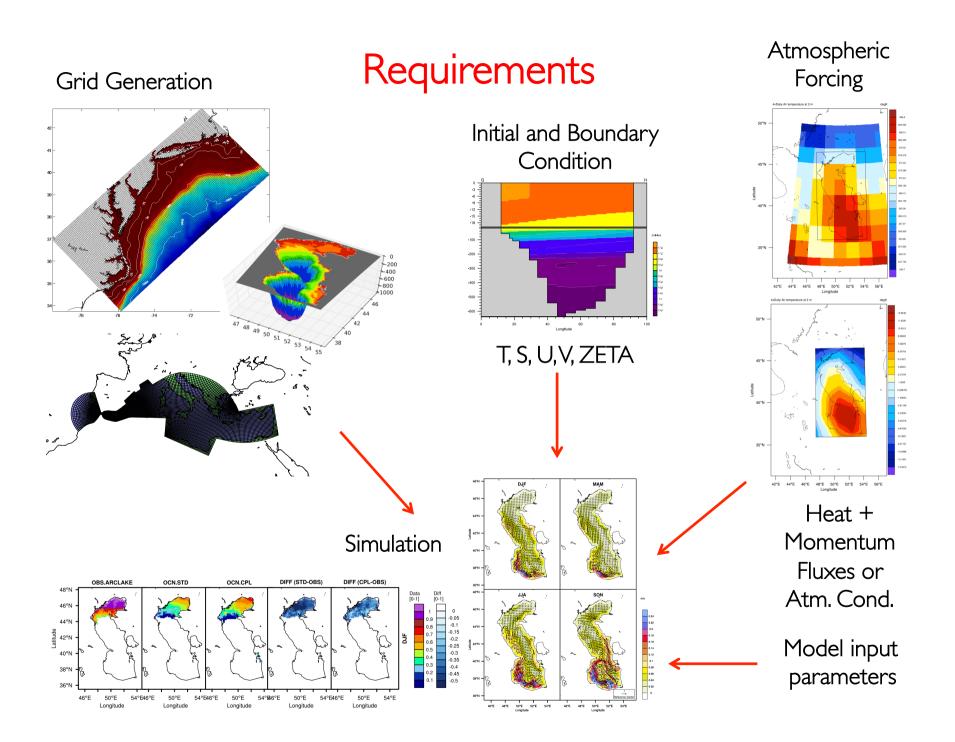


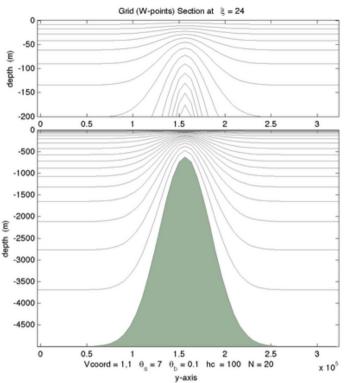
Enrique Curchitser⁽¹⁾ & Ufuk Turuncoglu^(2,3)

⁽¹⁾ Rutgers University, Department of Environmental Sciences, US
⁽²⁾ Istanbul Technical University, Informatics Institute, Turkey
⁽³⁾ ICTP, Earth System Physics Section, Italy

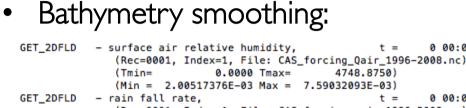

28 Sept. – 1 Oct. 2015: School on Ocean Climate Modelling: Physical and Biogeochemical Dynamics of Semi- Enclosed Seas (smr2711)

Outline

- Introduction to ROMS
 - Requirements
 - Key issues about grid generation
 - Initial and boundary conditions
- Installation
- Test case (UPWELLING)


Regional Ocean Modeling System (ROMS)

- It is a three-dimensional, free-surface, terrain-following (via scoordinates) numerical model.
- Assumptions:
 - Boussinesq (density is nearly constant)
 - It simplifies equation of motion
 - water is incompressible
 - velocities in the ocean is small compared with speed of sound
 - vertical scale of motion is also small
 - Hydrostatic (neglect of inertial accelerations in the vertical momentum eq.)
 - It simplifies vertical component of the velocity
 - Strict hydrostatic balance in all scales
- Wide range of applications
- More info: <u>http://www.people.arsc.edu/~kate/ROMS/manual_2012.pdf</u>


Grid Generation

- Realistic and/or analytic
- ROMS uses s-coordinate in vertical and it follows bathymetry
- The distribution of vertical layers can be controlled using set of parameters
- In horizontal, curvilinear grid is supported
- Grid Generation Tools:
 - MATLAB: SeaGrid, Gridgen, EasyGrid ...
 - Python: octant, pyroms, ...
 - Analytic grid can be also defined using Fortran
- The grid generation plays crucial role in the stability

Grid Generation

0 00:00:00

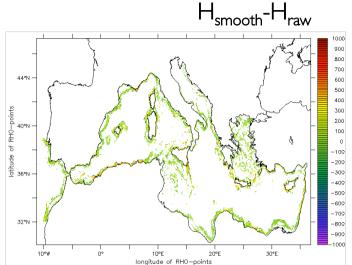
0 00:00:00 (Rec=0001, Index=1, File: CAS_forcing_rain_1996-2008.nc) (Tmin= 0.0000 Tmax= 4748.8750) (Min = 0.0000000E+00 Max = 1.07682618E-05)

Maximum grid stiffness ratios: rx0 = 2.500000E-01 (Beckmann and Haidvogel) rx1 = 3.998703E+00 (Haney)

Initial basin volumes: TotVolume = 7.2973633985E+13 m3 MinVolume = 7.9395051795E+06 m3 MaxVolume = 1.8480204838E+10 m3 Max/Min = 2.3276267753E+03

