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39/23/2015 Ab initio calculations for solids

Schrödinger’s Inheritance

„Ab initio“↔  parameter free ↔

Many electron 
Schrödinger equation is an 
exponentially complex problem

linear partial differential equation with non polynomial (NP) 
complexity (NP hard)
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Schrödinger’s Curse: ψ(r1, r2, r3,…)
One electron: 3D-grid 10x10x10 16 Kbyte
Three electrons: 9D-grid 109                 16 Gbye
Five electrons:   15D-grid 1030 16.000 Terrabyte

W. Kohn

five electrons
five 3D sets

 1923 Vienna
 1940 Canada (Kindert.)
 1950 Carnegien Mellon
 1984 Santa Barabara
 1998 Nobel Preis
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One electron

Efficient many body techniques for condensed matter
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Solve a one-particle Schrödinger equation

N orbitals corresponding to N electrons need to be calculated

Non-linear partial differential equation 
complexity N3

Kohn Sham Density functional and 
Hartree-Fock one electron theory

nnnnnn
e

V
m

 







 Hrrr )()()(

2

2

  },...,1,{ Nnn r



69/23/2015 Ab initio calculations for solids

So what does DFT do

Kohn-Sham DFT
uses a one electron equation

Exchange correlation energy
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79/23/2015 Ab initio calculations for solids

The problem (no free lunch): Correlation

Electrons are correlated, when one electron is to the left the 
other one will try to avoid this region and move over to the 
right and vice versa

This is intrinsically non-local and although in principle do-
able in DFT, it is very difficult to obtain this information 
from the density alone
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The problem of DFT: Correlation

Electrons are correlated, when one electron is to the left the other one 
will try to avoid this region and move over to the right, and vice versa

This is intrinsically non-local and although DFT should be able to handle 
this situation, it is very difficult to obtain this information from the 
density alone

nucleus
- electron

+   hole

P

P

Ψ(ܚ૚ െ ,૛ܚ ,૜ܚ …)

Cusp for non-equal spin

Exchange for equal spin
૚ܚ െ ૛ܚ

- electron

nucleus 1

nucleus 2

+   hole

Van der Waals  



Many body Schrödinger equation

Schrödinger equation (SE) for molecules or solids

Hamiltonian operator on many-body wave function

Hartree-Fock:  single determinant product Ansatz

Insert into SE and average V෡ee over all j → Hartree-Fock
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N electron coupled equations in one variable:

V෡eff depends on orbitals: solve self-consistently
HF is variational: true groundstate energy is lower
the difference is defined as correlation energy
in DFT: V෡eff is a local potential and a functional of density only 
(and not orbitals)

Hartree-Fock approximation
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Many-body perturbation theory

True many-body wave function can be expanded
in terms of reference (HF/DFT) orbitals
Single reference (discussed here)
 Using one set of orbitals (Slater determinant, SD)

 This captures mostly “dynamic” correlation or fluctuations 
(quantum chemistry jargon)

Multi reference:

 e.g. at transition states convergence starting from one SD is slow

 expand in multiple SDs

 This captures also static correlation
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Converges slowly
with number of
excitations

Not size extensive,
if truncated

Scales combinatorial

32 orbitals/ 8 elect.
32
8 ൎ 10ଶ଺	

coefficients

Quantum Chemistry methods: CI expansion

129/23/2015 QC methods for condensed matter: status and future

Single
excitation

Double
excitation

Ground state orbitals:
HF determinant
or KS determinant
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Second quantization

Creation operator: adds states on right column of SD:

Acting twice with the creation operator yields always 0
ܿ̂௝
ାܿ̂௝

ାψ଴
Takes care that we do not generate two particles in one orbital 
(Fermions, so occupancies are 1 or 0)

Interchanging the order, changes the sign
this is a property of Slater determinants as you might recall (anti-

symmetry), hence the operators observe:
ܿ̂௜
ାܿ̂௝

ା= െܿ̂௝
ାܿ̂௜

ା

139/23/2015
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Second quantization: annihilation operator (1)

Annihilation operator: removes rightmost state in SD

If required columns need to be brought to left most side and sign 
changed accordingly
Remember, swapping two columns in the Slater determinant changes 
it’s sign
We just discussed this

So again, interchanging the order, changes the sign
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Second quantization (2)

Rules to concatenate operators (algebra) follow from 
definition of Slater determinant and previous slides

where
In chemistry and solid state physics, one replaces the  vacuum 
ground state by the Hartree-Fock N particle ground state:

Vacuum state (zero electrons): 
159/23/2015

Intro 2nd PT Diag.



