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Lecture outline

- Basic principle of ground-state projection
- Properties of the valence-bond basis
- Projector QMC in the valence-bond basis

- Implementation for 2D S=1/2 Heisenberg antiferromagnet

- Valence-bond solids and spinons (1D system)

- Look at program if we have time




Projector QMC

Use an operator which “filters out” the ground state
U, ) ~ H™ W) U,,) — [0) when m — oo

W) ~ e PH|W) Us) — |0) when [ — o0

“Trial state” (bad name) as expansion in eigenstates of H:
M

Wo) = Z Cn|n)
n=0
assume co hot 0
- unless quantum numbers differ, hard for this not to be true

- can be a random state or in some way optimized state
M

H™Wo) = ) ca(Bn)"n)

n=0

_a\o>+b§:10n (%)m\m 5 al0)  (m — o)

provided |Eo| > |En| for all n > 0 (add constant if not true)




Common bases for quantum spin systems
Lattice of S=1/2 spins, e.g., Heisenberg antiferromagnet

H = JZS S _JZ 5757 + (S8, +575)/2]

The most common baS|s is that of ‘up’ and ‘down’ spins
*—o—0—

*—o—9o—9 o —|T) =[5 =+1/2)

—o—o—o o —||) =|5T=-1/2)

One can also use eigenstates of two or more spins
e dimer singlet-triplet basis
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The hamiltonian is more complicated in this basis




The valence bond basis for S=1/2 spins

Valence-bonds between sublattice A, B sites
(,5) = (| Taly) = | Lil5))/ V2 .

Basis states; singlet products

N/2

‘V’r> — H(irbaj’rb>7 r=1,... (N/Q)'

b=1

The valence bond basis is overcomplete and non-orthogonal
e expansion of arbitrary singlet state is not unique

‘\IJ> — Zfr|vr>

.... but in some cases, e.g., ground states of bipartite
Heisenberg systems, fr can be taken positive and is then unique
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Properties of valence bond basis for S=1/2 spins A)
All valence bond states overlap with each other B

(vilv; >:2NO‘N/2

— number of loops in overlap graph
If we put spins back:

) % r—9 —9
) —2 ) staggered spins on

) V) ViV, loops: 1 TITIT...
- 2 states per loop

overlap graph
or transition graph

Spin correlations from loop structure

(Vi|Si - 55| V) _ <( = (—1)%i =% TYiTYs (i in same loop)

<Vl ‘Vr> _ ()  (ijin different loops)

\\

More complicated matrix elements (e.g., dimer correlations)
are also related to the loop structure

K.S.D. Beach and AW.S., Nucl. Phys. B 750, 142 (2006)




Projector Monte Carlo in the valence-bond basis
Liang, 1991; Sorella et al. (1998); AWS, Phys. Rev. Lett 95, 207203 (2005)

(-H)" projects out the ground state from an arbitrary state
(—H)"|W) = (—H)" ) _ cili) — co(—Eo)"[0)
S=1/2 Heisenberg model
H=) 8-S=-> Hy, Hy=(;-5"5)
(2,7) (,7)
Project with string of bond operators

Z H Hl(p)j(p) ‘\If> — ’]"‘O> (I’ = irrelevant) ,,/’/(;rd)-h“\\\

”
.
N\

{H;j}p=1 ,/ s Xy
Action of bond operators m (c,b) m

Hopl...(a,b)..(c, d)...) = |...(a,b)...(c, d)... a b ¢ ¢
1

Sl(eb)(ayd).n) o (65) = (1 Taly) = | LT3))/ V2

Simple reconfiguration of bonds (or no change; diagonal)
® no minus signs for A—B bond ‘direction’ convetion
¢ sign problem does appear for frustrated systems

Hpc|...(a,b)...(c,d)...)




Sampling the wave function
Simplified notation for operator strings

n . |
Z HHi(p)j(p):;Pka k=1,...N, ( ( @k( (

6-site chain

{H;j;} p=1

Simplest trial wave function: a basis state |V/,.) ( (

A el

The weight W of a path is given by the number of € )
off-diagonal operations (‘bond flips’) nrip

W, — (})nﬂip e a Hbk(eD (D) = @) (e D))
v G TP H @ b). e d). ) = 5]eb).(a.d).

2

Note: all paths contribute - no ‘dead’ (VW=0) paths
Sampling: Trivial way: Replace m (m = 2-4) operators at random

new old

1 Naip —Moip
Paccept — 5

The state has to be re-propagated with the full operator string
e More efficient updating scheme exists (later....)




