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Qutline of the four lectures (tentative)

®Lecture 1 (now):
Introduction to Exact Diagonalization

®Lecture 2 (today 10:30-12:00):
Exact Diagonalization: Symmetries & Dynamics

®Lecture 3 (tomorrow 10:30-12:00)
Exact Diagonalization: Spectroscopy

®Lecture 4 (tomorrow 14:00-15:30)
Exact Diagonalization: Tutorial



—xact Diagonalization: Main ldea

® Solve the Schrodinger equation of a quantum many body system numerically

Hlw) = B,

® Sparse matrix, but for guantum many body systems the vector space
dimension grows exponentially!

® Some people will tell you that’s all there is.

® But if you want to get a maximum of physical information out of a
finite system there is a lot more to do and the reward is a powerful:

Quantum Mechanics Toolbox



Hilbert space sizes

® The Hilbert space of a quantum many body system grows
exponentially in general

For N spin 1/2 particles, the complete Hilbert space has dim=2" states
10 spins dim=1'024

20 spins dm=1'048576

30 spins dim=1'073741'824

40 spins dim=1'099'511°'627° 776

50 spins dim=1'125'899'906'842'624 ...

The quantum mechanical wave function

IS a vector in this Hilbert (vector) space and
we would like to know the ground state and
a few other low lying eigenstates




—xact Diagonalization: Applications

® Quantum Magnets: nature of novel phases, critical points in 1D, dynamical
correlation functions in 1D & 2D

® Fermionic models (Hubbard/t-J): gaps, pairing properties,
correlation exponents, etc

® Fractional Quantum Hall states: energy gaps,
overlap with model states, entanglement spectra

® Quantum dimer models or other constrained models (anyon chains, ...)

® Full Configuration Interaction in Quantum Chemistry, Nuclear structure

® Quantum Field Theory



—xact Diagonalization: Present Day Limits

® Spin S=1/2 models:
40 spins square lattice, 39 sites triangular, 42 sites Honeycomb lattice
48 sites kagome lattice
64 spins or more In elevated magnetization sectors
up to ~500 billion basis states

® Fractional quantum hall effect
different filling fractions v, up to 16-20 electrons
up to 3.5 billion basis states

® Hubbard models (~ Full Cl in Quantum Chemistry)
20 sites square lattice at half filling, 21 sites triangular lattice
24 sites honeycomb lattice
up to 160 billion basis states

low-lying eigenvalues, not full diagonalization



Structure of an

—Xact

Diagonalization code




Ingredients

® Hilbert space
e Basis represention, Lookup techniques
e Symmetries

® Hamiltonian Matrix
e Sparse Matrix representation (memory/disk)
e Matrix recalculation on the fly (matrix-free)

® Linear Algebra : Eigensolver / Time propagation
o | APACK full diagonalization
e Lanczos type diagonalization (needs only |v) = H |upperations)
e More exotic eigensolver techniques, real oder imaginary-time propagation,

® Observables
e Static quantities (multipoint correlation functions, correlation density matrices,...)
e Dynamic observables (spectral functions, density of states,...)
e Real-time evolution



Hilbert Space




5asis representation

® States of the Hilbert space need to be represented in the computer.

® Choose a representation which makes it simple to act with the Hamiltonian
or other operators on the states, and to localize a given state in the basis

® Simple example: ensemble of S=1/2 sites in binary coding

1T7T11)—=[1101],=13

detection of up or down spin can lbe done with bit-test.
transverse exchange ST S~ + S~ S™ can be performed by an XOR operation:

1101, XOR[0110],=[101 1]

initial config bit 1 at the two sites coupled final config

® For S=1, one bit is obviously not sufficient. Use ternary representation
or simply occupy two bits to label the 3 states.



5asis representation

® For t-d models at low doping it is useful to factorize hole positions and
spin configurations on the occupied sites.

® For Hubbard models one can factorize the Hilbert space in up and down
electron configurations.

® For constrained models - such as dimer models - the efficient
generation of all basis states requires some thought.

® One of the key challenges for a fast ED code is to find the index of the new
configuration in the list of all configurations (index f in His).

® Let us look at the example of S=1/2 spins at fixed S?