Grid stiffness ratios: •

$$r_{xo} = \max\left(\frac{\Delta h}{2\overline{h}}\right) = \max\left(\frac{|h_i - h_{i-1}|}{|h_i + h_{i-1}|}\right)$$


$$r_{x1} = \max\left(\frac{z_{i,j,k} - z_{i-1,j,k} + z_{i,j,k-1} - z_{i-1,j,k-1}}{z_{i,j,k} + z_{i-1,j,k} - z_{i,j,k-1} - z_{i-1,j,k-1}}\right)$$

Beckman & Haidvogel Number (1993) Reduced by smoothing < 0.25

Haney Number (1991)

Reduced by smoothing and vert. coordinate modification < 6.0

Tool: Matlab smoothing toolbox (LP_Bathymetry) • http://drobilica.irb.hr/~mathieu/Bathymetry/

Initial and Lateral Boundary Conditions

- Realistic and/or analytic
- Requires (3d for IC and 2d for Lateral BC)
 - salinity,
 - temperature
 - current (u and v)
 - sea surface height fields.
- The input files are defined in netCDF format
- The input files should be recreated when the horizontal and vertical grid changed!
 - There is no need to change files for atmospheric forcing if horizontal grid is same
- Atmospheric forcing
 - Momentum, heat and freshwater fluxes or atmospheric conditions

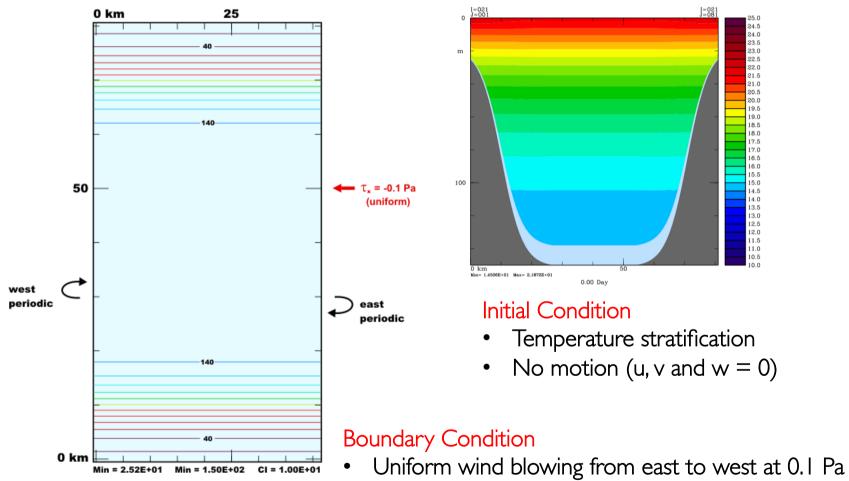
- The code is distributed using SVN repository
- Users need to register to access the code <u>https://www.myroms.org/index.php?page=RomsCode</u>
- Get code

svn checkout https://www.myroms.org/svn/src/trunk MyDir

• Directories

•		
	Atmosphere	
	Compilers	OS/Architecture/compiler specific files
	Data	
	Lib	
	Master	
	ROMS	ROMS source code, files related with test cases
	User	
	Waves	
`	makefile	

• Directories under ROMS/


•	
Adjoint	
Bin	ROMS build script, build.sh
Drivers	
External	Input parameter files for tests, *.in and varinfo.dat
Functionals	Files to create analytic initial and boundary conditions
Include	Option files for test cases, CPP options
License_ROMS.txt	
<u>Modules</u>	
Nonlinear	Source files for non-linear model
Obsolete	
Programs	
Representer	
SeaIce	
<u>Tangent</u>	
Utility	Source files for utility modules
` Version	

- Main steps:
 - Modify build environment (i.e. Compilers/Linux-ifort.mk)
 - External libraries (netCDF, HDF etc.)
 - MPI compiler (OpenMPI, IntelMPI, ...)
 - OpenMP ?
 - Copy build script from ROMS/Bin/build.sh to installation directory
 - Create or copy application specific header file
 - CPP options for model customization
 - Edit build.sh
 - Case identifier (i.e. UPWELLING)
 - Specify source directory
 - MPI, compiler definitions
 - Run build script to install model, ./build.sh

- Application specific options are defined by CPP definitions
- CPP definitions act as a filter to create customized model source code
- <u>CPP options include:</u>
 - Momentum equations (mixing, advection, bottom friction, ...)
 - Tracer equations (mixing, advection, relaxation, rivers ...)
 - Pressure gradient algorithm
 - Atmospheric boundary conditions (i.e. bulk flux alg.)
 - Analytical field definitions (grid, initial conditions etc.)
 - Vertical mixing parameterizations (GLS, MY, LMD, ...)
 - Open boundary conditions
 - Biological (i.e. NPZD, EcoSim) + Sediment Transport models
 - Sea-ice ...

Test case

• Wind-Driven Upwelling/Downwelling over a Periodic Channel

S-coordinate to depth

- ROMS_TOOLS is an alternative to MATLAB toolbox
- It is written in NCL
- Usage
 - Get script
 - git clone https://github.com/uturuncoglu/ROMS_TOOLS.git
 - Edit ROMS_convert_s2z.ncl and specify desired depth levels and list of variables
 - Run script using ncl ROMS_convert_s2z.ncl command
 - Warnings written at the beginning can be ignored. It is about defining dimensions that are already defined in the result file

Questions!

Contact:

Personal web: <u>http://faculty.itu.edu.tr/turuncogl1/</u>

E-mail: <u>u.utku.turuncoglu@be.itu.edu.tr</u>