
H|�⇥ = E|�⇥

Introduction to Exact Diagonalization

Andreas Läuchli  
Institute for Theoretical Physics 
University of Innsbruck, Austria 

andreas.laeuchli@uibk.ac.at 
http://laeuchli-lab.uibk.ac.at/group-page 



Outline of the four lectures (tentative)

Lecture 1 (now):  
                 Introduction to Exact Diagonalization 
Lecture 2 (today 10:30-12:00):  
                 Exact Diagonalization: Symmetries & Dynamics  
                                  
Lecture 3 (tomorrow 10:30-12:00)  
                 Exact Diagonalization: Spectroscopy 
Lecture 4 (tomorrow 14:00-15:30)   
                 Exact Diagonalization: Tutorial



Exact Diagonalization: Main Idea

Solve the Schrödinger equation of a quantum many body system numerically 

Sparse matrix, but for quantum many body systems the vector space 
dimension grows exponentially! 

Some people will tell you that’s all there is. 

But if you want to get a maximum of physical information out of a  
finite system there is a lot more to do and the reward is a powerful: 

H|�⇥ = E|�⇥

Quantum Mechanics Toolbox



Hilbert space sizes
 The Hilbert space of a quantum many body system grows  
 exponentially in general  
 For N spin 1/2 particles, the complete Hilbert space has dim=2N states  
 10 spins dim=1‘024 
 20 spins dim=1‘048‘576 
 30 spins dim=1‘073‘741‘824 
 40 spins dim=1’099’511’627’776 
 50 spins dim=1‘125‘899‘906‘842’624 ... 
 The quantum mechanical wave function 
 is a vector in this Hilbert (vector) space and 
 we would like to know the ground state and 
 a few other low lying eigenstates

|�⇤ or |⇥⇤



Exact Diagonalization: Applications

Quantum Magnets: nature of novel phases, critical points in 1D, dynamical 
correlation functions in 1D & 2D 

Fermionic models (Hubbard/t-J): gaps, pairing properties, 
correlation exponents, etc 

Fractional Quantum Hall states: energy gaps, 
overlap with model states, entanglement spectra 

Quantum dimer models or other constrained models (anyon chains, ...) 

Full Configuration Interaction in Quantum Chemistry, Nuclear structure 

Quantum Field Theory 



Exact Diagonalization: Present Day Limits

Spin S=1/2 models:  
	 40 spins square lattice, 39 sites triangular, 42 sites Honeycomb lattice  
     48 sites kagome lattice  
     64 spins or more in elevated magnetization sectors 
up to ~500 billion basis states 

Fractional quantum hall effect 
	 different filling fractions ν, up to 16-20 electrons  
up to 3.5 billion basis states 

Hubbard models (~ Full CI in Quantum Chemistry) 
	 20 sites square lattice at half filling, 21 sites triangular lattice 
     24 sites honeycomb lattice  
up to 160 billion basis states
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Structure of an Exact Diagonalization code



Ingredients

Hilbert space 
• Basis represention, Lookup techniques 
• Symmetries 
Hamiltonian Matrix 
• Sparse Matrix representation (memory/disk) 
•Matrix recalculation on the fly (matrix-free) 
Linear Algebra : Eigensolver / Time propagation 
• LAPACK full diagonalization 
• Lanczos type diagonalization (needs only                   operations)  
•More exotic eigensolver techniques, real oder imaginary-time propagation,  
Observables 
• Static quantities (multipoint correlation functions, correlation density matrices,...) 
• Dynamic observables (spectral functions, density of states,...) 
• Real-time evolution

|v⟩ = H|u⟩



Hilbert Space



Basis representation
 States of the Hilbert space need to be represented in the computer. 

 Choose a representation which makes it simple to act with the Hamiltonian 
 or other operators on the states, and to localize a given state in the basis 

 Simple example: ensemble of S=1/2 sites in binary coding 
 
 
 detection of up or down spin can be done with bit-test.  
 transverse exchange                            can be performed by an XOR operation: 

 For S=1, one bit is obviously not sufficient. Use ternary representation 
 or simply occupy two bits to label the 3 states.

| ↑ ↑ ↓ ↑⟩ → [1 1 0 1]2 = 13

S
+
S
−

+ S
−

S
+

[1 1 0 1]2 XOR [0 1 1 0]2 = [1 0 1 1]2

bit 1 at the two sites coupled initial config final config



Basis representation
 For t-J models at low doping it is useful to factorize hole positions and 
 spin configurations on the occupied sites. 

 For Hubbard models one can factorize the Hilbert space in up and down 
 electron configurations. 

 For constrained models - such as dimer models - the efficient 
 generation of all basis states requires some thought. 

 One of the key challenges for a fast ED code is to find the index of the new 
 configuration in the list of all configurations (index f in Hi,f).  

 Let us look at the example of S=1/2 spins at fixed Sz



Basis lookup procedures (Lin tables)

 One of the key problems for a fast ED code is to find the index of the new 
 configuration in the list of all configurations (index f in Hi,f). 

 But is 11 the index of this configuration in a list of all Sz=1 states ? no ! 

 Use Lin tables to map from binary number to index in list of allowed states: 
 (generalization of this idea works for arbitrary number of additive quantum numbers) 

 Two tables with 2(N/2)  [=sqrt(2N)] entries, one for MSBs and one for LSBs

[1 0 1 1]2 = 1110

[0 0] = X

[0 1] = 0
[1 0] = 1
[1 1] = 2

Ind([0 1 1 1]) = 0 + 0 = 0
Ind([1 0 1 1]) = 1 + 0 = 1
Ind([1 1 0 1]) = 2 + 0 = 2
Ind([1 1 1 0]) = 2 + 1 = 3

[0 0] = X

[0 1] = 0
[1 0] = 1
[1 1] = 0

MSB LSB



Basis lookup procedures (Lin tables)

 Lookup can therefore be done with two direct memory reads. This is a 
 time and memory efficient approach (at least in many interesting cases). 

