ICTP School in Computational Condensed Matter Physics:
From Atomistic Simulations to Universal Model Hamiltonians September 2015

Lecture 2
 Ground-state projection of quantum spins in the valence bond basis

Anders W Sandvik, Boston University

Suggested reading: A. W. Sandvik, H. G. Evertz, Phys. Rev. B 82, 024407 (2010)

Lecture outline

- Basic principle of ground-state projection
- Properties of the valence-bond basis
- Projector QMC in the valence-bond basis
- Implementation for 2D $S=1 / 2$ Heisenberg antiferromagnet
- Valence-bond solids and spinons (1D system)
- Look at program if we have time

Projector QMC

Use an operator which "filters out" the ground state

$$
\begin{array}{ll}
\left|\Psi_{m}\right\rangle \sim H^{m}\left|\Psi_{0}\right\rangle & \left|\Psi_{m}\right\rangle \rightarrow|0\rangle \text { when } m \rightarrow \infty \\
\left|\Psi_{\beta}\right\rangle \sim \mathrm{e}^{-\beta H}\left|\Psi_{0}\right\rangle & \left|\Psi_{\beta}\right\rangle \rightarrow|0\rangle \text { when } \beta \rightarrow \infty
\end{array}
$$

"Trial state" (bad name) as expansion in eigenstates of H :

$$
\left|\Psi_{0}\right\rangle=\sum_{n=0}^{M} c_{n}|n\rangle
$$

assume c_{0} not 0

- unless quantum numbers differ, hard for this not to be true
- can be a random state or in some way optimized state

$$
\begin{aligned}
H^{m}\left|\Psi_{0}\right\rangle & =\sum_{n=0}^{M} c_{n}\left(E_{n}\right)^{m}|n\rangle \\
& =a|0\rangle+b \sum_{n=1}^{M} c_{n}\left(\frac{E_{n}}{E_{0}}\right)^{m}|n\rangle \quad \rightarrow a|0\rangle \quad(m \rightarrow \infty)
\end{aligned}
$$

provided $\left|E_{0}\right|>\left|E_{n}\right|$ for all $n>0$ (add constant if not true)

Common bases for quantum spin systems

 Lattice of $S=1 / 2$ spins, e.g., Heisenberg antiferromagnet$$
H=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=J \sum_{\langle i, j\rangle}\left[S_{i}^{z} S_{j}^{z}+\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right) / 2\right]
$$

The most common basis is that of 'up' and 'down' spins

- $=|\uparrow\rangle=\left|S^{2}=+1 / 2\right\rangle$
- $=|\downarrow\rangle=\left|S^{z}=-1 / 2\right\rangle$

One can also use eigenstates of two or more spins

- dimer singlet-triplet basis

$$
\begin{aligned}
\bullet & =(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{2} \\
\bullet \bullet & =|\uparrow \uparrow\rangle \\
\bullet & =(|\uparrow \downarrow\rangle+|\downarrow\rangle) / \sqrt{2} \\
\bullet \bullet & =|\downarrow \downarrow\rangle
\end{aligned}
$$

The hamiltonian is more complicated in this basis

The valence bond basis for $S=1 / 2$ spins

Valence-bonds between sublattice A, B sites

$$
(i, j)=\left(\left|\uparrow_{i} \downarrow_{j}\right\rangle-\left|\downarrow_{i} \uparrow_{j}\right\rangle\right) / \sqrt{2}
$$

Basis states; singlet products

$$
\left|V_{r}\right\rangle=\prod_{b=1}^{N / 2}\left(i_{r b}, j_{r b}\right), \quad r=1, \ldots(N / 2)!
$$

The valence bond basis is overcomplete and non-orthogonal - expansion of arbitrary singlet state is not unique

$$
|\Psi\rangle=\sum_{r} f_{r}\left|V_{r}\right\rangle
$$

.... but in some cases, e.g., ground states of bipartite Heisenberg systems, f_{r} can be taken positive and is then unique

Properties of valence bond basis for $S=1 / 2$ spins

 All valence bond states overlap with each other$$
\begin{aligned}
\left\langle V_{l} \mid V_{r}\right\rangle & =2^{N_{\circ}-N / 2} \\
N_{\circ} & =\text { number of loops in overlap graph }
\end{aligned}
$$

$\left|V_{l}\right\rangle$

$\left|V_{r}\right\rangle$

$\left\langle V_{l} \mid V_{r}\right\rangle$
overlap graph or transition graph

If we put spins back: staggered spins on loops: $\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \ldots$

