ICTP Ocean Modelling Summer School Lab *CVMix Vertical Mixing Library*

CVMix Team: M. Levy¹, G. Danabasoglu¹, S. Griffies², T. Ringler³, A. Adcroft², R. Hallberg², D. Jacobsen³, and W. Large¹

¹National Center for Atmospheric Research

²Geophysical Fluid Dynamics Laboratory

³Los Alamos National Laboratory

ICTP Summer School

Ankara, Turkey September 28 - Oct 1, 2015

Outline

- Community Earth System Model (CESM)
 - About the Model
 - Brief Introduction to Running CESM
- 2 The Community Vertical Mixing Project
 - Overview
 - Mixing in Ocean Models
 - Mixing Parameterizations Supported in CVMix
 - Stand-alone CVMix Tests
 - Idealized KPP Test
 - Lab Exercises
 - More CESM Setup Details (with bonus argo tips)
 - Visualization Tips
 - Basic Global Exercises (#1 and #2)
 - Basic 1D Exercises (#3, #4, and #5)
 - Optional Stand-Alone CVMix Exercises

References

Community Earth System Model (CESM)

Community Earth System Model

About

A flexible global climate model

- Couples atmosphere, ocean, land, and sea ice components.
- CESM 1.2 was released in June 2013 (CESM 1.2.2 in June 2014)
- CESM 2.0 will be available in June 2016 (I think)

NCAR's coupler + community's component models; lots of component development done at NCAR as well

How flexible?

- Active components: CAM [atmosphere], POP [ocean], CLM [land], CICE [sea ice]
- Provides data models (for example force POP with atmospheric data instead of an active model)
- Also provides "stub" models (for example, running CLM with data atmosphere does not require any ocean or sea ice forcing)

M. Levy (mlevy@ucar.edu)

Four commands to run CESM on a supported machine

Run the following from \$CESMROOT/scripts:

(1) ./create_newcase -case \$CASEDIR/\$CASENAME -compset \$COMPSET -res \$RESOLUTION -mach \$MACHINE

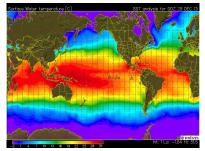
Run the following from \$CASEDIR:

- (2) ./cesm_setup
- (3) ./\$CASENAME.build
- (4) ./\$CASENAME.submit

What will this run?

The default setup is a 5-day simulation; output will depend on the components selected.

Coming up


- Later in this talk, I will talk about setting up a couple of ocean-only runs on argo
 - I'll point you to \$CESMROOT
 - I'll tell you that ocean is the only active component in a "C" compset (data atmosphere and sea ice, stub land)
- For general information, see http://www.cesm.ucar.edu/models/cesm1.2/

But first ...

... Let's talk about vertical mixing and CVMix

The Community Vertical Mixing Project

Why is Vertical Mixing Important to Ocean Models?

http://weather.unisys.com/archive/sst/sst-131229.gif (Dec 29, 2013)

Basics

- Sea surface temperature (SST) has a major role in atmosphere ↔ ocean energy exchange
- Vertical mixing is one of many processes affecting SST
 - Occurs on scales that are not resolved by current ocean models, need to use parameterization instead
- Other physical quantities (tracers, salinity, etc) also affected by mixing

Mixing in Ocean Models

Current state

- Numerous techniques for parameterizing the mixing process
- Model developers choose their favorite parameterization(s) and code them up as part of the ocean model

CVMix project

- Our goal: produce an easy-to-use library containing a range of parameterizations
- Secondary goal: provide a stand-alone driver to test the library on its own
 - Note: we use the term "stand-alone driver" a bit loosely. CVMix can compute single-column diffusivities given proper input, but lacks the capability to see how diffusivities change over time.

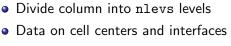
Why CVMix?

Driving force

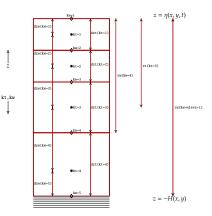
CESM Workshop (Breckenridge) 2012: MPAS-O (ocean model from LANL) did not have a KPP module yet and MOM5 (from GFDL) was using an outdated implementation – lab wanted to improve on for MOM6.

• CVMix is now used in development of MPAS-O and MOM6, and will [eventually] replace the mixing modules in POP.