 An alternative procedure is to build a hash list [const access time] or to  
 perform a binary search [log access time]. 

 This becomes somewhat more involved when using spatial symmetries...



Symmetries

 Consider a XXZ spin model on a lattice. What are the symmetries of the problem ? 

 The Hamiltonian conserves total Sz, we can therefore work within a given Sz sector 
 This easily implemented while constructing the basis, as we discussed before. 

The Hamiltonian is invariant under the space group, typically a few hundred elements.  
(in many cases = Translations x Pointgroup). Needs some technology to implement... 

At the Heisenberg point, the total spin is also conserved. It is however very difficult to  
combine the SU(2) symmetry with the lattice symmetries in a computationally useful 
way (non-sparse and computationally expensive matrices).  

At Sz=0 one can use the spin-flip (particle-hole) symmetry which distinguishes even 
and odd spin sectors at the Heisenberg point. Simple to implement.
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Spatial Symmetries
Spatial symmetries are important for reduction of Hilbert space 

Symmetry resolved eigenstates teach us a lot about the physics at work, 
dispersion of excitations, symmetry breaking tendencies,  
topological degeneracy, ... ⇒ more about this in the second lecture
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dominant energy term. Thus, in addition to their great
relevance in the context of nanomagnetism and the grow-
ing interest for potential applications in quantum com-
puting20, information storage21 and magnetic imaging22,
molecular nanomagnets can also provide a suitable plat-
form for addressing theoretical questions and testing
ideas from the more general context of frustrated mag-
netism.

In this work, we focus on two magnetic molecule real-
izations of the Heisenberg kagomé AFM on the sphere.
The first consists of 8 corner-sharing triangles and is re-
alized in the Cu12La8

23 cluster with 12 Cu2+ s = 1/2
ions occupying the vertices of a symmetric cuboctahe-
dron (see Fig. 1). The spin topology of this cluster is
identical to the 12-site kagomé wrapped on a torus (cf.
Fig. 16). The second cluster is one of the largest frus-
trated molecules synthesized to date, namely the giant
Keplerate Mo72Fe30 system24. This features an array of
thirty s = 5/2 Fe3+ ions occupying the vertices of twenty
corner-sharing triangles spanning an almost perfect icosi-
dodecahedron (see Fig. 1). Interestingly, its quantum
s = 1/2 analogue, Mo72V30, consisting of V4+ ions has
also been synthesized quite recently25,26. We may note
here that the cuboctahedron and the icosidodecahedron
can be thought of as two existing positive curvature (with
n = 4 and 5 respectively) counterparts of Elser and
Zeng’s27 generalization of the kagomé structure on the
hyperbolic plane where each hexagon is replaced by a
polygon of n sides with n > 6.

Among the above highly frustrated clusters, Mo72Fe30

has been the most investigated so far, both theoreti-
cally and experimentally. The exchange interactions in
Mo72Fe30 are quite small, J/kB ≃ 1.57 K24, and this has
allowed for the experimental observation of a M = Ms/3
plateau at H ≃ 5.9 Tesla which has been explained
classically by Schröder et al.17. In addition, this clus-
ter manifests a very broad Inelastic Neutron Scattering
(INS) response as shown by Garlea et al.28. On the
other hand, Mo72V30 has a much stronger AFM exchange
J/kB ≃ 250 K25,26, and thus is not well suited for the
observation of the field-induced plateau. However, its
low-energy excitation spectrum can still be investigated

FIG. 1: (Color online) Schematic representation of the cuboc-
tahedron (left) and the icosidodecahedron (right). The first
consists of 12 vertices, 24 edges, 6 square and 8 triangular
faces, while the latter consists of 30 vertices, 60 edges, 12
pentagons and 20 corner-sharing triangles.

by INS experiments (which, to our knowledge, have not
been performed so far). As to the s = 1/2 cuboctahedron
Cu12La8

23, we are not aware of any magnetic measure-
ments reported so far on this cluster.

The main magnetic properties of the present clusters
can be explained very well by the isotropic Heisenberg
model with a single AFM exchange parameter J , i.e.

H = J
∑

⟨ij⟩

si · sj , (1)

where, as usual, ⟨ij⟩ denotes pairs of mutually interact-
ing spins s at sites i and j. Other terms such as single-
ion anisotropy (for s > 1/2) or Dzyaloshinsky-Moriya
interactions must be present as well in the present clus-
ters, but they are expected to be much smaller than the
exchange interactions and thus they can be neglected.
Here, as a simple theoretical tool to understand some of
the properties of the Heisenberg model, it will be very ex-
pedient to introduce some fictitious exchange anisotropy,
i.e. extend Eq. (1) to its more general XXZ variant

H′ = Hz + Hxy, (2)

Hz = Jz

∑

⟨ij⟩

sz
i s

z
j , (3)

Hxy =
Jxy

2

∑

⟨ij⟩

(s+
i s−j + s−i s+

j ) , (4)

where Jxy, Jz denote the transverse and longitudinal ex-
change parameters respectively. In what follows we de-
note α = Jxy/Jz.

The main results presented in this article are of direct
relevance to the experimental findings in Mo72Fe30 men-
tioned above and thus span two major themes. The first
deals with the nature of the low-lying excitations above
the M = Ms/3 plateau phase. For the s = 1/2 icosi-
dodecahedron we show that all these excitations are adi-
abatically connected to collinear “up-up-down” (hence-
forth “uud”) Ising ground states (GS’s), at the same time
being well isolated from higher levels by a relatively large
energy gap. We argue that this feature must be spe-
cial to the topology of the icosidodecahedron and that
it must survive for s = 5/2 as well. This prediction
can be verified experimentally by a measurement of the
low-temperature specific heat and the associated entropy
content at the plateau phase of Mo72Fe30. A comple-
mentary physical picture will emerge by performing a
high order perturbative expansion in α, in the spirit of
Refs. 9,10,11, and by deriving and solving to lowest or-
der the corresponding effective QDM on the dual clusters.
The dependence of the model parameters on α and s is
also found and given explicitly.