- 2 states per loop

Spin correlations from loop structure

$$
\frac{\left\langle V_{l}\right| \vec{S}_{i} \cdot \vec{S}_{j}\left|V_{r}\right\rangle}{\left\langle V_{l} \mid V_{r}\right\rangle}=\left\{\begin{array}{c}
\frac{3}{4}(-1)^{x_{i}-x_{j}+y_{i}-y_{j}} \quad \text { (i,j in same loop) } \\
0 \quad \text { (i,j in different loops) }
\end{array}\right.
$$

More complicated matrix elements (e.g., dimer correlations) are also related to the loop structure
K.S.D. Beach and A.W.S., Nucl. Phys. B 750, 142 (2006)

Projector Monte Carlo in the valence-bond basis

Liang, 1991; Sorella et al. (1998); AWS, Phys. Rev. Lett 95, 207203 (2005)

$(-H)^{\mathrm{n}}$ projects out the ground state from an arbitrary state

$$
(-H)^{n}|\Psi\rangle=(-H)^{n} \sum_{i} c_{i}|i\rangle \rightarrow c_{0}\left(-E_{0}\right)^{n}|0\rangle
$$

S=1/2 Heisenberg model

$$
H=\sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=-\sum_{\langle i, j\rangle} H_{i j}, \quad H_{i j}=\left(\frac{1}{4}-\vec{S}_{i} \cdot \vec{S}_{j}\right)
$$

Project with string of bond operators

$$
\sum \prod_{0=1}^{n} H_{i(p) j(p)}|\Psi\rangle \rightarrow r|0\rangle \quad(\mathrm{r}=\mathrm{irrelevant})
$$

Action of bond operators

$$
\begin{aligned}
H_{a b}|\ldots(a, b) \ldots(c, d) \ldots\rangle & =|\ldots(a, b) \ldots(c, d) \ldots\rangle \\
H_{b c}|\ldots(a, b) \ldots(c, d) \ldots\rangle & =\frac{1}{2}|\ldots(c, b) \ldots(a, d) \ldots\rangle
\end{aligned}
$$

$(i, j)=\left(\left|\uparrow_{i} \downarrow_{j}\right\rangle-\left|\downarrow_{i} \uparrow_{j}\right\rangle\right) / \sqrt{2}$

Simple reconfiguration of bonds (or no change; diagonal)

- no minus signs for $A \rightarrow B$ bond 'direction' convetion
- sign problem does appear for frustrated systems

Sampling the wave function

Simplified notation for operator strings

$$
\sum_{\left\{H_{i j}\right\}} \prod_{p=1}^{n} H_{i(p) j(p)}=\sum_{k} P_{k}, \quad k=1, \ldots N_{b}^{n}
$$

Simplest trial wave function: a basis state $\left|V_{r}\right\rangle$

$$
P_{k}\left|V_{r}\right\rangle=W_{k r}\left|V_{r}(k)\right\rangle
$$

The weight $W_{k r}$ of a path is given by the number of off-diagonal operations ('bond flips') $n_{\text {flip }}$

$$
W_{k r}=\left(\frac{1}{2}\right)^{n_{\text {flip }}} n=n_{\text {dia }}+n_{\text {flip }} \quad \begin{aligned}
& H_{a b}|\ldots(a, b) \ldots(c, d) \ldots\rangle=|\ldots(a, b) \ldots(c, d) \ldots\rangle \\
& H_{b c}|\ldots(a, b) \ldots(c, d) \ldots\rangle=\frac{1}{2}|\ldots(c, b) \ldots(a, d) \ldots\rangle
\end{aligned}
$$

Note: all paths contribute - no 'dead' ($\mathrm{W}=0$) paths
Sampling: Trivial way: Replace $m(m \approx 2-4)$ operators at random

$$
P_{\text {accept }}=\left(\frac{1}{2}\right)^{n_{\text {flip }}^{\text {new }}-n_{\text {flip }}^{\text {old }}}
$$

The state has to be re-propagated with the full operator string

- More efficient updating scheme exists (later....)

