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* The science of ocean predictions: an
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regional scales and forecast uncertainty
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* The downscaling conundrum: can we
forecast better with limited area, nested

models?
 Conclusions and Outlook

Department of Physics and Astronomy, University of Bologna Sept 29, 2015




The science of ocean
predictions: historical viewpoint

* Bjerknes (1904, 1914) defined for the first time the
‘rational method for weather predictions’

e Two conditions should be fulfilled in order to solve
the prediction problem in atmosphere and oceans

* |- Know the present state of the system as
accurately as possible

* [I- Know the laws of physics that regulate the
time evolution of the basic field state variables,
i.e. have predictive models for atmosphere and
oceans

* These concepts are at the basis of ocean prediction
science also today
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Cruise track :

The first ocean prediction:
Harvard and Monterey 1983
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The first ocean prediction:
Harvard and Monterey 1983
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Operational o,ceano_graph%/ and
ocean prediction science today
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The European Marine Environment

service:
OLCIMICUS

OBSERVATIONS ANALYSES FORECASTS

in real time and DETVATEELY 2 to 10 days
10-20 years t.s.

Y hitp://imarine.copernicus.eu/
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(c;permcus Mediterranean subsystem:
o " the observational component
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Cpernlcus Mediterranean subsystem:
e the modelling component

& 8 & 3
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Gpernicus Mediterranean subsystem:
SR e Quality component
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How did the error decrease in
the first 10 years of operations?
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Vertical analysis error standard deviation
for temperature and salinity
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Forecast skill:

T (degree) reg=0 depth=30
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Forecast Uncertainty
estimation

Shukla (I2005_: “The largest obstacles in realizing the
potential predictability of weather and climate are inaccurate
models and insufficient observations, rather than an intrinsic
limit of predictability’
« Uncertainty of ocean forecasts depends on:

— Ocean Initial condition errors

— Atmospheric forcing errors

— Model errors (Physics, numerics)
* Hypothesis:

— We use ensemble forecasting as a means to test ocean
predictability issues

— We concentrate on atmospheric wind forcing errors and
how they affect the initial condition and forecast errors

— We estimate realistic distribution of wind perturbations
Department of Physics and Astronomy, University of Bologna Sept 29, 2015




Building the wind distributions

usil{w/lg ayesian Hierarchical
odelling (BHM-SVW)

Conceptual and implementation blocks:

Data Stage:
2 types of data, scatterometer

winds and ECMWF analyses/
forecasts

u=-

Process model stage: pol 1P+ 7]y polrf+ 7 ox

Raylegh friction surface model

translated into a stochastic finite _ zf : Ip _ y dp
po(£2+7%) 0x  po(£7+7*)ay

difference equation
U, = 6,D,P,+60,D,P +e,

‘; — elF.LTDI-Pt + el*yDfo- + €v
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Posterior distributions
of BHM-SVW
(Milliff et al., 2011)
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The MFS deterministic forecast and
analysis system

Tuesday mx Tuesday Days
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The BHM-SVW Ocean Ensemble Forecast
method (Pinardi et al., 2011)

Tuesday mx Tuesday Days
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BHM-SVW-OEF initial condition
> and last forecast day spread

Initial condition spread (std)

43

N,
\

A -

Sea Surface Height

, 10-th fcst day spread (std)
il "

0,01

G 0.02

Uncertainty is concentrated at o
the mesoscales. Sea level aon{
spread is comparable ol
to observed sea level error ‘

36N e

34N1 -

Uncertainty is amplified during thg, |
10 days of forecast

’ .
5l

18E 15E " o0E 25€ 30E 5E

0 5E
Department of Physics and Astronom
o 0.01 0.02 0.03 0.04




ECMWF-EPS BHM-SVW
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The Cgernlcus service: coastal

opean Earth Observation Programme

forecasting and new applications

OPEN AND FREE DATA WAREHOUSE

Sea- DSS DSS

T DSS Shi search a( earl
ondition routing P rescue warr>1/|ng
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The limited area forecasting
conundrum

* The question is: can limited area ocean models
increase coarse resolution forecast accuracy?