Other benefits


- Reduce duplicate code for example, static mixing occurs as a step in many parameterizations
- SEG is working to include non-POP / non-data ocean models in CESM
 - Vertical mixing library allows [some] physics to stay the same even if dynamics change
 - Allow more detailed model inter-comparisons

CVMix will...


- Provide a transparent, robust, flexible, well documented, open source library for use in parameterizing ocean vertical mixing processes.
- Contain a consensus of first-order closures that return a vertical diffusivity, viscosity, and possibly a non-local transport.
- Be comprised of Fortran modules that may be used in a stand-alone manner or incorporated into ocean models.
- Be developed within a community of scientists and engineers who make use of CVMix modules for a variety of research needs.

CVMix modules will be freely distributed under GPLv2 using an open source methodology.

Vertical Mixing Overview

- Center index $kt = 1 \dots$ nlevs
- Interface index kw = 1... nlevs+1
- Depth z
 - η at surface
 - 0 at average sea level
 - -H(x, y) at bottom (positive up!)

What does a vertical mixing parameterization look like?

- Inputs: combination of parameters and physical values in column
- Outputs: viscosity (ν) and tracer diffusivity (κ) coefficients on cell interfaces

M. Levy (mlevy@ucar.edu)

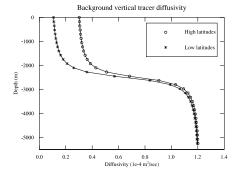
[Some] Mixing Parameterizations

Static background mixing

- Constant mixing (Ekman, 1905)
- Bryan-Lewis (1979)
- Henyey et al. (1986)
- Itidal mixing
 - Simmons et al. (2004)
 - Polzin (2009) / Melet et al. (2013)
- Shear-induced mixing ("Richardson number mixing")
 - Pacanowski and Philander (1981)
 - Large et al. (1994), henceforth LMD94
 - Jackson et al. (2008)
- Double diffusion mixing (Schmitt, 1994 / LMD94 / Danabasoglu et al., 2006)
- S K-profile parameterization ("KPP"; LMD94)
- Convective adjustment (density based as well as Brunt-Väisälä)

Blue indicates method is already in package.

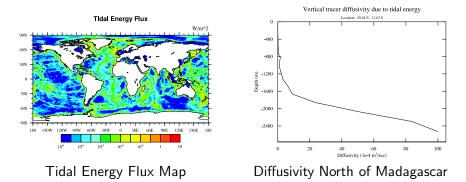
M. Levy (mlevy@ucar.edu)


Various stages of progress

- Langmuir (surface wave) mixing brought in to KPP by group at Brown University, currently in testing
- KPP bottom surface layer mentioned by Enrique in a couple of conversations, maybe on a to-do list?
- Your favorite scheme here this is a community model!

Bryan-Lewis Profile

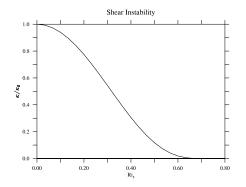
Want diffusivity to increase towards bottom of ocean (mimic tidal mixing).


At right: diffusivity profile of two columns representing columns in different latitudes.

Diffusivity and viscosity depend on depth

$$\kappa = c_0 + \frac{c_1}{\pi} \tan^{-1} \left(c_2((-z) - c_3) \right)$$
$$\nu = \Pr \kappa$$

Tidal Mixing


Diffusivity depends on tidal energy flux, depth, density, and buoyancy

$$\kappa = \frac{q\Gamma E(x, y)F(x, y, z)}{\rho N^2}$$
$$F(x, y, z) = \frac{e^{-z/\zeta}}{\zeta (e^{H(x, y)/\zeta} - e^{-\eta(x, y)/\zeta})}$$

Shear Mixing

Want diffusivity to decrease as Richardson number (Ri) increases; $\kappa = 0$ if Ri \geq Ri₀ = 0.7.

At right: The stand-alone driver produces the shear mixing diffusivity profile plot from Fig. 3 of LMD94.