Basis lookup procedures (Lin tables)

® One of the key problems for a fast ED code is to find the index of the new
configuration in the list of all configurations (index f in His).

101 1]y = 1110
® But is 11 the index of this configuration in a list of all S*=1 states ? no !

® Use Lin tables to map from binary number to index in list of allowed states:
(generalization of this idea works for arbitrary number of additive quantum numbers)

® Two tables with 2NV2) [=sgrt(2N)] entries, one for MSBs and one for LSBs

00 = X 00 = X Imd([0121)=0+0 = 0
01 = 0 01 = 0 md([LOL1) =140 = 1
10 = 1 10 = 1 Ind(j11o1)=2+o = 2
11 = 2 11 = 0 md(1110)=2+1 = 3

MSB LSB



Basis lookup procedures (Lin tables)

® Lookup can therefore be done with two direct memory reads. This is a
time and memory efficient approach (at least in many interesting cases).

® An alternative procedure is to build a hash list [const access time] or to
perform a binary search [log access time].

® This becomes somewhat more involved when using spatial symmetries...



Symmetries

® Consider a XXZ spin model on a lattice. What are the symmetries of the problem *?

H = Z JTY(SPSY 4 SYSY) + J7 ;8757

® The Hamiltonian conserves total S%, we can therefore work within a given S# sector
This easily implemented while constructing the basis, as we discussed before.

® The Hamiltonian is invariant under the space group, typically a few hundred elements.
(in many cases = Translations x Pointgroup). Needs some technology to implement...

® At the Heisenberg point, the total spin is also conserved. It is however very difficult to
combine the SU(2) symmetry with the lattice symmetries in a computationally useful
way (non-sparse and computationally expensive matrices).

® At S%=0 one can use the spin-flip (particle-hole) symmetry which distinguishes even
and odd spin sectors at the Heisenberg point. Simple to implement.



Spatial Symmetries

® Spatial symmetries are important for reduction of Hilbert space

® Symmetry resolved eigenstates teach us a lot about the physics at work,
dispersion of excitations, symmetry breaking tendencies,
topological degeneracy, ... = more about this in the second lecture

40 sites square lattice lcosidodecahedron (30 vertices)
T ® PG =40 x 4 elements Ih:120 elements
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Spatial Symmetries

® Symmetries are sometimes not easily visible, use graph theoretical tools
to determine symmetry group [nauty, grape].

® In an ED code a spatial symmetry operation is a site permutation operation.
(could become more complicated with spin-orbit interactions and multiorbital sites)

40 sites square lattice lcosidodecahedron (30 vertices)
T ® PG =40 x 4 elements Ih:120 elements
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Spatial Symmetries:

Suilding the basis

® Build a list of all allowed states satisfying the “diagonal” constraints, like

particle number, total &7, ...

©® for each state we apply all symmetry operations and keep the state
as a representative If it has the smallest integer representation among

all generated states in the orbit.

Example: 4 site ring with cyclic translation 7, S?=1 sector

7°0111]) - 0111
T'(0111])—[1011
T#(0111))—=[1101
T°(0111])—=[1110

keep state
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Spatial Symmetries: Building the basis

® For one-dimensional representations x of the spatial symmetry group:

® “Bloch” state 7) = N\/\?ZX 9)|g(r))

® Norm of the state is given as: N = \/
€G,g(r)=r

® The norm (and therefore the state itself) can vanish if it has a nontrivial
stabilizer combined with a nontrivial representation x.

® Example: 4 site S=1/2 ring with cyclic translations:

24=16
SP=2 1+1
S%=1 444
S7=0 2




he Hamiltonian Matrix




The Hamiltonian Matrix

® Now that we have a list of representatives and their norms, can we
calculate the matrix elements of the Hamiltonian ? (s|H |r) =7

® Let us look at an elementary, non-branching term in the Hamiltonian:

h¥|r) = h%(r)ls)

® We can now calculate the matrix element <§ !ha !’F> without double expanding
the Bloch states:

(51°17) = T he @)

® key algorithmic problem: given a possibly non-representative |s), how do we
find the associated representative |S | > , as well as a symmetry element g
relating |s) to |S) ?