Calculating the energy

Using a state which has equal overlap with all VB basis states
* e.g., the Neel state |V) (N|V,) = (V/2)~N/?

(N|H|0) S (N|HPV,) [
[ —
H acts on the projected state | ( (
* ns = number of bond flips | ( (
* nd = number of diagonal operations | ‘ ( ( I (
Ey = —(na+nys/2) H )




General expectation values: (A) = (0|A|0)
Strings of singlet projectors

P = H Hi, (p)intp), k=1,...,N; (Ny = number of interaction bonds)
p=1
We have to project bra and ket states

D PlVi) = Wi [Vi(k)) — (=Eo)"co|0)
k k

> (VilPr =Y (Vi(g) W — (0]co(—Eo)"

g g

6-spin chain example:
) | 1 ( (- SoviB ARy
gk Vil Py P V2)

Zg,k ngWkr<‘/Z (g) ’Vr(k»

(
AN CINVICI( S Wl (Vi) AV ()
(

? ( Monte Carlo sampling
Vi 7 2 A € Vr) of operator strings
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Sampling an amplitude-product state

A better trial state leads to faster n convergence

* bond-amplitude product state [Liang, Doucot,Anderson, 1990]
N/2

. —
‘\IJO> — ; bljl h(ﬂfrb, y?‘b)‘vk> Yk,b
Update state by reconfiguring two bonds : ®-

If reconfiguration accepted ) l c ‘ ( (
* calculate change in projection weight - ) ) ) (

* used for final accept/reject prob. ) ) ) ( ( (
In principle we can: ) ) ‘ ‘ ( ( ( (
* used parametrized state amplitudes )

* determined parameters variationally Vil p; g A S Py V)
* improved state by projection Z Z




Variational wave function (2D Heisenberg)

All amplitudes h(x,y) can be optimized
[J. Lou and A.W.S., PRB 2007, AWS and H.-G. Evertz, PRB 2010]

® variational energy error 50% smaller than previously best (<0.1%)

® spin correlations deviate by less than 1% from exact values

e amplitudes decay as ~1/r3
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More efficient ground state QMC algorithm — larger lattices

Loop updates In the valence-bond basis
AWS and H. G. Evertz, PRB 2010

Put the spins back in a way compatible with the valence bonds
(@i bi) = (Tal; — LaT;)/V2

and sample in a combined space of spins and bonds

) T
) (tlee (-

DI

R

(V] —— < *
H H

Loop updates similar to those Iin finite-T methods
(world-line and stochastic series expansion methods)
e good valence-bond trial wave functions can be used
e larger systems accessible

e sample spins, but measure using valence bonds (as before)
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 1V3)

(graphs by Ying Tang)

(VslVa)

power m should be large enough to
obtain ground state
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Ll o[04

BTN | Y/
I | o | 2

use bit operation to “flip”’ operators

15



Convergence 32 x 32 Heisenberg
Trial state expanded in H-eigenstates o1+ %, -

¢O> B ch\’@ 0.12—
Projected state after m-th power = -
Ym) = H™ o) = ) cn B} |n)

n 0.08

Expectation value

cr B\ 0.667 —ap 2 i
(A}, = (0| A|0) + 2(1]A|0) = ( 1> +... | Hl;:g
Co E() oo p=4

-0.668 - e—e optimized (1)

e—e optimized (2)

E/N

(A, = (0| A]0) + ¢ x exp (_m A )

N |eo| 0.669§

‘__.

— 83— 9— 0 & P — 55—

eo = Fo/M, A= FE; — Ey

Conclusion: m/N

e Mm/N >> eo/AA

e in valence-bond basis A is the singlet-singlet gap

e trial state also can have fixed momentum k=0 (e.g., ampl. product state)
- only k=0 excited states (gap)

‘0670 ! l L L 1 | ! |
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Frustrated systems

Consider the full valence-bond basis, including
 normal bonds, connecting A,B spins (sublattices)

e frustrated bonds, connecting A,A or B,B
For a non-frustrated system
e projection eliminates frustarted bonds

(rustrated bonds Nnorm ll bonds

For a frustrated system
e frustrated bonds remain and cause a sign problem
o frustrated bonds can be eliminated using over-completeness

a b e d o a b ¢ d a b C d

In a simulation, one of the branches can be randomly chosen
 but there Is a sign problem
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VBS states from multi-spin interactions
Sandvik, Phys. Rev. Lett. 98, 227202 (2007)