Diffusivity and viscosity depend on Richardson number

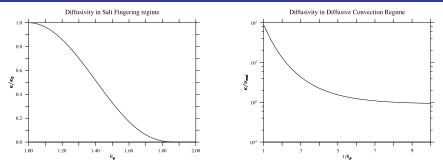
$$\begin{split} \kappa &= \begin{cases} \kappa_0 & \mathsf{Ri} \leq 0\\ \kappa_0 [1 - (\mathsf{Ri}/\mathsf{Ri}_0)^{p_1}]^{p_2} & 0 < \mathsf{Ri} < \mathsf{Ri}_0\\ 0 & \mathsf{Ri} \geq \mathsf{Ri}_0 \end{cases}\\ \nu &= \mathsf{Pr}\kappa \end{split}$$

Double Diffusion Mixing

Two regimes

Determine which regime we are in via stratification parameter

$$\mathsf{R}_{\rho} = \frac{\alpha}{\beta} \left(\frac{\partial \Theta / \partial z}{\partial S / \partial z} \right),$$


where α is the thermal expansion coefficient and β is the haline contraction coefficient:

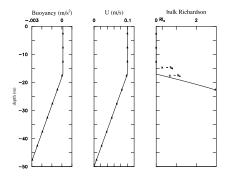
- Salt Fingering $(\partial S/\partial z > 0 \text{ and } 1 < R_{\rho} < R_{\rho}^{0})$; salt water above fresher water \Rightarrow salt water will sink
- ② Diffusive Convective Instability ($\partial \Theta / \partial z < 0$ and $0 < R_{\rho} < 1$); cold water above warm water ⇒ cold water will sink

And that's not all...

Double diffusion also introduces idea of different diffusivity for temperature and salinity (κ_{Θ} and κ_{S} , respectively).

Double Diffusion Mixing

Diffusivity profiles for the two regimes (Fig. 4 in LMD94).


Salt-fingering regime

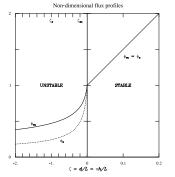
$$\kappa_{\mathcal{S}} = \kappa_0 \left[1 - \left(\frac{\mathsf{R}_{\rho} - 1}{\mathsf{R}_{\rho}^0 - 1} \right)^{p_1} \right]^{p_2}$$

$$\kappa_{\Theta} = 0.7\kappa_{\mathcal{S}}$$

Diffusive convective regime

$$\kappa_{\Theta} = \nu_{\text{mol}} \cdot c_1 \exp\left(c_2 \exp\left[c_3 \frac{1 - \mathsf{R}_{\rho}}{\mathsf{R}_{\rho}}\right]\right)$$

$$\kappa_{\mathcal{S}} = \max(0.15 \mathsf{R}_{\rho}, 1.85 \mathsf{R}_{\rho} - 0.85) \kappa_{\Theta}$$

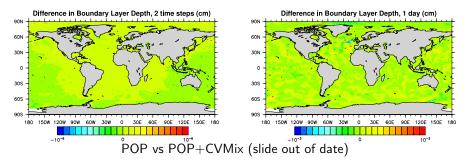

Bouyancy, velocity, and bulk Richardson values (Fig. C1 in LMD94).

The boundary layer depth (h) computed based on bulk Richardson number

$$Ri_b(z) = \frac{-z(B_r - B(z))}{|\mathbf{V}_r - \mathbf{V}(z)|^2 + \mathbf{V}_t^2(z)}$$

 V_t is unresolved velocity shear, see Eq. (23) in LMD94.

KPP Mixing


Flux profiles ϕ (Fig. B1 in LMD94).

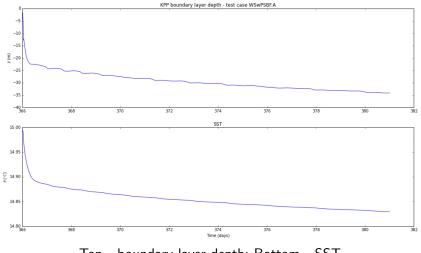
Inside the boundary layer, diffusivity is given by

$$\nu | \kappa = h w_{m|s}(-z/h) G(-z/h)$$

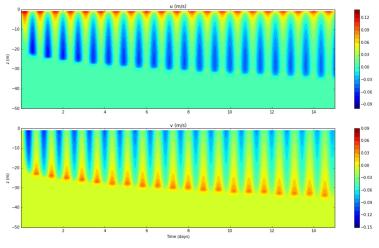
 $w_{m|s}$, the turbulent velocity scale for momentum or scalar quantities, is inversely proportional to $\phi_{m|s}$; G is a shape function defined to ensure a smooth κ .

CVMix in POP

What part of CVMix is available in POP?