The Hamiltonian Matrix

® key algorithmic problem: given a possibly non-representative ]3} how do*we
find the associated representative |S), as well as a symmetry element ¢
relating |s) to |§) ?

® Brute force: loop over all symmetry operations applied on |s) and retain
|8> and g* . This is however often not efficient (many hundred symmetries).

® Prepare a lookup list, relating each allowed configuration with the index of its
representative, and also the associated group element linking the two.
Gives fast implementation, but needs a list of the size of the non spatially-
symmetrized Hilbert space.

® For specific lattices and models (Hubbard models) clever tricks exist which
factorize the symmetry group into a sublattice conserving subgroup times
a sublattice exchange. They give |§> fast, then a hash or binary search is
needed to locate |§) in the list of representatives in order to get its index.



Hamiltonian Matrix Storage

® Different possibilities exist:

® Store hamiltonian matrix elements in memory in a sparse matrix format
Fast matrix vector multiplies, but obviously limited by available memory.

® Store hamiltonian matrix elements on disk in a sparse matrix format.
In principle possible due to the vast disk space available, but I/0O speed
IS much slower than main memory access times. Difficult to parallelize.

® Recalculate the hamiltonian matrix elements in each iterations “on the fly”.
Needed for the cutting edge simulations, where the whole memory is
used by the Lanczos vectors. Can be parallelized on most architectures.



he Linear Algebra

Backend




The Reterence:
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® Online book at: http://www.cs.utk.edu/~dongarra/etemplates/index.html


http://www.cs.utk.edu/~dongarra/etemplates/index.html

Linear Algebra:
The most popular: Lanczos Algorithm

® Lanczos Algorithm (C. Lanczos, 1950)

Three vector recursion  |¢") = H|¢p) — Baldn_1), a f 0 0
p 61 a1 B» o ..... 0
Op = <¢n’§b > ’ [:[ 0 ﬁz Qo ﬂ3 0 0
|¢”>: ¢/>_an|¢n>a N
Brr = (16”1l = V/(¢"1¢") T S
....... N—1 CQGN-1
|¢n+1> — ¢”>/6n—|—1 3 B
-17.25 — -
738 . hh v N
® Eigenvalues of Hy converge rapidly :;:5 R NG N—
towards eigenvalues of H. S s | ’\\:MM —|
Y 755 : \\ :
176 | |
® Once desired eigenvalue is converged, a76s | Y N
restart recursion and assemble the e See—
. -17.75 :
elgenvector. 0 50 oo 100 150

very quick convergence for extremal eigenvalues !



Linear Algebra:
Lanczos Algorithm

® The same algorithm according to the book:




_inear Algebra:
_anczos Algorithm

® Once the ground state has converged, the vectors in the recursion tend to lose
their orthogonality. As a consequence fake new eigenvalues show up in the
approximate spectrum. These can be removed by heuristic technigues

-15.74 prr—t—p g
15.75 4G

-15.76 -\

Energy [J]

-15.77

-15.78}

0 500 1000 1500 2000 2500 3000
Iterations

® Degeneracies of eigenvalues can not be resolved by construction. For this
task one would need a band lanczos or the (Jacobi-)Davidson technique.
However multiply degenerate eigenvalues are converged.

® Checkpointing is useful when performing large-scale simulations.



Full

Diagonalization: Thermodynamics

® Lapack / Householder complete diagonalization of the spectrum.

® Calculate partition function and all the thermodynamic quantities you want,
often the only pedestrian method available for frustrated systems.

® Symmetries are also very important, because the computational requirements
scale as O(D3), where D is the dimension of the block Hilbert space. Typical
D’s for a workstation are a few 1’000, up to a few 100’000 on supercomputers.
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F. Heidrich-Meisner, A. Honecker, T. Vekua,
Phys. Rev. B 74, 020403(R) (2006).
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Observables




Observables

® In principle once can calculate any correlation function, since one has access
to the full many body wave functions. When using spatial symmetries, the
correlation functions need to be properly symmetrized too.