Calculating the energy

Using a state which has equal overlap with allVB basis states

- e.g., the Neel state $|N\rangle \quad\left\langle N \mid V_{r}\right\rangle=(\sqrt{2})^{-N / 2}$

$$
E_{0}=\frac{\langle N| H|0\rangle}{\langle N \mid 0\rangle}=\frac{\sum_{k}\langle N| H P_{k}\left|V_{r}\right\rangle}{\sum_{k}\langle N| P_{k}\left|V_{r}\right\rangle}
$$

H acts on the projected state

- $n_{f}=$ number of bond flips
- $n_{d}=$ number of diagonal operations

$$
E_{0}=-\left\langle n_{d}+n_{f} / 2\right\rangle
$$

General expectation values: $\langle A\rangle=\langle 0| A|0\rangle$
Strings of singlet projectors

$$
P_{k}=\prod_{p=1}^{n} H_{i_{k}(p) j_{k}(p)}, \quad k=1, \ldots, N_{b}^{n} \quad\left(N_{b}=\text { number of interaction bonds }\right)
$$

We have to project bra and ket states

$$
\begin{aligned}
\sum_{k} P_{k}\left|V_{r}\right\rangle & =\sum_{k} W_{k r}\left|V_{r}(k)\right\rangle \rightarrow\left(-E_{0}\right)^{n} c_{0}|0\rangle \\
\sum_{g}\left\langle V_{l}\right| P_{g}^{*} & =\sum_{g}\left\langle V_{l}(g)\right| W_{g l} \rightarrow\langle 0| c_{0}\left(-E_{0}\right)^{n}
\end{aligned}
$$

6-spin chain example:

Sampling an amplitude-product state

A better trial state leads to faster n convergence

- bond-amplitude product state [Liang, Doucot,Anderson, 1990]

$$
\left|\Psi_{0}\right\rangle=\sum_{k} \prod_{b=1}^{N / 2} h\left(x_{r b}, y_{r b}\right)\left|V_{k}\right\rangle
$$

Update state by reconfiguring two bonds

If reconfiguration accepted

- calculate change in projection weight
- used for final accept/reject prob.

In principle we can:

- used parametrized state amplitudes
- determined parameters variationally
- improved state by projection

$P_{\text {accept }}=\frac{h\left(x_{c}, y_{c}\right) h\left(x_{d}, y_{d}\right)}{h\left(x_{a}, y_{a}\right) h\left(x_{b}, y_{b}\right)}$

Variational wave function (2D Heisenberg)

All amplitudes $\mathrm{h}(\mathrm{x}, \mathrm{y})$ can be optimized

[J. Lou and A.W.S., PRB 2007, AWS and H.-G. Evertz, PRB 2010]

- variational energy error 50\% smaller than previously best (<0.1\%)
- spin correlations deviate by less than 1% from exact values
- amplitudes decay as $\sim 1 / r^{3}$

More efficient ground state QMC algorithm \rightarrow larger lattices

Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010
Put the spins back in a way compatible with the valence bonds

$$
\left(a_{i}, b_{i}\right)=\left(\uparrow_{i} \downarrow_{j}-\downarrow_{i} \uparrow_{j}\right) / \sqrt{2}
$$

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)

- good valence-bond trial wave functions can be used
- larger systems accessible
- sample spins, but measure using valence bonds (as before)

Convergence

Trial state expanded in H -eigenstates

$$
\left|\psi_{0}\right\rangle=\sum_{n} c_{n}|n\rangle
$$

Projected state after m-th power

$$
\left|\psi_{m}\right\rangle=H^{m}\left|\psi_{0}\right\rangle=\sum_{n} c_{n} E_{n}^{m}|n\rangle
$$

Expectation value

$$
\begin{aligned}
& \langle A\rangle_{m}=\langle 0| A|0\rangle+2\langle 1| A|0\rangle \frac{c_{1}}{c_{0}}\left(\frac{E_{1}}{E_{0}}\right)^{m}+ \\
& \langle A\rangle_{m}=\langle 0| A|0\rangle+c \times \exp \left(-\frac{m}{N} \frac{\Delta}{\left|e_{0}\right|}\right) \\
& e_{0}=E_{0} / M, \quad \Delta=E_{1}-E_{0}
\end{aligned}
$$

Conclusion:

- $\mathrm{m} / \mathrm{N} \gg \mathrm{e}_{0} / \Delta$
- in valence-bond basis Δ is the singlet-singlet gap
- trial state also can have fixed momentum k=0 (e.g., ampl. product state) - only k=0 excited states (gap)

Frustrated systems

Consider the full valence-bond basis, including

- normal bonds, connecting A, B spins (sublattices)
- frustrated bonds, connecting A,A or B,B

For a non-frustrated system

- projection eliminates frustarted bonds

For a frustrated system

- frustrated bonds remain and cause a sign problem
- frustrated bonds can be eliminated using over-completeness

In a simulation, one of the branches can be randomly chosen

- but there is a sign problem

VBS states from multi-spin interactions

Sandvik, Phys. Rev. Lett. 98, 227202 (2007)