Our second theme concerns the origin of the broad
INS response reported for Mo72Fe30

28. Previous theories
based on the excitations of the rotational band model28,29

or on spin wave calculations30,31 predict a small number
of discrete excitation lines at low temperatures and thus

Icosidodecahedron (30 vertices) 
Ih:120 elements

40 sites square lattice 
T ⊗ PG =40 x 4 elements



Spatial Symmetries
Symmetries are sometimes not easily visible, use graph theoretical tools  
to determine symmetry group  [nauty, grape]. 

In an ED code a spatial symmetry operation is a site permutation operation. 
(could become more complicated with spin-orbit interactions and multiorbital sites)
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T 1([0 1 1 1])� [1 0 1 1]
T 0([1 0 1 1])� [1 0 1 1]
T 1([1 0 1 1])� [1 1 0 1]

T 2([1 0 1 1])� [1 1 1 0]
T 3([1 0 1 1])� [0 1 1 1]

Spatial Symmetries: Building the basis

Build a list of all allowed states satisfying the “diagonal” constraints, like 
particle number, total Sz, ...  

for each state we apply all symmetry operations and keep the state 
as a representative if it has the smallest integer representation among  
all generated states in the orbit. 
Example: 4 site ring with cyclic translation T, Sz=1 sector

T 2([0 1 1 1])� [1 1 0 1]

T 3([0 1 1 1])� [1 1 1 0]

T 0([0 1 1 1])� [0 1 1 1]

...

keep state discard state



Spatial Symmetries: Building the basis

For one-dimensional representations χ of the spatial symmetry group: 

“Bloch” state 

Norm of the state is given as:  

The norm (and therefore the state itself) can vanish if it has a nontrivial 
stabilizer combined with a nontrivial representation χ. 

Example: 4 site S=1/2 ring with cyclic translations:

|1 1 1 1⇥,N = 2
|0 1 1 1⇥,N = 1

|0 0 1 1⇥,N = 1
|0 1 0 1⇥,N =

⌅
2

K = 0
Sz=2
Sz=1

Sz=0

K = ±�/2

|0 1 1 1⇥,N = 1

|0 0 1 1⇥,N = 1

K = �

|0 1 1 1⇥,N = 1
|0 1 0 1⇥,N =

⌅
2

|0 0 1 1⇥,N = 1

1+1
4+4

2
4

24=16

|r̃⇥ =
1

N
⇥
|G|

�

g�G

�(g)|g(r)⇥

N =
⇥ �

g�G,g(r)=r

�(g)



The Hamiltonian Matrix



Now that we have a list of representatives and their norms, can we 
calculate the matrix elements of the Hamiltonian ? 

Let us look at an elementary, non-branching term in the Hamiltonian: 

We can now calculate the matrix element                without double expanding 
the  Bloch states: 

key algorithmic problem: given a possibly non-representative     , how do we 
find the associated representative      ,  as well as a symmetry element  
relating       to       ?

⇥s̃|h�|r̃⇤ =
Ns

Nr
�(g�)h�(r)

The Hamiltonian Matrix

�s̃|H|r̃⇥ =?

h�|r� = h�(r)|s�

�s̃|h�|r̃⇥

|s�
|s̃� g�

|s� |s̃�



key algorithmic problem: given a possibly non-representative     , how do we 
find the associated representative      ,  as well as a symmetry element  
relating       to       ? 

Brute force: loop over all symmetry operations applied on      and retain 
     and      . This is however often not efficient (many hundred symmetries). 

Prepare a lookup list, relating each allowed configuration with the index of its 
representative, and also the associated group element linking the two.  
Gives fast implementation, but needs a list of the size of the non spatially-
symmetrized Hilbert space.  

For specific lattices and models (Hubbard models) clever tricks exist which 
factorize the symmetry group into a sublattice conserving subgroup times 
a sublattice exchange. They give       fast, then a hash or binary search is 
needed to locate       in the list of representatives in order to get its index.

The Hamiltonian Matrix
|s�

|s̃� g�

|s� |s̃�

|s�
|s̃� g�

|s̃�
|s̃�



Hamiltonian Matrix Storage

Different possibilities exist: 

Store hamiltonian matrix elements in memory in a sparse matrix format 
Fast matrix vector multiplies, but obviously limited by available memory. 

Store hamiltonian matrix elements on disk in a sparse matrix format. 
In principle possible due to the vast disk space available, but I/O speed 
is much slower than main memory access times. Difficult to parallelize. 

Recalculate the hamiltonian matrix elements in each iterations “on the fly”. 
Needed for the cutting edge simulations, where the whole memory is 
used by the Lanczos vectors. Can be parallelized on most architectures.



The Linear Algebra Backend



The Reference:

 Online book at: http://www.cs.utk.edu/~dongarra/etemplates/index.html

http://www.cs.utk.edu/~dongarra/etemplates/index.html


Lanczos algorithm

General facts

! Developed by Cornelius Lanczos in the 1950s

! Fast convergence of extremal (smallest or largest) eigenstates

! Simple iterative algorithm (only sparse MVM), low memory requirements

! Belongs to the class of Krylov space methods

Algorithm

! Starting from random |φ0⟩ build a tridiagonal matrix with:

|φ′⟩ = H|φn⟩ − βn|φn−1⟩ ,

αn = ⟨φn|φ′⟩ ,

|φ′′⟩ = |φ′⟩ − αn|φn⟩ ,

βn+1 = ||φ′′|| =
√

⟨φ′′|φ′′⟩ ,

|φn+1⟩ = |φ′′⟩/βn+1 ,

H̃N =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

α0 β1 0 . . . . . . . . . . . . 0
β1 α1 β2 0 . . . . . 0
0 β2 α2 β3 0 0

. . .
. . .