Instead of vacuum state we define the groundstate to be the one 
occupied by N electron

Index convention:

It is often convenient to introduce
Particle/hole quasiparticle creation/annihilation operators

Be careful, do not mix creation/annihilation  ܿ̂௔, ܿ̂௜	and 
quasiparticle creation/annihilation operators ොܽ, ଓ̂

The Particle/hole picture
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Second quantization: Summary

179/23/2015

Single
excitation

Double
excitation

Ground state orbitals:
HF determinant
or KS determinant
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ܿ̂௔
ାܿ̂௜Φ଴

ොܽା ଓ̂ାΦ଴ ෠ܾାଔ̂ା ොܽାଓ̂ାΦ଴

Fermions:
ଓା̂ଓ̂ାΦ଴ ൌ 0
ොܽା ොܽାΦ଴ ൌ 0

Anticomm. relat.

ොܽ, ෠ܾ 					ൌ 0
ොܽା, ෠ܾା ൌ 0
ොܽା, 	෡ܾ 	ൌ δ௔௕

All intricacies of 
Fermions are
taken care off



Some examples of useful operators

Occupation number operator for state	݌
෡ܰ௣ ൌ ܿ̂௣

ାܿ̂௣ ෡ܰ௜ ൌ ଓ̂ାଓ̂ number of holes

Number operator
෡ܰ ൌ෍ܿ̂௣

ାܿ̂௣
௣

Density matrix operator

ܺ௤௣ ൌ ௤௣ߛ ൌ ܿ̂௤
ାܿ̂௣

One electron potential

ොݒ ൌ ܿ̂௣		௤௣ݒ
ାܿ̂௤

For local potential, basis set transformation to real space yields

ݒ ܚ ܚ̂ܿ		
ାܿ̂ܚ ൌ ݒ ܚ ො݊ܚ ො݊ܚ ൌ ܚ̂ܿ

ାܿ̂ܚ

9/23/2015 Cubic scaling algorithm for RPA and singles in solids



Coulomb operator

Two particle density matrix and Coulomb potential

ܿ̂௤
ା	ܿ̂௣

ାܿ̂௥ܿ̂௦ ෠ܸ ൌ ܸ௣௤௦௥			ܿ̂௣
ା	ܿ̂௤

ାܿ̂௥ܿ̂௦

To give some feeling what this means, consider

Ψ|ܿ̂௣
ା	ܿ̂௤

ା		ܿ̂௥ܿ̂௦|Ψ ܸ௣௤௦௥ ൌ െ Ψ ܿ̂௣
ା	ܿ̂௥	ܿ̂௤

ାܿ̂௦ Ψ ܸ௣௤௦௥ ൅ ܸ௣௥௦௥

Basis set transformation from atomic orbitals to real space yields

െ Ψ|ܿ̂ܚ
ା	ܿ̂ܚ		ܚ̂ܿ´

ାܿ̂ܚ´|Ψ
1

ሺܚ െ ሻ´ܚ ൌ െ Ψ| ො݊ܚ
ା	 ො݊ܚ´|Ψ

1
ሺܚ െ ሻ´ܚ

Density-density interaction (with particle self-interaction removed)

Again, the density operator in real space is analogous to that in 
the atomic basis

ො݊ܚ´ ൌ ´ܚ̂ܿ
ାܿ̂ܚ´

9/23/2015 Cubic scaling algorithm for RPA and singles in solids



Perturbation Theory

Hamiltonian split into reference and perturbation part

In second quantization

with

Reference Hamiltonian is diagonal in its own eigenfunctions
Usually reference is Hartree-Fock, but DFT is also possible

209/23/2015

Intro 2nd PT Diag.



Interaction picture for time dependent PT

Split time evolution:
 operators evolve according to reference                                      (1)

 states evolve according to perturbation                                        (2)

Time evolution operator

 time derivative using (2)

 integrate

 iterate

219/23/2015



Gell-Man – Low theorem (1)

Perturbation is slowly turned on from t=െ∞ to 0

but small, system in groundstate (GS) at any time t
GS of reference evolves into GS of interacting system

 insert into SE

 and project onto GS of reference:

229/23/2015

Intro 2nd PT Diag.