® Complicated correlation functions occur in frustrated systems:
((Si - 8;)(Sk-Su)) = (Si - S;)(Sk-Si)  ((Si AS;)*(Sk ASi)*) — ((Si AS;)%)((Sk ASi)7)
Dimer-dimer correlations Spin current correlations
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Frequency Dynamics

@ GA(w —I—in) = <¢‘AT

E0+w——7277—H

® Generate Krylov space of A|)
Use continued fraction to invert (Eo +w +in — H)

® Triangular Lattice Spin Dynamics in zero field

20 T I T I 20 T I T I 20 T I T I
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—xact Diagonalization
Real-Time Dynamics

® It is expensive to obtain the full propagator exp|—it H |

® Krylov methods exist to approximate the propagator for a given state |1(0))
One can get the time propagated state | (t)) with only [v) = H|u) operations.

[ ' [ ' [ ' i
® Example: time evolution of a strongly 09§ [ (@) 1D Chain, U2 U400 JW\ L 1]
correlated quantum systems afteran | “‘ 2 N
abrupt change in the parameters in the % \ T4 o At e crmciac
Hamiltonian. Revivals and Relaxation. °'3 [ Iw VENTYYWMAMAAARARS
3 dl) R

0.9k (b)2D Square, U=2J, U=40J [

A o—a N, =16, ED 0 40 80 120 A
3 0.6 o—o N, =18, ED Frequency o [J] o
+-OO
le]
\

O_ ..". 1 | 1 | 1 1 1 1 | 1 I I I |
Time t [J]

C. Kollath, AML, E. Altman, PRL 2007



Two-dimensional uniform square lattice

® Single particle spreading (on a ~190x190 lattice)

C. Krimphoff, M. Hagque, and AML, in progress



Two-dimensional square lattice

® two neighboring particles (aligned in x direction) on a 60x60 lattice

S? n=2, Time: 0 %-Projector, Time: 0 y-Projector, Time: 0
60

55
a0
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40
35
30
25
20
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10

10 20 30 40 o0 ol

C. Krimphoff, M. Hagque, and AML, in progress



Parallelization Strategies




Parallelization:
Shared memory nodes

® In the Lanczos algorithm the heaviest part is the elementary matrix-vector
multiplication.

® In a matrix-free formulation this part can easily be parallelized using OpenMP
pragmas in the code, even on your multi-core workstation.
Choose the right strategy between pull and push !

In this parallelization
we have uncritical
concurrent reads,
but No concurrent

updates of vector v.




Parallelization: - ’
Shared memory nodes 9
12000 ‘ . ‘ \ w I \ I
® SGI Origin 3800 [Eridan]
m IBM p690 [zahir019/020]
10000 - b <Sun :
¢ IBM p5
) SGI Altix 1t2 1.5GHz
@ 8000 - |
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Number of Threads
® scales well up to a few ten threads on “memory uniform” SMP machines.
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Parallelization:
Distributed memory nodes

® For some classes of problems the Hilbert space size is not too big,
but the vast number of matrix elements is a challenge.
[ED in momentum space formulation & Quantum Hall problems]

® These problems can be OpenMP parallelized, but are also suitable for
large scale Message passing parallelization.

————————————————————————————————————————————————————————————————
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Broadcast




Parallelization:
Distributed memory nodes

® Strong scaling example RG-ED: matrix dimension 10 million
performed on a 1024 node Cray XT-3 machine: speedup of = 800 on 1024 procs

100
1000 | | ‘ T

—, 807 800 - l
_5 -§ 600 -
I o) i
@ 200 -
o i
GEJ O | | | | | | | | | |
= 40 - 0O 200 400 600 800 1000
8 NCPUS
(7))
o
(4v]
L

20 - @® @ Local Multiplication E

x\- B m Broadcast
0 T

0 200 400 600 800 1000



Parallelization:
How to harness the petaflop computers

® Cutting edge petaflop systems have a huge number of core, but only a
moderate amount of node-local memory.

® Next generation ED codes need to be developed in order to attack
e.g. the huge Hilbert space of a 48 site kagome antiferromagnet.

Cabled

® Problem remains difficult to parallelize due 1o its Rack n
all-to-all structure. No locality unlike in 32 Node Gards
PDE solvers.

