4×4 lattice $\Rightarrow x$

- SSE results from 10^{10} sweeps
- improved estimator gives smaller error bars at high T (where the number of loops is larger)

\Leftarrow Energy for long 1D chains
- SSE results for 10^{6} sweeps
- Bethe Ansatz ground state E/N
- SSE can achieve the ground state limit ($\mathrm{T} \rightarrow 0$)

Basic SSE code (Fortran90) available on-line:

https://physics.bu.edu/~sandvik/trieste15/
Simulation of the 2D Heisenberg model with $N=L x^{*} L y$ spins

- periodic boundary conditions
- Ly=1 for a chain (only x-periodic)
- Ly=2 for a 2-leg ladder (only x-periodic)

Calculates:

- energy and specific heat per site
- uniform magnetic susceptibility
- squared sublattice magnetization