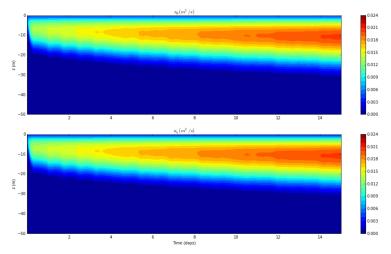

• Just used in KPP boundary layer (no internal mixing yet)

- CVMix is used to compute bulk Richardson number and boundary layer depth
- POP computes internal mixing coefficients
- OVMix updates mixing coefficients inside boundary layer


Testcase setup

- 400 m column of water, 1m vertical resolution (\Rightarrow 400 levels)
- Initial conditions
 - Temperature is 15° at surface and 11° at bottom (decreasing linearly)
 - Salinity is 35 psu throughout
 - Velocities (*u*, *v*) are set to 0
- Surface forcing:
 - Wind stress is 0.1 N/m^2 in zonal direction, 0 meridonal
 - Surface heat flux is 0 $W/m^2\,$
- Coriolis: $f = 10^{-4} \text{ sec}^{-1}$
- No mixing except for KPP
- Run for 15 days with 20 minute time step

Output - Boundary Layer Depth and SST



Output - Velocity

Top - zonal velocity; Bottom - meridonal velocity

Output - Diffusivity

Top - Temperature diffusivity; Bottom - momentum diffusivity

Filling in Specifics from an Earlier Slide

First step for running CESM

Run the following from \$CESMROOT/scripts:

(1) ./create_newcase -case \$CASEDIR/\$CASENAME -compset \$COMPSET -res \$RESOLUTION -mach \$MACHINE

Variable definitions

- \$CESMROOT = /home/mlevy/codes/cesm1_2_2.cvmix
- \$CASEDIR is up to you, but I recommend something like \sim /cases/
- \$CASENAME is also up to you, but be descriptive Pro tip: Useful to include compset and resolution
- COMPSET = C
- \$MACHINE = argo
- \$RESOLUTION varies global experiments use T62_g37 (nominal ocean resolution of 3°, displaced pole); 1D experiments use 1D_1D

Understanding the '-res' option

- CESM assumes you are running components on two grid
 - Atmosphere and land models share a grid
 - Ocean and sea ice share a grid

Specify resolution of the form [atm]_[ocn]

- You can run the atmosphere and land on different grids by specifying [atm]_[Ind]_[ocn] but ocean and sea ice MUST use same grid
- The 'production' ocean grid is g16, nominal 1° displaced pole but the 3° grid is much cheaper \Rightarrow better for testing / teaching
- The 1D ocean grid is not part of the CESM release Gokhan and I created it to make it easier to test CVMix
 - Turns off horizontal mixing / other horizontal forcings
 - Tracers and velocity are collocated (staggered in global resolution)
 - Uses linear equations of state
- T62 is the "native" resolution of atmospheric forcing data

KPP namelist in global resolution

&vmix_kpp_nml
bckgrnd_vdc1 = 0.16
bckgrnd_vdc2 = 0.0
bckgrnd_vdc_ban = 1.0
bckgrnd_vdc_dpth = 1000.0e02
bckgrnd_vdc_eq = 0.01
bckgrnd_vdc_linv = 4.5e-05
bckgrnd_vdc_psim = 0.13
lcheckekmo = .false.
lcvmix = .false.

ldbl_diff = .true. lhoriz_varying_bckgrnd = .true. linertial = .false. llangmuir = .false. lrich = .true. lshort_wave = .true. num_v_smooth_ri = 1 prandtl = 10.0 rich_mix = 50.0 /

KPP namelist in single column resolution

```
&vmix_kpp_nml
bckgrnd_vdc1 = 0.0
bckgrnd_vdc2 = 0.0
bckgrnd_vdc_ban = 0.0
bckgrnd_vdc_dpth = 0.0
bckgrnd_vdc_eq = 0.0
bckgrnd_vdc_linv = 4.5e-05
bckgrnd_vdc_psim = 0.0
lcheckekmo = .false.
lcvmix = .false.
```

ldbl_diff = .false. lhoriz_varying_bckgrnd = .false. linertial = .false. llangmuir = .false. lrich = .false. lshort_wave = .true. num_v_smooth_ri = 1 prandtl = 10.0 rich_mix = 50.0

Effect of 1D Resolution on Namelist

Also added a new namelist

```
&pop1d_nml
global_shf_coeff = 0.0
global_taux = 0.1
lcompute_coriolis = .false.
single_col_coriolis = 0.0001
single_col_lat = 0.0
single_col_lon = 0.0
/
```

Description Surface heat flux (W/m²) τ_x (N/m²) if true, $f = 2\Omega \sin(\theta)$ otherwise, this is flatitude of single column longitude of single column (must match domain file!)