1.5PF/s

Node Card
224 TB

32 chips

13.9 TF/s

Compute Card 278

1 chip, 20
DRAMs
435 GF/s
Chip 64 GB
4 nrocessors




MPI| Parallel Kagome

Technical Aspects

D Code:

© Three-sublattice stable symmetry implementation for fast lookups

® MPI protocol based implementation for distributed memory architectures

® Performance (memory requirements up to 12 Terabytes)

Lattice size of Hilbert space number of tasks (architecture) time per iteration
kagome N; = 42 19,223,570,420 1,024 (Intel Xeon Infiniband) 74 seconds
kagome N; = 48 251,936,333,376 | 1,600 (Intel Xeon NUMAIInk5) 1,450 seconds
kagome N; = 48 251,936,333,376 3,072 (Intel Xeon Infiniband) 650 seconds
kagome N; = 48 251,936,333,376 16,384 (BlueGene/P) 520 seconds




Convergence

® Convergence for such large Hilbert spaces ? Finite precision arithmetic ?
Seems ok

x—x ['ee, double precision
o—o I'ee, mixed precision

TTTTI T T

’c»,q

o
o
—h
IIIIHII} TTTIT
|
|
|
|
|
|
|
:
@

________________________________________________________

o

o .

o

—
TTTTI

o

o .
! o
o
—
TTTTI

— e )

_______________________________________________________

—
(4
o
®
T T T T TTT

Energy difference

1

50 100 . 150 200 250
lterations

® Upper end of spectrum converges to known energy of the ferromagnetic state !
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MPI parallel ED for the kagome lattice
without spatial symmetries

® ED Energy per site as a function of diameter (N up to 42 sites, dim up 270x109).

0,482 L o
0434
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i age 15
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E -0.446 + — — MZ VBC, Series
- - — - DMRG upper bound ® o
L -0.448 ® ED even samples @ 8
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0.450 ¢ DMRG Cylinders
-0.452
'0454 B . | . | . | . | . , "2 . | ]
0 0.1 0.2 0.3 0.4 0.5 0.6
. . -1
(geometrical diameter) AML, J. Sudan and E. Sorensen,

PRB 83, 212401 (2011)
® MPI implementation (with R. Johanni, MPG RZG):

180 seconds per iteration on 2048 cores on an 4x QDR IB Xeon cluster



MPI parallel ED for the kagome lattice
now Including spatial symmetries

® A new data point for N=48 sites (251'936‘333'376 states in GS sector)
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® MPI implementation (with R. Johanni, MPG RZG):
520 seconds per iteration on 16°‘384 cores on the BlueGene/P @ MPG RZG



—xact Diagonalization Literature
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in “Highly Frustratred Magnetism”, Eds. Lacroix, Mendels, Mila, (2011).
available upon e-mail request.



—xact Diagonalization: Applications

® Quantum Magnets: nature of novel phases, critical points in 1D,
dynamical correlation functions in 1D & 2D

® Fermionic models (Hubbard/t-J): gaps, pairing properties,
correlation exponents, etc

® Fractional Quantum Hall states: energy gaps,
overlap with model states, entanglement spectra

® Quantum dimer models or other constrained models (anyon
chain..)

® Full Configuration Interaction in Quantum Chemistry



“Tower of States” spectroscopy

® What are the finite size manifestations of a continuous symmetry breaking ?
(eg in superfluids/superconductors, magnetic order, spin nematic order)

® Order parameter is zero on a finite system ! (symmetric partition function)

® So usually one looks into order parameter correlations [(order parameter)?]




“Tower of States” spectroscopy

® Order parameter is not a conserved quantity

® Order parameter is zero on a finite size sample (Wigner-Eckart) é

® How does one get spontaneous symmetry breaking anyway “?

® Ground state degeneracy is building up as we approach
the thermodynamic limit, which will allow to form a symmetry breaking
wave packet at zero energy cost



“Tower of States” spectroscopy

® What are the finite size manifestations of a continuous symmetry breaking ?
(eg in superfluids/superconductors, magnetic order, spin nematic order)

® Low-energy dynamics of the order parameter
Theory: PW. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

® Dynamics of the free order

Continuum parameter is visible in the finite size
spectrum. Depends on the continuous
- AH symmetry group.
% Magnons |
s H . ® U(1): (8797 SU(@): S(S+1)
H/ Tower of E
States | ® Symmetry properties of levels in the
I N v L Tower states are crucial and constrain

), > the nature of the broken symmetries.