. . .
0 . . 0 βN−2 αN−2 βN−1

0 . . . . . . . 0 βN−1 αN−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

 Lanczos Algorithm (C. Lanczos, 1950) 

 Eigenvalues of HN converge rapidly 
 towards eigenvalues of H. 

 Once desired eigenvalue is converged,  
 restart recursion and assemble the  
 eigenvector.

Three vector recursion

very quick convergence for extremal eigenvalues !

Linear Algebra: 
The most popular: Lanczos Algorithm



Linear Algebra: 
Lanczos Algorithm

The same algorithm according to the book:



 Once the ground state has converged, the vectors in the recursion tend to lose  
 their orthogonality. As a consequence fake new eigenvalues show up in the  
 approximate spectrum. These can be removed by heuristic techniques 

 Degeneracies of eigenvalues can not be resolved by construction. For this 
 task one would need a band lanczos or the (Jacobi-)Davidson technique. 
 However multiply degenerate eigenvalues are converged. 

 Checkpointing is useful when performing large-scale simulations.  

Linear Algebra: 
Lanczos Algorithm



Full Diagonalization: Thermodynamics

 Lapack / Householder complete diagonalization of the spectrum. 

 Calculate partition function and all the thermodynamic quantities you want, 
 often the only pedestrian method available for frustrated systems. 

 Symmetries are also very important, because the computational requirements  
 scale as O(D3), where D is the dimension of the block Hilbert space. Typical 
 D’s for a workstation are a few 1’000, up to a few 100’000 on supercomputers.

F. Heidrich-Meisner, A. Honecker, T. Vekua, 
Phys. Rev. B 74, 020403(R) (2006).
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Observables



⇤(Si · Sj)(Sk · Sl)⌅ � ⇤Si · Sj⌅⇤Sk · Sl⌅ ⇤(Si ⇥ Sj)z(Sk ⇥ Sl)z⌅ � ⇤(Si ⇥ Sj)z⌅⇤(Sk ⇥ Sl)z⌅

Observables

  In principle once can calculate any correlation function, since one has access 
  to the full many body wave functions. When using spatial symmetries, the  
  correlation functions need to be properly symmetrized too. 

  Complicated correlation functions occur in frustrated systems: 3

a quantum top is proportional to the square of the to-
tal spin of the sample S: its effective spectrum involves
(2S +1) distinct eigenstates in each S sector, with eigen-
values scaling as S(S + 1)/N .

Fig. 2b) indeed displays such a tower of low lying levels
well separated from the other excitations. The symme-
tries of the QDJS (displayed in Tab. I) are those predicted
by the ab initio symmetry analysis; three soft modes at
(0, π), (π, 0), (π, π) signal the full symmetry breaking of
SU(2). The finite size scaling of the QDJS is regular and
as expected, the tower of states collapse to the ground-
state as 1/N (Inset in Fig 2b) and [16]). Long wave-
length quantum fluctuations, estimated in a spin wave
approach, lead to a reduction of ∼ 30% of the sublattice
magnetization the thermodynamic limit. The real-space
spin correlations as well as the vector chirality correla-
tions are in perfect agreement with these results. Based
on the analysis of the exact spectra and finite size scaling
of the orderparameters we believe that the four-sublattice
Néel phase is stable for 0.4 π ! θ ! 0.9 π.

The spin-nematic phase — Frustrating the four-
sublattice orthogonal state by increasing J induces a
drastic modification of the low lying spectrum of Eq. 1,
which evolves towards the typical behavior of Fig. 3b).
The 1/N finite size scaling of this tower of states
proves that this phase breaks SU(2) symmetry [Inset of
Fig. 3b)]. But the QDJS which display only one level in
each S sector, embed the dynamics of a rigid rotator: the
magnet is a uniaxial magnet, i.e. SU(2) is only broken
down to U(1). One observes an enlargement of the spa-
tial symmetry of the order parameter (see column (B) of
Table I), incompatible with a standard (π, π) antiferro-
magnet, but consistent with a staggered long range order
in the vectorial chirality (2). This is confirmed by the be-
havior of the correlations in the bond chirality (defined
as V⃗(i, j) = ⟨Si ∧ Sj⟩) shown in Fig. 3a). On the other
hand the finite size scaling of the spin-spin correlations
points to a wiping out of the sub-lattice magnetization
by long wave-length quantum fluctuations. Such a state
is therefore a p-spin-nematic state [5, 6, 7], character-
ized by the absence of any sublattice magnetic moment
⟨Si⟩ = 0, and by the presence of a pseudo-vectorial order
parameter V⃗(i, j) ̸= 0.

The partial restoration of the SU(2) symmetry when
going from the four-sublattice orthogonal state to the
nematic state can be tracked by plotting the relative mo-
tion of the different symmetry-breaking levels within the
tower of QDJS while lowering θ. The energy differences
displayed in Fig. 4 show how all but one level for each
spin sector evaporate once θ/π ! 0.5. Since the sym-
metry group of the orthogonal four-sublattice antiferro-
magnet is contained in the symmetry group of the spin-
nematic state we might expect the transition between the
two states to be a continous quantum phase transition,
although this remains an open problem.

N=40, θ=0.3π

(a) (b)

FIG. 3: (Color online) (a) Real space vector chirality cor-
relations ⟨[S0 ∧ S1]

z[Si ∧ Sj ]
z⟩ for a N = 40 sample in the

spin-nematic phase at θ = 0.3π. The black bond denotes the
oriented reference bond. The width of the lines is propor-
tional to the correlation strength. (b) Tower of states in the
spin-nematic state. Inset: finite size scaling of the spin gap,
indicating a vanishing spin gap in the thermodynamic limit.