Apologies

I should not have used global_* for variable names, that's a terrible convention! The first implementation of 1D model was actually run on a 3° grid producing identical columns; I should have changed these to single_col_* for the new grid.

Configuring and Building Your Case

Issue commands from \$CASEDIR

- Run ./cesm_setup
- O Make build-time changes
 - CESM build settings are in env_build.xml
 - Can modify CESM component source code by copying module to SourceMods/src. [comp]/ and editing in your case directory
- Suild the model by running ./\$CASENAME.build
- Make run-time changes
 - Component namelists are changed by adding entries to user_nl_[comp] (after change run preview_namelists)
 - Read-only copies of component namelists in CaseDocs/ (named *_in)
 - CESM settings are in env_run.xml Pro tip: You don't need to edit the text file directly! Instead run ./xmlchange VARIABLE=new_value
- Sun the model with ./\$CASENAME.submit
 - Output will be in ~/scratch/\$CASENAME/run

Running on argo

Logging in

Two step process:

- ssh -XY [username]@ssh.ictp.it
- Ssh -XY argo.ictp.it

Parallel jobs

- We have access to the esp_guest queue
 - 4 nodes \Rightarrow only 4 jobs running simultaneously
 - Run showfree esp_guest to see how many nodes are available
 - Run qstat -u \$USERNAME to see the status of your jobs Q for "in the queue", R for "running"
 - Run qstat -r esp_guest to see what is running in the guest queue
- Most exercises should run in 5 or 10 minutes
- Short runtime + single node job means we can also squeeze into testing queue (1 more node)

Connecting to the wireless

Network name: ng2k

Username: ozsoy

Password: ozzo123

Loading tools on argo

- ncview should be in your path by default
- Run module load nco to add the netCDF operators we specifically want ncdiff to look at differences between two cases
- For 1D: there is a very basic NCL script in /home/mlevy/1D_scripts
 - Copy to your home directory and edit case name.
 - 2 Before you run for the first time, run module load ncl
 - execute with ncl 1D\ visualization.ncl

Looking at output locally

• If you have ipython on your laptop, there is a notebook designed for looking at 1D output available via git by cloning git@github.com:mnlevy1981/1D_POP_output_ICTP.git

Visualization Tips

Variables of interest

- HBLT Boundary layer depth
- RI_BULK Bulk Richardson number
- VVC, VDC_T, VDC_S Diffusivities (momentum, temperature, salinity)
- TEMP, SALT, UVEL, VVEL Temperature, salinity, velocity components

Default output (resolution-dependent)

- Look in ~/scratch/\$CASENAME/run/
- Global exercises
 - Monthly average of 3D fields
 - Output stored in \$CASENAME.pop.h.0001-01.nc
- Single column exercise
 - Output every timestep (20 minutes)
 - Output stored in \$CASENAME.pop.h.0001-01-02-01200.nc

In this test, we run a global ocean model for one month.

Create a new case using the following settings

- Component Set: C
- Resolution: T62_g37

Intersection of the second state of the sec

./xmlchange STOP_N=1,STOP_OPTION=nmonths

Build and run the model

Exercise #2 - Use CVMix for KPP

About the test

In this test, we use the CVMix library's version of KPP instead of the POP-specific implementation.

- Screate a clone of your case from exercise #1 (See next slide!)
- Make the necessary change to user_nl_pop2 to enable CVMix for the boundary layer computation *Hint: look for* lcvmix *in* CaseDocs/pop2_in
- Build and run the model for one month. Verify cloning the case brought over the changes from env_run.xml by running

./xmlquery STOP_N,STOP_OPTION

How are the results different from those of exercise #1? Note: In the POP history files, the variable HBLT is boundary layer depth. What other variables might be interesting to look at? Instead of ./create_newcase, run ./create_clone -clone \$CASEDIR/\$OLDCASENAME -case \$CASEDIR/\$NEWCASENAME Copies env_*.xml and user_nl_*
 In \$CASEDIR/\$NEWCASENAME, run ./cesm_setup
 Time-saving hint: if you are not making changes to the source code, you can use the same executable (otherwise you need to run \$NEWCASENAME.build). To re-use the executable:

 In \$CASEDIR/\$OLDCASENAME, run ./xmlquery EXEROOT and copy the executable directory to your clipboard

In \$CASEDIR/\$NEWCASENAME, run ./xmlchange EXEROOT=[copied directory]