S(S+1)



Square lattice Heisenberg antiferromagnet

® Hamiltonian H=J Z S; - S;
® Fourier transform H=2J Z Vi Sk - S
® Keep only the (0,0) and (r1,m) mode

® Lieb Mattis model recovered

4.
Hy = _(51;201; — 5124 — SJQB)

P

C. Lhuillier, cond-mat/0502464




Symmetry decomposition of order parameter

® Order parameter manifold forms a representation space for the symmetry
group of the Hamiltonian

® Decompose this (reducible) representation into irreducible representations

1 step translation
bond reflection

A 3 plaguette rotation

2) operation
Wlth non-collinear

axis




Symmetry decomposition of order parameter

® As a result of the group theoretical analysis one obtains

® 1 irrep with S=0, (0,0) Al

® 1 irrep with S=1, (T, 1) A

® 1 irrep with S=2, (0,0) Al

® 1 irrep with S=3, (r1,11) AT

]

— 16

SQR N=20 (4,2,-2,4)

U g ws )

/2
/2

—
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Seyond the collinear Neel state

® Bilinear-biguadratic S=1 model on the triangular lattice (model for NiGaSa).

H = Z cos(@) S; - S; +sin(d) (S; - Sj)2
<

6,)

AML, F. Mila, K. Penc, PRL ‘06



Tower of States
S=1 on triangular lattice: Antiferromagnetic phase

® 93=0: coplanar magnetic order,
<« 120 degree structure

® Breaks translation symmetry. Tree site unit cell
= nontrivial momenta must appear in TOS

0l
® non-collinear magnetic structure
) = SU(2) is completely broken,
-15
& number of levels in TOS increases with S

20 g/ - ® Quantum numbers are identical to the S=1/2 case

AFM, 0=0

_25- L1 1 | | | |
@612 20 30 42 S(S+1)




Tower of States
S=1 on triangular lattice: Ferroquadrupolar phase

37[/; ; ® 93=-1/2 : ferroquadrupolar phase, finite
guadrupolar moment, no spin order

® No translation symmetry breaking.
= only trivial momentum appears in TOS

® Ferroguadrupolar order parameter, only even S

@ all directors are collinear
= SU(2) is broken down to U(1),

number of states in TOS is independent of S.

-85 !
®6 12 20 30 42 S(S+1)




Tower of States
S=1 on triangular lattice: Antiferroquadrupolar phase

3m/4

—7/2

® 93=31v/8 : antiferroquadrupolar phase, finite
guadrupolar moment, no spin order,
three sublattice structure.

AFQ, 6=37/8 -

® Breaks translation symmetry. Tree site unit cell
= nontrivial momenta must appear in TOS

® Antiferroguadrupolar order parameter, complicated
S dependence. Can be calculated using group
theoretical methods.

goluirt 1 !
@26 12 20 30

!
42

S(S+1)



—nergy Spectroscopy in a putative spin liquid 7
Kagome Low Energy Spectrum (N=48)

5 x 10" complex basis states in each sector

A
020 T ‘ Q) T T T T T T T
_ 8 © v O o ©
s § O o O o
i O O 8 O o ©O
0.16F O o ° 0 o—=2—45
e O ol O evenS O
© O O O o ® oddS | o
i O © O © O O O O
i O O O O
> 0 o o °O 5 0 g o
g, o O o S 8 5 8 0 ® g O
§008F o o o O O 9 o S
O
8 o O
i @) O
@)
0.00 O

] ] ] | | | | | | | |
I'8e T'eo I'oe Too Mee Meo Moe Moo 4e 40 ©6e 60

translation symmetry breaking unlikely



nergy Spectrum (N=48)
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nergy Spectrum (N=48)
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Tutorials

AR

® Play with /and extend/ the code fragment on the following slides

@ Different options:

® Perform the ALPS Tutorial on ED Spectroscopy for a CFT phase transition.