Four-sublattice AFMSpin Nematic
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FIG. 4: (Color online) The evolution of the finite size spectral
gaps within the QDJS of the orthogonal Néel state on a N =
32 sample. The bold lines denote levels which remain in the
QDJS of the spin-nematic state. The other levels detach from
the QDJS as θ ! π/2.

The finite size scaling of the order parameter indicates
that the phase should at least exist in the range of pa-
rameters 0.25 ! θ/π ! 0.4. The accuracy in the determi-
nation of the boundaries cannot be made better on the
basis of exact diagonalizations.

The staggered dimer VBC phase — Once the nematic
state has been destabilized by even stronger frustration
we find evidence for a VBC state with a staggered dimer
structure. We consistently see an increase of the stag-
gered dimer structure factor for all system sizes consid-
ered. The real-space dimer correlations for an N = 36
sample are shown in Fig. 5a). These correlations show
a clear staggered pattern and they converge to a finite
value at the largest distances. Another strong argument
in favor of a staggered dimer phase is the presence of 4

Dimer-dimer correlations Spin current correlations



  

  Generate Krylov space of   
  Use continued fraction to invert 
   

 Triangular Lattice Spin Dynamics in zero field

Frequency Dynamics

GA(ω + iη) = ⟨ψ|A† 1

E0 + ω + iη − H
A|ψ⟩

A|ψ⟩
(E0 + ω + iη − H)
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α
(q), ck, . . .
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N=36, 200 continued fraction iterations
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Exact Diagonalization 
Real-Time Dynamics

 It is expensive to obtain the full propagator  

 Krylov methods exist to approximate the propagator for a given state   
 One can get the time propagated state          with only                  operations. 

 Example: time evolution of a strongly 
 correlated quantum systems after an 
 abrupt change in the parameters in the 
 Hamiltonian. Revivals and Relaxation.

exp[−itH]

|ψ(0)⟩
|ψ(t)⟩ |v⟩ = H|u⟩

C. Kollath, AML, E. Altman, PRL 2007
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Two-dimensional uniform square lattice

Single particle spreading (on a ~190x190 lattice)

C. Krimphoff, M. Haque, and AML, in progress



Two-dimensional square lattice

two neighboring particles (aligned in x direction) on a 60x60 lattice 
 
 
 
 
 
 
 
 
 
 
 

C. Krimphoff, M. Haque, and AML, in progress



Parallelization Strategies



H

Parallelization: 
Shared memory nodes

In the Lanczos algorithm the heaviest part is the elementary matrix-vector 
multiplication. 

In a matrix-free formulation this part can easily be parallelized using OpenMP 
pragmas in the code, even on your multi-core workstation.  
Choose the right strategy between pull and push !

=|v� |u�

In this parallelization 
we have uncritical 
concurrent reads, 
but no concurrent 

updates of vector v.
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Parallelization: 
Shared memory nodes

scales well up to a few ten threads on “memory uniform” SMP machines.

H=|v� |u�
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Parallelization: 
Distributed memory nodes

For some classes of problems the Hilbert space size is not too big, 
but the vast number of matrix elements is a challenge. 
[ED in momentum space formulation & Quantum Hall problems]  

These problems can be OpenMP parallelized, but are also suitable for  
large scale Message passing parallelization.

2
3
4

|v�

1 MPI

Broadcast

...
11

|u� 22 |u�

node 1 node 2
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Parallelization: 
Distributed memory nodes

Strong scaling example RG-ED: matrix dimension 10 million  
performed on a 1024 node Cray XT-3 machine: speedup of ≈ 800 on 1024 procs 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Parallelization: 
How to harness the petaflop computers ?

Cutting edge petaflop systems have a huge number of core, but only a  
moderate amount of node-local memory. 

Next generation ED codes need to be developed in order to attack  
e.g. the huge Hilbert space of a 48 site kagome antiferromagnet. 

Problem remains difficult to parallelize due to its  
all-to-all structure. No locality unlike in  
PDE solvers.



MPI Parallel Kagome ED Code: 
Technical Aspects

Three-sublattice stable symmetry implementation for fast lookups  
 
 
 
 
 
 

MPI protocol based implementation for distributed memory architectures 

Performance (memory requirements up to 12 Terabytes)
P8 Exact diagonalization at the petaflop scale

Lattice size of Hilbert space number of tasks (architecture) time per iteration

kagome Ns = 42 19,223,570,420 1,024 (Intel Xeon Infiniband) 74 seconds
kagome Ns = 48 251,936,333,376 1,600 (Intel Xeon NUMAlink5) 1,450 seconds
kagome Ns = 48 251,936,333,376 3,072 (Intel Xeon Infiniband) 650 seconds
kagome Ns = 48 251,936,333,376 16,384 (BlueGene/P) 520 seconds

Table 2: Iteration times of the MPI-parallel exact diagonalization code with spatial symmetries for

kagome samples with 42 and 48 spins and for the different execution platforms.

sample in all the spatial symmetry sectors of the even total spin sector. The largest sector was

of dimension 504 × 109 and is the largest eigenvalue problem solved so far for a quantum

many body system, to the best of our knowledge. The possible implications of this result on the

understanding of the kagome antiferromagnet will be discussed in the next section. The results

are unpublished so far, but have been presented at a talk at the March Meeting 2012 of the

American Physical Society in Boston [59].

2.2.2 Frustrated quantum magnets

A. M. Läuchli and his collaborators recently established the phase diagram of a frustrated spin

S = 1/2 Heisenberg model on the honeycomb lattice [R4] using exact diagonalization in the

standard Sz basis and exact diagonalization of an effective quantum dimer model. The phase

diagram contains several magnetically ordered phases, but interestingly also a rather large mag-

netically disordered intermediate phase. In some part of this disordered region we found strong

evidence for a plaquette valence bond crystal. An interesting aspect is our finding that a simple

variational wavefunction without further parameters (i.e. Gutzwiller projected half-filled tight

binding model) has an excellent variational energy precisely at the phase transition from the

magnetically ordered Néel state to the plaquette valence bond crystal. This suggest that the

honeycomb lattice might feature Néel-VBC deconfined quantum critical points.