Gell-Man – Low theorem (2)

Correlation energy can be written as vacuum expectation value 
(VEV) of reference state (HF/DFT):

Time evolution operator contains infinite sum and integrals:

 All operators in the interaction picture, I omitted from now

Nice, however, recipe needed to evaluate VEV

239/23/2015



Wick's theorem (1)

Normal ordering operator reorders into normal order
Normal order: all creation operators are to the right and all  
annihilation operators are to the left

The sign is given by the number of required 
permutations ݌ and is െ1௣

The great thing: VEV of normal ordered operators vanishes

This makes live reasonably easy

249/23/2015

Intro 2nd PT Diag.



Wick's theorem: contraction (2)

259/23/2015

Contraction = difference between arbitrary and normal order

 The contraction is always a scalar (and very often zero )

 Contraction only yields a finite value if the annihilation operator 
is to the left and creation operator is to the right

 Since contractions are scalars, they can be also placed into the 
normal ordering operator, and moved around:

 The normal order is defined for the quasiparticle operators



Extended to more than two operators:

e.g. with 4 operators

Contractions are numbers; can be pulled out of product:

For a VEV, only fully contracted terms survive

Wick's theorem (3): Full contractions
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Wick's theorem applied: 1st order PT

Energy contains term                                     evaluate for ෡ܷ ൌ 1
 Let us consider only Coulomb term for now:

 4 operators:

 contractions:

 only non-vanishing: annihilation to left and same creation to right

 the right operator, must be hole-creation operators:

 so:

 We will see later, that this can be obtained by simpler reasoning
but anyhow, this derivation is exact

279/23/2015



VEVs in Gell-Man – Low theorem:

Perturbation applied at time t:

 insert

 All states except for  p,q,r,s are encountered in both exponents

2nd order PT: Time dependent operators
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Wick's theorem applied: second order (1)

Second order:

 time evolution operator in first order:
 then perturbation at t=0, where

Many contractions non-vanishing, one for instance:
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Wick's theorem applied: second order (2)

Contractions reordered to pairs with even number of swaps
sign does not change

Operator order within contraction must not be changed
 creation after annihilation non-zero for holes p=w=i, q=v=j

 annihilation after creation non-zero for particles s=t=a, r=u=b

Time integration yields energy denominator

309/23/2015



Gell-Man – Low theorem & Wick theorem

Correlation energy can be written as vacuum expectation value 
(VEV) of reference state (HF/DFT):

Time evolution operator contains infinite sum and integrals:

Wick theorem is used to evaluate all encountered vacuum 
expectation values (VEV)
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Contractions
 Pauli principle is exactly observed

 There are many contractions, tedious to go through all

Bookkeeping using Goldstone diagrams
 Coulomb operator → wiggly line with left/right vertex at equal time

 One-electron potential → dashed blob with incoming/outgoing vertex

 At each vertex one incoming and one outgoing line

 For lines that finish and start at same time → 
sum over occupied states

Goldstone diagrams

329/23/2015

Intro 2nd PT Diag.



Bookkeeping using Goldstone diagrams
 Coulomb operator and dashed blobs

 Order is given by the number of Coulomb line + dashed blobs

 Essentially draw all conceivable closed diagrams with ݊	Coulomb 
lines & dashed blobs (Coulomb is always horizontal; equal time)

 Then there are simple rules to convert the diagram to an algebraic 
equation

 Specifically rules for

 Pre-factors (related to symmetry)

 Denominator (coming from integration over time)

 Sign

Goldstone diagrams

339/23/2015
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Swapping left/right vertices of Coulomb interaction, yields the same 
Goldstone diagram (symmetry of Coulomb interaction)
 Interchange, generally corresponds to a distinct contractions (left two 

cases)

 All 2݊ contractions from interchanging the  left/right vertex in the 
Coulomb operator cancel the factor ሺ½ሻ݊	from Coulomb operators

 However, if the entire diagram has left/right symmetry, a factor ½
prevails (only half of the contractions are distinct)

Goldstone diagrams – pre-factors symmetries
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Time evolution operator has a specific time order

Transform to time differences between two interactions:

 so 
 for state	ܽ created at ݊ݐ	and annihilated at 0 the phase factor is

Energy of state ܽ occurs in the exponent of every time interval in 
which the state propagates