The Heisenberg interaction is equivalent to a singlet-projector

$$
\begin{aligned}
& C_{i j}=\frac{1}{4}-\vec{S}_{i} \cdot \vec{S}_{j} \\
& C_{i j}\left|\phi_{i j}^{s}\right\rangle=\left|\phi_{i j}^{s}\right\rangle, \quad C_{i j}\left|\phi_{i j}^{t m}\right\rangle=0 \quad(m=-1,0,1)
\end{aligned}
$$

- we can construct models with products of singlet projectors
- no frustration in the conventional sense (QMC can be used)
- correlated singlet projection reduces antiferromagnetic order/correlations

including all translations
- H is translationally invariant

The J-Q chains have the same critical-VBS transition as the $J_{1} J_{2}$ Heisenberg chain!

- Heisenberg SSE and projector codes can be easily adapted to Q-terms

$$
\begin{aligned}
& -=J_{1} \\
& \square=J_{2}
\end{aligned}
$$

Different types of ground states, depending on the ratio $\mathrm{g}=\mathrm{J}_{2} / \mathrm{J}_{1}$ (both >0)

- Antiferromagnetic "quasi order" (critical state) for $\mathbf{g < 0 . 2 4 1 1 . . . ~}$
- exact solution - Bethe Ansatz - for $\mathrm{J}_{2}=0$
- bosonization (continuum field theory) approach gives further insights
- spin-spin correlations decay as $1 / r$

$$
C(r)=\left\langle\vec{S}_{i} \cdot \vec{S}_{i+r}\right\rangle \sim(-1)^{r} \frac{\ln ^{1 / 2}\left(r / r_{0}\right)}{r}
$$

- gapless spin excitations ("spinons", not spin waves!)
- VBS order for $\mathbf{g}>\mathbf{0 . 2 4 1 1}$... the ground state is doubly-degenerate state
- gap to spin excitations; exponentially decaying spin correlations

$$
C(r)=\left\langle\vec{S}_{i} \cdot \vec{S}_{i+r}\right\rangle \sim(-1)^{r} \mathrm{e}^{-r / \xi}
$$

- singlet-product state is exact for $\mathrm{g}=1 / 2$ (Majumdar-Gosh point)

VBS state in J-Q chains

Y. Tang and AWS, PRL (2011)
S. Sanyal, A. Banerjee, and K. Damle, PRB (2011)

"dimer" operator: $B_{i}=\vec{S}_{i} \cdot \vec{S}_{i+1}$
In a symmetry-broken VBS: $\left\langle B_{i}\right\rangle=a+\delta(-1)^{i}$
In a finite system in which the symmetry is not broken: $\left\langle\mathrm{B}_{\mathrm{i}}\right\rangle=0$

- detect VBS with dimer correlation function

$$
D(r)=\frac{1}{N} \sum_{i=1}^{N}\left\langle B_{i} B_{i+r}\right\rangle
$$

This is a 4-spin correlation function

- can be evaluated using the transition graphs (1- and 2-loop contributions)

Animation of the projected states
Animations by Ying Tang

- transition graph

$$
J=0
$$

$$
\begin{aligned}
& J / Q=0.5
\end{aligned}
$$

$$
J / Q=(J / Q)_{c} \approx 6
$$

Extended valence-bond basis for $\mathrm{S}>0$ states

Consider $\mathrm{S}^{\mathrm{z}}=\mathrm{S}$

- for even N spins: N/2-S bonds, 2S unpaired "up" spins
- for odd: ($\mathrm{N}-2 \mathrm{~S}$)/2 bonds, 2 S upnpaired spins
- transition graph has 2 S open strings

$$
S=0
$$

Overlaps and matrix elements involve loops and strings

- very simple generalizations of the $S=0$ case
- loops have 2 states, strings have 1 state

Spinons in 1D: a single spinon in odd-N J-Q ${ }_{3}$ model

- one spin (spinon) doesn't belong to any bond
- bra and ket spinons at different locations; non-orthogonality

The distance between the bra and ket spins can be used to define the size of a spinon

- the spinon is not just the unpaired spin

Y. Tang and AWS, Phys. Rev. Lett. 107, 157201 (2011)

Two spinons in 1D VBS are deconfined (no confining potential)

- 2 separated (deconfined) sets of bra/ket spinons

Basic projector code (Fortran90) available on-line:

https://physics.bu.edu/~sandvik/trieste15/
Simulation of the 2D Heisenberg model with $N=L x^{*}$ Ly spins

- periodic boundary conditions
- Ly=1 for a chain (only x-periodic)
- Ly=2 for a 2-leg ladder (only x-periodic)

Calculates:

- spin correlation function along x direction