The Mott insulating phase of the triangular lattice Hubbard model has been conjectured to

host a spin liquid phase close to the metal-insulator transition, based on approximate Monte

Carlo methods. In Ref. [R5] we investigated this question from the viewpoint of effective spin

models. We derived a high-order effective spin model based on an expansion in t/U starting

from the t = 0 atomic limit. The effective spin model contains Heisenberg couplings of different

spatial range, as well as four- and six-spin terms of different ranges. Simulating the effective

model using exact diagonalization on various clusters, we detect a sharp transition between the

three-sublattice Néel order at large U and an intermediate insulating phase without magnetic

long range order. The comparison of the non-trivial ground state quantum numbers in the spin

liquid region with those of a Gutzwiller projected Fermi sea wave function provides evidence

for a gapless ‘spin Bose-Metal’ liquid phase.

Regarding the kagome antiferromagnet we have studied the dynamical spin and singlet ex-

citation spectrum on the 36 site cluster [7] and provided evidence for spin spectral functions

which are quite broad in energy, as seen in experiments on some kagome-like materials. We

have also investigated the local effects of non-magnetic impurities in S = 3/2 kagome sys-

tems [60], and in S = 1/2 kagome systems with Dzyaloshinskii-Moriya interactions [61]. As

mentioned already in the previous exact diagonalization section, we have studied the ground

state energy dependence on the cluster geometry in Ref. [R3] for systems up to 42 sites. An

interesting observation was the fact that the spin-spin correlations in the ground state are quite

small as expected, but seem to be somewhat enhanced along the shortest paths which wrap

around the period boundary conditions. This highlights the importance of studying systems

with as large circumferences as possible in order to reduce the effect of artificial resonances

around the torus. In this respect the 48 sites kagome system is a very significant step forward,

not only in Hilbert space sizes, but also resonance-wise, as the number of topological nontrivial
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Läuchli, Honecker P8

Figure 5: Left: Kagome lattice with the algorithmic three-sublattice structure used in the MPI-parallel

exact diagonalization code. Right: Illustration of the square-kagome lattice consisting of corner sharing

triangles, as the kagome lattice. In this lattice the shortest loops are of length four instead of length six

as in the kagome lattice. The expected two-fold degenerate valence bond crystal according to Ref. [66]

consists of half of the squares forming a singlet (red boxes), while the remaining sites pair up in loops

of length 8 (illustrated with hashed blue lines).

time and simply recalculate more of the information which used to be stored in the lookup

tables.

Beyond the S = 1/2 codes discussed so far we also want to develop codes for larger spin

S > 1/2, both for conventional SU(2) Heisenberg-like models and SU(N) magnetism.

In order to calculate thermodynamic properties for small systems using the complete eigen-

basis of the Hamiltonian we will also integrate and use distributed memory implementations of

full diagonalization libraries, such as Scalapack or ELPA [65].

3.1.2 Frustrated quantum magnets

In this project we intend to investigate large samples of the S = 1/2 quantum antiferromagnet

on the kagome lattice. We have already been able to obtain the low energy spectrum of a 48

site sample in all singlet sectors. The spectrum exhibits an interesting low energy structure,

with hints towards an interesting topological degeneracy. In a first step we want to calculate

a number of observables in the low lying wave functions, in order to ascertain the topological

nature of the collapsing levels. Of particular importance will be observables such as the full

dimer-dimer correlation functions, scalar chirality correlation functions, or correlation density

matrices. Another interesting diagnostics will be provided by the entanglement spectrum of

large blocks winding around the torus in one direction.

With the existing three-sublattice code we can also directly study a related model, the S= 1/2

Heisenberg model on a 48 site square-kagome (“squagome”) lattice [66]. This lattice is closely

related to the standard kagome lattice due to their common corner sharing triangle geome-

try. However there exist two different types of closed loops of length 4 and 8 respectively,

as opposed to the length 6 loops in the kagome lattice, see the right side of Fig. 5 for an il-

lustration. It has been suggested that the ground state of this model is a valence bond crystal

with a twofold degenerate ground state [66], but so far no numerical evidence in this direc-

tion is available [67]. We believe that the 48 site sample is the first sample which combines a

symmetry-breaking compatible lattice geometry with sufficiently long loop lengths for paths

around the torus directions, such that a VBC should be easily detected in case it exists.

Since kagome systems with larger spin S > 1/2 are basically not studied at all, despite many

existing kagome-like materials with S > 1/2, we intend to investigate and explain the low

energy spectra of kagome samples with up to 24 sites for S = 1 and up to 21 sites for S = 3/2.

These simulations might help to develop an understanding whether S > 1/2 systems already

behave qualitatively like semiclassical systems, or whether they form genuine quantum ground

states.

A further interesting application of the three-sublattice code is the calculation of the exci-
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Convergence for such large Hilbert spaces ? Finite precision arithmetic ? 
Seems ok 
 
 
 
 
 
 
 
 
 
 
 

Upper end of spectrum converges to known energy of the ferromagnetic state ! 
ok !
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MPI parallel ED for the kagome lattice  
without spatial symmetries

ED Energy per site as a function of diameter (N up to 42 sites, dim up 270x109).
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DMRG Cylinders

AML, J. Sudan and E. Sorensen,  
PRB 83, 212401 (2011)

MPI implementation (with R. Johanni, MPG RZG): 
180 seconds per iteration on 2048 cores on an 4x QDR IB Xeon cluster



A new data point for N=48 sites (251‘936‘333‘376 states in GS sector)
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MPI implementation (with R. Johanni, MPG RZG): 
520 seconds per iteration on 16‘384 cores on the BlueGene/P @ MPG RZG

MPI parallel ED for the kagome lattice  
now including spatial symmetries



Exact Diagonalization Literature
 N. Laflorencie & D. Poilblanc, 
 “Simulations of pure and doped low-dimensional spin-1/2 gapped systems” 
 Lecture Notes in Physics 645, 227 (2004). 