Goldstone diagrams – time integration (1)
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Integrating each interval from 0 to	∞ yields an energy 
denominator for k-th interval (counted from top):

 sum of hole states – sum of particle states in that time interval

 small imaginary part from slowly turning perturbation on

e.g. MP2 direct diagram:

 factor ½ from left/right symmetry of diagram

Goldstone diagrams – time integration (2)

369/23/2015
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Ordering contracted operators in pairs using P swaps:

 same sign for all 2n contractions of one Goldstone diagram

 sign can be determined from topology and is give by

 l … number of closed loops in Fermion connections, 

 h … number of hole lines

e.g.: third order diagram:

(2 loops, 3 holes, no left/right symmetry of whole diagram)

Goldstone diagrams – Fermion sign
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VEVs in Gell-Man – Low theorem:

 Diagram is disconnected , if diagram is not connected to last H1(0):

 disconnected parts separate into independent factors, so:

 numerator containing

Linked cluster theorem (1)

389/23/2015
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VEVs in Gell-Man – Low theorem:

 numerators:

 denominators, same as numerator without last H1(0):

 (diverging) disconnected diagrams cancel

correlation energy:

Linked cluster theorem (2)
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Inclusion of effective interaction; in first order:

 effective interaction is subtracted in 1ܪ

Effective interaction in Hartree-Fock:

First order term is therefore zero in HF:

Hartree-Fock reference (1)
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In 2nd order already 11 diagrams containing ෠ܸ ݂݂݁:

 sign from ෠ܸ ݂݂݁	is given explicitly, sign related to topology not
 in HF: ෠ܸ ݂݂݁	cancels all 9 diagrams containing non-propagating 

connections (on the same Coulomb line), only MP2 remains
In DFT diagrams need to be included

Hartree-Fock reference (2)
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Evaluating Goldstone diagrams requires Coulomb matrix

 expensive: O(N5) in time, O(N4) in memory
Some diagrams can be evaluated more conveniently, e.g. Hartree

 0ܩ Green's function for equal time ݐ = charge density

Propagators (1)

429/23/2015
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For “connections” propagating in time:

 η arbitrarily small, put in time dependent operators 
Define propagator:

Propagators (2)
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In Goldstone diagrams time stands out (treated specially)

 equal footing desired, e.g. in frequency domain
requiring                            instead of

Example of MP2 direct diagram

 every H1 in U introduces time variable & imaginary unit;
do the same for last H1(0):

 drop constraints on integration times, respecting double counting

Feynman diagrams (1)
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 Introduce time at every vertex

Define propagator of Coulomb interaction:

Feynman diagrams (2)

459/23/2015



Propagators

Fermion sign:
 negative sign of holes contained in propagator

Evaluate Feynman diagram: integrate all vertex positions & times
(note: imaginary unit on lhs, delta on rhs in time domain)

Feynman diagrams (3)
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Dropping time order constraints introduces many permutations
 In general, each permutation leads to a distinct Goldstone diagram

 Here, only half are distinct due to reflection symmetry 

Feynman diagrams – symmetries (1)
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Feynman diagrams allow treatment of symmetries in space & time
(left/right symmetries, and time permutation symmetries)
Find symmetries graphically or computer aided, given vertices: 1,2,3,4
 undirected set of Bosonic edges (left/right symmetry of Coulomb)

 directed set of Fermionic edges (particle != hole)

 e.g. permutation                              leaves sets B and F invariant:

Here, 2 reflection symmetries of order 2 → ¼ of all permutations distinct 
(called symmetry factor)

Feynman diagrams – symmetries (2)
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Recipe for systematic approximation of
 GS energy of fully interacting system

 Yields orbitals and eigenenergies of reference (HF/DFT)

Presented here up to second order

 finite order based on HF is also termed Møller – Plesset PT

Pros

 extensive ܧሺܰ	atomsሻ 	ൌ in same chemical environment	ሺatomሻܧ	ܰ	

 quickly convergent for insulators MP3, MP4

Cons

 slowly convergent with respect to number of virtual orbitals a

 not variational: no upper bound for energy, forces difficult

 still infinite number of diagrams, n! with growing order n

Many-body PT – Summary
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Access to last interaction allows Goldstone diagrams to be used 
for iterative construction of more complex diagrams

Goldstone VS. Feynman diagrams

509/23/2015

property Goldstone Feynman
Coulomb lines parallel (horizontal) only topology matters
Moving vertices horizontally only move at will
Contains (in general) 2n contractions n! Goldstone diagrams
Evaluation contract Coulomb tensors integrate complex functions
Symmetries space only (½) space & time
Relativistic treatment Scalar relativistic + SO relativistic propagators
Frequency domain N.A. by Fourier transform
Access to last 
interaction

yes N.A.