The Heisenberg interaction is equivalent to a singlet-projector
1 — —

C;j=31-38,-85,

4
t
e we can construct models with products of singlet projectors

¢ no frustration in the conventional sense (QMC can be used)
e correlated singlet projection reduces antiferromagnetic order/correlations

J O

P i ok includin.g all
translations

J 03 - H is translationally

— ' ' invariant

i J i J kI mn

H = —JZCI;;' — Q2 Z CijCri
(17) (ijkl)
The J-Q chains have the same critical-VBS transition

as the Ji.J2 Heisenberg chain!
- Heisenberg SSE and projector codes can be easily adapted to Q-terms
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S=1/2 Heisenberg chain with frustrated interactions (J1-J2 chain)

Different types of ground states, depending on the ratio g=J2/J1 (both >0)

* Antiferromagnetic “quasi order” (critical state) for g<0.2411...
- exact solution - Bethe Ansatz - for J2=0
- bosonization (continuum field theory) approach gives further insights
- spin-spin correlations decay as 1/r

- In2(r /7o)

C(r) = {Si - Sitr) ~ (=1)

T
- gapless spin excitations (“spinons”, not spin waves!)

* VBS order for g>0.2411... the ground state is doubly-degenerate state
- gap to spin excitations; exponentially decaying spin correlations

O(r) = (S; - Sir) ~ (~1)e /8
- singlet-product state is exact for g=1/2 (Majumdar-Gosh point)

—alllle—elllle—elllle—ellle—ellle—e critical VBS
—0 —->

R A e - 0 0.241... J
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- - Y. Tang and AWS, PRL (2011)
VBS state in J-Q chains g 001 A Baneriee, and K. Damle, PRB (2011)

J 0> —® ©e—e o—90 o—90 o —0 o
PN - S p— —
Lo Lok critical VBS
—o >
J 0; 0 (Q/J)e Q/J
I S Sp—p——
i j i J kI mn

“dimer” operator: B; = 5;- : §¢+1
In a symmetry-broken VBS: (B;) = a + 6(—1)"

In a finite system in which the symmetry is not broken: <Bi>=0
 detect VBS with dimer correlation function

D) = - S (BiBiso)

This is a 4-spin correlation function
e can be evaluated using the transition graphs (1- and 2-loop contributions)
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http://arxiv.org/find/cond-mat/1/au:+Sanyal_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sanyal_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Banerjee_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Banerjee_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Damle_K/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Damle_K/0/1/0/all/0/1

Animation of the projected states Animations by Ying Tang
- transition graph

\
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J/Q = 0.5




J/Q = (J/Q)c = 6




Extended valence-bond basis for S>0 states

Consider S#%=S

- for even N spins: N/2-S bonds, 2S unpaired “up” spins
- for odd: (N-2S5)/2 bonds, 2S upnpaired spins

- transition graph has 2S open strings

S-0 QD e

5=12 QI S Vpiivalr
J
1 k
s=1 < 8 N <VB(,D[Velik)>
1

Overlaps and matrix elements involve loops and strings
- very simple generalizations of the S=0 case
- loops have 2 states, strings have 1 state
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Spinons in 1D: a single spinon in odd-N J-Q3 model
- one spin (spinon) doesn’t belong to any bond
- bra and ket spinons at different locations; non-orthogonality

The distance NAAAAA
between the @@ 4444
bra and ket §§
spins can be A
used to define ~
. <
the size of a <<
spinon =
- the spinon =
IS not just the -
P
vz
“

N
unpaired spin §‘
Ak

A
7 N
) \
Vi g

Y. Tang and AWS, Phys. Rev. Lett. 107, 157201 (2011)
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Two spinons in 1D VBS are deconfined (no confining potential)
- 2 separated (deconfined) sets of bra/ket spinons
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Basic projector code (Fortran90) available on-line:

https://physics.bu.edu/~sandvik/trieste15/

Simulation of the 2D Heisenberg model with N=Lx*Ly spins
- periodic boundary conditions

- Ly=1 for a chain (only x-periodic)

- Ly=2 for a 2-leg ladder (only x-periodic)

Calculates:
- spin correlation function along x direction
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https://physics.bu.edu/~sandvik/trieste15/
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