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Part 1

Mesoscale (eddy) dynamics
and biogeochemical processes
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m Mesoscales and their role on the global scale
(why we care)

m Mechanisms of eddy-induced variability in
primary productivity

eddy stirring and eddy trapping (and possible role in
community composition)

eddy pumping
eddy and wind effects

suggested reading: McGillicuddy, 2016 Annual Review of Marine Science
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The larger picture
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Mesoscale eddies are (almost) everywhere
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Eddy with lifespan > 16 weeks identified in altimetric data between 1992 and

2008. Blue = cyclones; red = anticyclones
Chelton et al., 2011



m Eddies are nonlinear
m They trap fluid and tracers at their interior

m They are responsible for a coherent signal in
propagation of SSH and Chl anomalies

a Eddy-driven stirring of CHL b Composite averages of eddies
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(a) Schematic for eddy-driven stirring of chlorophyll (CHL) for westward eddies and
northward CHL gradient. A smooth contour of CHL (dashed lines) is distorted by the
eddy velocity field (solid lines). Advection of CHL within the large-scale background
CHL gradient results in the positive and negative CHL anomalies (red and blue
regions). (b) Composite averages for clockwise (top) and counterclockwise (bottom)
eddies in the Southeast Pacific (SEP) region ( from McGillicuddy, 2016)



SSH-CHL cross-correlation
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Left: SSH with eddy tracks within +2- of 20-S overlaid (dashed and solid lines for
clockwise- and counterclockwise-rotating eddies). Center: Log10(CHL) with the
same eddy tracks overlaid. ( f ) Lagged cross-correlation between log10(CHL) at
time t and SSH at time t +lag, calculated over ten year. Positive lags correspond to

log10(CHL) leading SSH.

From McGillicuddy, 2016 adapted from Chelton et al. (2011a)



Fig. 2.1.
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Eddy stirring and trapping
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Same advection and a simple
competition model

2 phytoplankton populations, A and B
For every fluid element j, a(t), b(t) = concentrations of A and B

dx =u(x,t)dt

a' (x,y,t)= @4, ;b (x,y,t)= PP,
aa, + Bb, aa, + b,

a(t)+b(t)=1 or slowing decaying function

¢ = length of small-scale homogenization

no annual cycle, sinking, vertical mixing, relative grazing...



The 2D advection is determined according the quasigeostrophic
flow, a random walk or a Ornstein-Uhlenbeck process

Random walk: dx = o °T, dW

Ornstein-Uhlenbeck stochastic model:
dx = udt

dii = - iidr + o’T, dW
TL

where <dW> =0
(dW (1AW (1)) = 26, ;6(t - 1')dt

T, = fOOOR(r)dt

| T
— 1. e d . - d
R(t)=1lim, — fo <u(t) u(t+7) t>
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after 10 months

0.500
0.479 |

0.458
0.438
0.417
0.396
0.375
0.354
0.333
0.313
0.292
0.271
0.250
0.229
0.208
0.188
0.167
0.146
0.125
0.104
0.083
0.083
0.042
0.021
0.000

Eddies may preserve
diversity by isolating
populations

Bracco et al., 2000

(Perruche et al., 2011
repeated the exercice
considering SQG
turbulence: upwelling
in filaments stimulates
competition)
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Diversity in the surtace layer In an eddy-permitting giobal ocean model
(Clayton et al., 2013). Diversity here is defined as the total number of
phytoplankton types with biomass greater than 0.001% of the total
phytoplankton biomass. Black contour lines indicate phytoplankton diversity
hotspots and coincide with regions of elevated eddy activity.
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The ‘Loretta’ cyclonic eddy in the Alenuihaha Channel between the islands of
Hawaii and Maui .

LEFT: Two-day composite of GOES sea-surface temperature during 3-4
September 1999.

RIGHT: eight-day composite of SeaWiFS chlorophyll during 29 August - 5
September 1999.

from Seki et al., GRL , 2001
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Eddy pump: geostrophic (balanced) flow
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McGillicuddy et al., 1998
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Baroclinic instability leads to the formation of cyclonic eddies
with a raised thermocline and anticyclonic eddies with a
depressed thermocline. IF the nutricline and the thermocline
coincide, around time of eddy formation production is

enhanced inside cyclonic eddies

a Formation/intensification

Cyclone Mode-water eddy Anticyclone
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b Decay/relaxation

Cyclone Mode-water eddy Anticyclone
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McGillicuddy, 2016



from Ledwell et al., 2008
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Fig 2. Cross sections of potential density anomaly, a5, and fluorescence, from stations occupied 4-6 July 2005 during cruise OC415-1. CTD statio
locations are indicated along the top axis. (A) g, (kg/m’); (B) o5 (kg/m?) and (C) fluorescence (RFU).
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Map of correlations between SSH and Chl anomalies
Negative correlations: Chl is anomalously high in
cyclones and viceversa. Gaube et al., 2014

Chl anomalies in the Gulf Stream and Indian
Ocean. Gaube et al., 2014



Eddies and wind

How do eddies and wind interact? Three ways:
m SST feedback: Cold anomalies stabilize the atmospheric

boundary layer and viceversa

—>

increase

surface wind speeds over warmer than surrounding water and

decrease over colder water (Chelton et al., 2004)

m Interaction between wind stress and surface currents (Martin
& Richards, 2001)
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m Submesoscale ageostrophic circulations that can create
patches of vertical velocity. If wind is uniform and the eddy is
symmetric, this creates a dipole of upwelling and downwelling
(Flierl and McGillicuddy, 2002) but may get more complicated
(see next lecture)

He et al., | _ |
2014 ¢ -+ . .

CHL monopole CHL dipole Total CHL anomalies

According to recent work by Gaube et al. (2015) the SST effect
is the smallest of the three. Effect #2 is generally dominant and
can explain positive Chl in anticyclones and negative in cyclones
(true for Indian Ocean eddies, but from satellite images emerges
than anomalies are present at detection — trapping of coastal
waters at formation (Moore et al., 2007)
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MLD, eddy pumping and wind

Winter Summer

B . S B, e d S
E&D &2 & a2
A . . ("7_ B — - b —

: ::.'.’_ . . T : s e g ' A
-
=

———————
¥ ° - —— -

|«<—— 1D —

Lo .., AT goe = | D ';;'o‘.‘.\'
Nutricline-az sse a3 T8 oL ~ et p e
050 000, D ..'.....
: O MERELE
S OO
.'.. «* .-t
'... .... ‘e ....
TR o 3
22 82% oo et

Cé&- >  Cyclonic Eddy €3>  Anticyclonic Eddy

Nutrients ﬁ Eddy pumping

(W >  Positive CHLA @G> Negative CHLA
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and strong winds) and summer (shallow MLD and weaker, less variable winds)
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Contribution of eddy induced flux to primary
productivity budgets

m Difficult to measure / large geographical variability

(a) CHLA in Cyclonic Eddies (b) CHLA in Anticyclonic Eddies (c) CHLA in All Eddies
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m Hard to quantify relative contribution of processes at play
(but we have/will soon have better towed instruments
and finer resolution in altimeter missions)

m |tis a coupled problem
m Different models give different results

m Results are resolution dependent (but modeling
capabilities are improving and coupled high res runs are
possible)
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Anticyclone north of the ACC
in January 2004
Observations (top) from
Kahru et al., (2007)

and model (bottom) from
Levy & Klein (2004)

1,000 1,100 1,200
Distance (km)

-020 012 004 O 012 020
Relative vorticity {units of f)