 R.M. Noack & S. Manmana,  
 “Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems”, 
 AIP Conf. Proc. 789, 93 (2005). 

 A. Weisse, H. Fehske 
 “Exact Diagonalization Techniques”  
 Lecture Notes in Physics 739, 529 (2008). 

 A. Läuchli  
 ”Numerical Simulations of Frustrated Systems” 
 in “Highly Frustratred Magnetism”, Eds. Lacroix, Mendels, Mila, (2011). 
 available upon e-mail request.



Exact Diagonalization: Applications

Quantum Magnets: nature of novel phases, critical points in 1D, 
dynamical correlation functions in 1D & 2D 

Fermionic models (Hubbard/t-J): gaps, pairing properties, 
correlation exponents, etc 

Fractional Quantum Hall states: energy gaps, 
overlap with model states, entanglement spectra 

Quantum dimer models or other constrained models (anyon 
chain..) 

Full Configuration Interaction in Quantum Chemistry



“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ? 
 (eg in superfluids/superconductors, magnetic order, spin nematic order)


 Order parameter is zero on a finite system ! (symmetric partition function)


 So usually one looks into order parameter correlations [(order parameter)2]
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Order parameter is not a conserved quantity  

Order parameter is zero on a finite size sample (Wigner-Eckart) 

How does one get spontaneous symmetry breaking anyway ? 

Ground state degeneracy is building up as we approach  
the thermodynamic limit, which will allow to form a symmetry breaking 
wave packet at zero energy cost

“Tower of States” spectroscopy



“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ? 
 (eg in superfluids/superconductors, magnetic order, spin nematic order)


 Low-energy dynamics of the order parameter 
 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -

S(S+1)

Continuum

Magnons

Tower of 
States

1/N 1/L

En
er

gy

 Dynamics of the free order  
 parameter is visible in the finite size  
 spectrum. Depends on the continuous 
 symmetry group. 

 U(1):  (Sz)2   SU(2):  S(S+1) 

 Symmetry properties of levels in the 
 Tower states are crucial and constrain 
 the nature of the broken symmetries.



Square lattice Heisenberg antiferromagnet

Hamiltonian 

Fourier transform 

Keep only the (0,0) and (π,π) mode  

Lieb Mattis model recovered 
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C. Lhuillier, cond-mat/0502464

H = 2J
�
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�k Sk · S�k
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H0 =
4J

N
(S2

tot � S2
A � S2

B)

Figure 2.1: Typical spectrum of a finite size collinear Ising magnet. The
tower of eigen-levels joined by the continuous line and noted |0⟩ is the An-
derson tower of states needed to form a symmetry breaking Ising ordered
ground-state (Eq. 2.13): such a state is non stationary on a finite size sample.
The second set |1⟩ (dashed line) is associated with the lowest excitations,
which are highly degenerate and non dispersive.

On a finite size lattice the classical Néel state (1.13) is a non stationary
state of H0 (eq. 2.7). But, its precession rate decreases as O( 1

N ) with the
system size and becomes infinitely slow in the thermodynamic limit.

The coherent Néel states described by Eq.(1.11), form an (overcomplete)
basis of this ground-state multiplicity. The present study of their SU(2) in-
variant representation shows that the multiplicity of this subspace is O(Nα)
where α is the number of sublattices of the classical Néel state[11, 12]. This
gives a non extensive entropy of the ground-state at T = 0 in agreement
with Nernst theorem.

Excitations
In this model an excited state is obtained by flipping a single spin of a

sublattice. From equation (2.9) one sees that these excitations are localized
and have an energy:

Eexc
Ising = 2J

[

1 +
4(S + 1)

N

]

. (2.11)

For any size these excitations are gapful and O(J).
Conclusion
H0 describes an Ising magnet in an SU(2) invariant framework: its spec-

trum has the very simple structure schematized in Fig. 2.1. In the thermo-
dynamic limit this magnet can be described either in an SU(2) invariant

17

H = J
�

�i,j⇥

Si · Sj



Symmetry decomposition of order parameter

Order parameter manifold forms a representation space for the symmetry 
group of the Hamiltonian 

Decompose this (reducible) representation into irreducible representations

A B A B

1 step translation 
bond reflection 

plaquette rotation

A B A B

SU(2) operation 
with non-collinear 

axis 



Symmetry decomposition of order parameter

As a result of the group theoretical analysis one obtains 

1 irrep with S=0, (0,0) A1 

1 irrep with S=1, (π,π) A1 

1 irrep with S=2, (0,0) A1 

1 irrep with S=3, (π,π) A1 

...

M X 

Figure 2.3: Antiferromagnetic Heisenberg model on the square lattice:
eigen-energies vs eigen-values of S2. The dashed-line is a guide to the eyes
for the QDJS of the symmetry breaking quantum Néel state (Eq. 2.13).
The dotted line joins the states associated to the first magnon. There is
one QDJS for each S (as expected for a collinear antiferromagnet): they are
k = 0 states, and k = (π,π) states, invariant in C4 rotations.

22



Beyond the collinear Neel state

 Bilinear-biquadratic S=1 model on the triangular lattice (model for NiGaS4).
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Tower of States 
S=1 on triangular lattice: Antiferromagnetic phase

 ϑ=0 : coplanar magnetic order,  
          120 degree structure

 Breaks translation symmetry. Tree site unit cell 
 ⇒ nontrivial momenta must appear in TOS 

 non-collinear magnetic structure 
 ⇒ SU(2) is completely broken,  
 number of levels in TOS increases with S 

 Quantum numbers are identical to the S=1/2 case
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Tower of States 
S=1 on triangular lattice: Ferroquadrupolar phase

 ϑ=-π/2 : ferroquadrupolar phase, finite 
quadrupolar moment,  no spin order

 No translation symmetry breaking. 
 ⇒ only trivial momentum appears in TOS 

 Ferroquadrupolar order parameter, only even S  

 all directors are collinear 
 ⇒ SU(2) is broken down to U(1),  
 number of states in TOS is independent of S.
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Tower of States 
S=1 on triangular lattice: Antiferroquadrupolar phase

 ϑ=3π/8 : antiferroquadrupolar phase, finite 
quadrupolar moment,  no spin order, 
three sublattice structure.