Finite order PT not applicable to metals
ring diagrams diverge:

(Macke 1950) a student of Heisenberg found
 sum states then orders: -infinity + infinity - infinity …

 sum orders then states: finite (and reasonable) result

 called renormalization in QFT

 sum over all ring diagrams called Random Phase Approximation

Application: direct ring Coupled Cluster Doubles

519/23/2015 Cubic scaling algorithm for RPA and singles in solids



4 case of interaction occur in a ring:

(Freeman 1977) ring diagrams from drCCD amplitudes

 every way to end up with two particle/hole pairs using only bubbles
(recursive definition)

 build ring from bottom to top, following left/right particle/hole pair
(access to last interaction needed, using Goldstone diagrams)

drCCD amplitudes (1)

529/23/2015 Cubic scaling algorithm for RPA and singles in solids



1st case, found in interaction 1 & 2
 Coulomb interaction creates new

particle/hole pair

 probability amplitudes of finding two pairs
in state a,i and b,j stored in 4 point tensor

 amplitudes for t=0

 Coulomb interaction can occur at any time t<0:

 further cases to come ... 

drCCD amplitudes (2)

539/23/2015 Cubic scaling algorithm for RPA and singles in solids



2nd case, found in interaction 3
 right particle/hole pair contracted with

interaction, creating new particle/hole pair

 interaction occurred at any time t<0

 contraction with amplitudes at that time
(recursive usage of amplitudes)

 one more loop, one more hole gives positive Fermion sign

 more cases to come ...

drCCD amplitudes (3)

549/23/2015 Cubic scaling algorithm for RPA and singles in solids



3rd case, mirrored case of interaction 3
 left particle/hole pair contracted with

interaction, creating new particle/hole pair

 analogous to 2nd case

 one more loop, one more hole, gives positive Fermion sign

 more cases to come ...

drCCD amplitudes (4)

559/23/2015 Cubic scaling algorithm for RPA and singles in solids



4th case, found in interaction 4
 two different particle/hole pairs merge to one

 left pair created at interaction 2
right pair created at interaction 1

 merging occurs at any time t<0, dotted line

 amplitudes needed twice: quadratic contribution

 two more loops, two more holes give positive Fermion sign

 last case

drCCD amplitudes (5)

569/23/2015 Cubic scaling algorithm for RPA and singles in solids



4 cases summed to drCCD amplitude
equations
 in insulators limit η→ 0+ exists for all states

 quadratic, can only be solved by iteration

 using Shanks transform, 8 iterations sufficient for 6 digits precision

last interaction, here interaction 5, closes the ring, giving RPA

 two more loops, two more holes give positive Fermion sign

 amplitudes have left/right symmetry → whole diagram symmetric

Random Phase Approximation from drCCD

579/23/2015 Cubic scaling algorithm for RPA and singles in solids



direct ring Coupled Cluster Doubles amplitudes subset of 
Coupled Cluster Singles Doubles amplitudes, excluding e.g.

(canonical)  CCSD: O(N6), (canonical) drCCD: O(N5)
 using decomposition of Coulomb matrix

 into

 instead one O(N6) contraction
 two O(N5) contractions 

More about drCCD
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violations of Pauli principle in rings would be corrected by 
exchange:

O(N5) time requires ring structure so no exchange while building 
amplitudes
however, terminating amplitudes with exchange is for free

 one more loop, two more holes give negative Fermion sign

 termed second order screened exchange (SOSEX)

Exchange in drCCD

599/23/2015 Cubic scaling algorithm for RPA and singles in solids
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anti-symmetry of wave function not contained in single
Goldstone/Feynman diagram, only when taking all
anti-symmetry can be intrinsically incorporated into any single
diagram using

called Hugenholtz diagrams
however,

 Fermion sign and

 symmetry more difficult to assess

Hugenholtz diagrams
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