* Limited area forecasting requires to consider:
— Coastlines at high resolution
— High resolution bathymetry
— Estuary forcings
— Shelf break dynamics
— The initialization problem
— The lateral boundary condition problem

— Surface atmospheric forcing of adequate resolution and
extrapolated to minimize land contamination
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Initialization problem:
the spin up time

* Determination of spin-up time for the nested model
(Simoncelli et al., DAO, 2013, De Dominicis et al., 2014)
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Initialization problem:
the interpolation from coarser
resolution models

* Re-gridding of coarser fields in the finer grid (De
Dominicis et al. OCDYN, 2013)

@ coarse grid and velocity
e interpolated from coarse grid
TR Black: extrapolated from coarse grid with
¢ / Viscous boundary layer assumption
/- % -~/ . (AVERAGE OF NINE COARS
/ — o -~ RESOLUTION GRID
A - POINTS)
/ J/ / o e < Variational methods can also
I VA 7., beusedtoenforce
A SIS S no-slip boundary conditions
bper o el B at the wall after extrapolation
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Lateral boundary condition
problem

A For the tracers and total velocities at outflow/inflow:

90 30

+ —=A(0-6 ;0 =(T,S,U,,
ot uncoarse on ( coarse) ( oal)

B Forthe barotropic component of velocity field, new GENERALIZED

FLATHER BOUNDARY CONDITION has been developed (Oddo and
Pinardi, 2008)

H.+n C I
UF= C CUC_ N _ (...)
Y H,+n, " HF+77F(T'C )

C For different topography at the open boundaries INTERPOLATION

CONSTRAINT ( Pinardi et al., 2003)
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Case 1. coastal forecasting with
unstructured grid models
(Federico et al., 2015)
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Case 2: relocatable structured
and unstructured model
(SURF, Trotta et al., 2015)

Main characteristics: L
1) Increase resolution only when it is needed
and add physics, adapted to local conditions

2) Few hours deployment

3) Multiple nesting
~ .4) Short term forecasting
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First Parent domain
6.5 km Operational model

Second parent domain
2.2 km model

Child domain
700 m model
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7. Case 2: relocatable structured

15 and unstructured model
= (SURF Trotta et al., 2015)
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"2 Case 2: SURF
Bt model error reduction
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-~ _Case 2: using SURF for
-2 Decision Support Systems

june 5, 2015
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SHIP ROUTING

WWIII large scale prediction
ECMWF Wind (Interpolated)
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SHIP ROUTING

WWIII large scale prediction
ECMWF Wind (Interpolated)

SURF_SWAN prediction
ECMWF Wind (Interpolated)
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WWIII large scale prediction
ECMWF Wind (Interpolated)

SHIP ROUTING

SURF_SWAN prediction
ECMWF Wind (Interpolated)
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SHIP ROUTING

SURF_SWAN prediction
ECMWF Wind (Interpolated)
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SHIP ROUTING

SURF_SWAN prediction
ECMWF Wind (Interpolated)
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Simulated SAFE Ship route
( & significant wave height and Direction)

WWIII large scale prediction
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SHIP ROUTING

WWa3 prediction

Wave fields (VTDH,VTZA,VDIR)
ECMWF Wind (Interpolated
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SURF_SWAN prediction
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SHIP ROUTING

SURF_SWAN prediction
ECMWF Wind (Interpolated)
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Simulated SAFE Ship route
( & significant wave height and Direction)

WWIII large scale prediction
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SHIP ROUTING

SURF_SWAN prediction
ECMWF Wind (Interpolated)
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Simulated SAFE Ship route
( & significant wave height and Direction)

WWIII large scale prediction
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Conclusions and Outlook

* European Copernicus Marine Environment Service
started operations and will continue thereafter

* Analysis errors and forecast uncertainty are being
guantified. Ensemble methods with atmospheric forcing
perturbations is a basic method for oceanography

 Open and free global and regional operational products
make possible limited area, coastal short term
forecasting

* Limited area forecasting IMPROVES forecast skill near
coastal areas and in the open ocean with both structured
and unstructured models

 When DSS are coupled to limited area models results
show sensitivities
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Scale selective versus non-scale
selective generalized Flather:
idealized case

Nested model domain

Flather (1976)
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