 Breaks translation symmetry. Tree site unit cell 
 ⇒ nontrivial momenta must appear in TOS 

 Antiferroquadrupolar order parameter, complicated 
 S dependence. Can be calculated using group 
 theoretical methods.
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Energy Spectroscopy in a putative spin liquid ?  
Kagome Low Energy Spectrum (N=48)
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5 x 1011 complex basis states in each sector}
translation symmetry breaking unlikely



Inversion symmetry breaking ?

Low Energy Spectrum (N=48)
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Z2 topological degeneracy ?

Low Energy Spectrum (N=48)
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chiral spin liquid ?

Low Energy Spectrum (N=48)
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Low Energy Spectrum (N=48)
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Z2 topological times Z2 spatial symmetry breaking ?



 Different options: 

 Play with /and extend/ the code fragment on the following slides 

 Perform the ALPS Tutorial on ED Spectroscopy for a CFT phase transition. 

http://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:ED-04_Criticality 

http://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:ED-05_ED_Phase_Transition 

 Krylov Time Evolution: 

Understand the Mathematica based Krylov time evolution code available on AFS alauchli 

Translate into Python or language of your choice and investigate time evolution of two  
neighbouring flipped spins in a square lattice Heisenberg model as presented in the lecture.

Tutorials

http://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:ED-04_Criticality
http://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:ED-05_ED_Phase_Transition


A simple example (1/4):

#include <vector>
#include <alps/bitops.h>
class SpinOneHalfBasis {
public:

typedef unsigned int state_type;  
typedef unsigned int index_type;  
SpinOneHalfBasis (int L, int TwoSz);  
state_type state(index_type i) const {return states_[i];}  
// lookup based on Lin tables  
index_type lookup(state_type s) const {  
return shighlook[alps::gbits(s,sh,sl)]+slowlook[alps::gbits(s,sl,0)];  
}  
unsigned int dimension() const { return states_.size();}  

private:
// list of configurations in Hilbert space  
std::vector<state_type> states_;  
// Lin tables  
int sl,sh;  
std::vector<index_type> slowlook,shighlook;  

};



A simple example (2/4):

// generating all configurations with correct TwoSz  
// and filling of Lin tables  
for (state_type s=0;s<all_states;++s)  
if(alps::bitcount(s)==Nup) {  

// correct number of up spins  
states_.push_back(s);  
//get sl lowest bits of s  
const int low_nibble  =gbits(s,sl,0);  
//get sh highest bits of s  
const int high_nibble =gbits(s,sh,sl);  

  
if (lasthigh_nibble!=high_nibble) {  

shighlook[high_nibble]=index;  
lasthigh_nibble=high_nibble;  
last_n=index;  

}  
  

slowlook[low_nibble]=index-last_n;  
index++;  

}  
}

SpinOneHalfBasis::SpinOneHalfBasis(int L, int TwoSz)
{

if (L%2) {  
sl=(L+1)/2;  
sh=(L-1)/2;  

    } else
sl=sh=L/2;  

  
slowlook.resize(1<<sl);  
shighlook.resize(1<<sh);  

  
int Nup=(L+TwoSz)/2;  

  
unsigned int all_states=1U<<L;  
unsigned int index=0;  
unsigned int last_n=0;  

    int  lasthigh_nibble=-1;



A simple example (3/4):

class HamiltonianMultiplier : public SpinOneHalfBasis {
public:

HamiltonianMultiplier(int L, int TwoSz, double Jxy, double Jz)  
: SpinOneHalfBasis(L,TwoSz), Jxy_(Jxy), Jz_(Jz), L_(L) {}  
void multiply(std::valarray<double>& v, const std::valarray<double>& w);  

private:
double Jxy_, Jz_;  
int L_;  

}



A simple example (4/4):
void HamiltonianMultiplier::multiply(std::valarray<double>& v,

 const std::valarray<double>& w) {  
// check dimensions  
assert(v.size()==dimension()); assert(w.size()==dimension());  
// do the Jz-term  
for (int i=0;i<dimension();++i) {  
state_type s = state(i);  
// count number of parallel spins  
state_type s = state(i);  
for (int r=0;r<L_-1;++r)  

v[i]+=( 0.25*Jz_-0.5*Jz_*(alps::gbit(s,r)^alps::gbit(s,r+1)) )*w[i];  
}  
// do the Jxy-term  
for (int i=0;i<dimension();++i)  
{  
state_type s = state(i);  
for (int r=0;r<L_-1;++r) {  

if(alps:popcnt(s&(3<<r))==1) { // is state flippable ?  
state_type snew = s^(3<<r); // exchange up and down spins  
index_type idx = lookup(snew);  
v[idx]+=w[i]*Jxy_*0.5;  

}   
}   
}   

}



Homework:

 Take the code fragment from the example and 

 Implement the Hamiltonian with periodic boundary conditions 

 Use the fragment to dump the Hamilton matrix for a toy problem 
 system and diagonalize it in Matlab/Mathematica,.... 

 Write a very basic implemention of a Lanczos eigensolver around it 

 Implement Sz->-Sz symmetry for the Sz=0 sector  

 Implement translation symmetry !  

 Report any progress or questions to andreas.laeuchli@uibk.ac.at

mailto:laeuchli@comp-phys.org


Thank you !