® http://alps.comp-phys.org/mediawiki/index.php/ALPS 2 Tutorials:ED-04 Ciriticality

® http://alps.comp-phys.ora/mediawiki/index.php/ALPS 2 Tutorials:ED-05 ED Phase Transition

® Krylov Time Evolution:

® Understand the Mathematica based Krylov time evolution code available on AFS alauchli

® Translate into Python or language of your choice and investigate time evolution of two
neighbouring flipped spins in a square lattice Heisenberg model as presented in the lecture.


http://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:ED-04_Criticality
http://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:ED-05_ED_Phase_Transition

A simple example (1/4):

#include <vector>
#include <alps/bitops.h>
class SpinOneHalfBasis {
public:

typedef unsigned int state_type;

typedef unsigned int index_type;

SpinOneHalfBasis (int L, int TwoSz);

state_type state(index_type 1) const {return states_[1];}

// lookup based on Lin tables

index_type lookup(state_type s) const {

return shighlook[alps::gbits(s,sh,sl)]+slowlook[alps::gbits(s,sl,0)];

ks

unsigned int dimension() const { return states_.size();}
private:

// list of configurations in Hilbert space

std: :vector<state_type> states_;

// Lin tables

int sl,sh;

std: :vector<index_type> slowlook,shighlook;

b



A simple example (2/4):

SpinOneHalfBasis: :SpinOneHalfBasis(int L, int TwoSz)

{

1t (L%2) {
sl=CL+1)/2;
sh=(L-1)/2;
} else
sl=sh=L/2;

slowlook.resize(l<<sl);
shighlook.resize(l<<sh);

int Nup=(L+TwoSz)/2;

unsigned int all_states=1U<<L;
unsigned int index=0;
unsigned int last_n=0;

int lasthigh_nibble=-1;

F

—>

// generating all configurations with correct TwoSz
// and filling of Lin tables
for (state_type s=0;s<all_states;++s)
1f(Calps: :bitcount(s)==Nup) {
// correct number of up spins
states_.push_back(s);
//get sl lowest bits of s
const int low_nibble =gbits(s,sl,0);
//get sh highest bits of s
const int high_nibble =gbits(s,sh,sl);

1f (lasthigh_nibble!=high_nibble) {
shighlook[high_nibble]=1ndex;
lasthigh_nibble=high_nibble;
last_n=1ndex;

}

slowlook[low_nibble]=1ndex-last_n;
index++;



A simple example (3/4);

class HamiltonianMultiplier : public SpinOneHalfBasis {
public:

HamiltonianMultiplier(int L, int TwoSz, double Jxy, double Jz)

: SpinOneHalfBasis(L,TwoSz), Jxy_(Jxy), Jz_(Jz), L_CL) {}

volid multiply(std: :valarray<double>& v, const std::valarray<double>& w);
private:

double Jxy_, Jz_;

int L_;



A simple example (4/4);

volid HamiltonianMultiplier: :multiply(std::valarray<double>& v,
const std::valarray<double>& w) {
// check dimensions
assert(v.size()==dimension()); assert(w.size()==dimension());
// do the Jz-term
for (int 1=0;1i<dimension();++1) {
state_type s = state(1);
// count number of parallel spins
state_type s = state(1);
for (int r=0;r<L_-1;++r)
v[i]+=(C 0.25*Jz_-0.5*Jz_*(alps::gbit(s,r)Aalps::gbit(s,r+1)) D*w[i];
}
// do the Jxy-term
for (int 1=0;1<dimension();++1)
{
state_type s = state(i);
for (int r=0;r<L_-1;++r) {
1fCalps:popcnt(s&(3<<r))==1) { // 1s state flippable ?
state_type snew = sA(3<<r); // exchange up and down spins
index_type 1dx = lookup(snew);
v[iidx]+=w[1]*Ixy_*0.5;



Homework:

® Take the code fragment from the example and
® Implement the Hamiltonian with periodic boundary conditions

® Use the fragment to dump the Hamilton matrix for a toy problem
system and diagonalize it in Matlab/Mathematica,....

\/\/ Write a very basic implemention of a Lanczos eigensolver around it
N Implement Sz->-5z symmetry for the Sz=0 sector
N /\/ Implement translation symmetry |

® Report any progress or questions to andreas.laeuchliQuibk.ac.at


mailto:laeuchli@comp-phys.org

Thank you !