In \$CASEDIR/\$NEWCASENAME, run ./xmlchange BUILD_COMPLETE=TRUE

In this test, we run a single column ocean test for 15 days using the CVMix KPP routines. There is no surface heat flux and the windstress is specified by $(\tau_x, \tau_y) = (0.1, 0) \text{ N/m}^2$

Create a new case using the following settings

- Component Set: C
- Resolution: <u>1D_1D</u>
- Intersection of the second section of the second second

./xmlchange STOP_N=16 NOTE: this only runs POP for 15 days

- The default option uses POP's KPP routines, edit user_nl_pop2 to use CVMix's routines instead
- Build and run the model

In this test, we remove the wind stress but apply strong cooling at the surface (heat flux = -100 W/m^2).

- Create a clone of your case from exercise #3
- Make the necessary change to user_nl_pop2 to set zonal surface wind stress to 0 N/m² and surface heat flux to -100 W/m² Hint: look for global_taux and global_shf_coeff in CaseDocs/pop2_in
- Build and run the model for 16 days
- Icon are the results different from those of exercise #3?

In this test, we keep the 0.1 N/m^2 wind stress and also apply a strong surface heat flux (100 $W/m^2).$

- Create a clone of your case from exercise #3
- Make the necessary change to user_nl_pop2 to set surface heat flux to 100 W/m²
- Build and run the model for 16 days
- How are the results different from those of exercise #3 and #4?

Running CVMix Without an Ocean Model

Setup (argo or your local machine)

- Clone git repository at git@github.com:CVMix/CVMix-src.git
- Build by running make (or make netcdf) from src/
- First time you build, you will be prompted for compiler name and netcdf location. On argo:
 - First run module load intel netcdf/4.3.1/intel/2013
 - Compiler is ifort and location of nc-config is /opt/netcdf/4.3.1/intel/2013/bin
- Successful build \Rightarrow run pre-set tests in reg_tests
- No MPI needed means no waiting in the queue

Caveat

CVMix does not solve equations of state or do any time stepping – it just tests that "correct" diffusivities are produced for specific parameter specifications

Homework - Bring CVMix to your Model

If you are interested

- POP source code is in \$CESMROOT/models/ocn/pop2/source/
- Main mixing driver is vertical_mix.F90; KPP is in vmix_kpp.F90
- Look for "call cvmix_" in the KPP code
 - call cvmix_init_kpp initializes KPP module
 - Call cvmix_kpp_compute_OBL_depth computes depth of ocean boundary layer
 - Scall cvmix_coeffs_kpp computes diffusivity coefficients
- To compute boundary layer depth, need bulk Richardson number (cvmix_kpp_compute_bulk_Richardson function)
- Need to massage model data into CVMix data type
 - See cvmix_data_type structure, defined in cvmix/cvmix_kinds_and_types.F90
 - POP uses cvmix_put, but data type can also use pointers instead of memory copy
- Probably easier to start with non-KPP module...

References

0	Bryan, K. and L. J. Lewis, 1979: A water mass model of the world ocean. <i>Journal of Geophysical Research</i> , 84, 2503-2517.
2	Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. <i>Journal of Climate</i> , 19 , 2347-2365.
3	Ekman, V. W., 1905: On the influence of the Earth's rotation on ocean-currents. Arkiv för Matematik, Astronomi och Fysik, 2, 1-53.
3	Henyey, F., J. Wright, and S. M. Flatte, 1986: Energy and action flow through the internal wave field: an eikonal approach. <i>Journal of Geophysical Research</i> , 91 , 8487-8496.
6	Jackson, L., R. Hallberg, and S. Legg, 2008: A parameterization of shear-driven turbulence for ocean climate models. Journal of Physical Oceanography, 38 , 1033-1053.
0	Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. <i>Reviews of Geophysics</i> , 32 , 363-403.
0	Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. <i>Journal of Physical Oceanography</i> , 43 , 602-615.
8	Pacanowksi, R. C. and G. Philander, 1981: Parameterization of vertical mixing in munerical models of the tropical ocean. <i>Journal of Physical Oceanography</i> , 11 , 1442-1451.
9	Polzin, K. L., 2009: An abyssal recipe. Ocean Modelling, 30, 298-309.
0	Schmitt, R. W., 1994: Double diffusion in oceanography. Annual Review of Fluid Mechanics, 26, 255-285.
0	Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. <i>Ocean Modelling</i> , 6 , 245-263.