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•  ICTP	
  Diploma	
  –	
  one	
  year	
  fully	
  	
  
masters-­‐like	
  programme	
  in	
  
earth	
  system	
  sciences.	
  

•  STEP	
  –	
  sandwich	
  PhD	
  
programme.	
  joint	
  supervisors,	
  
6	
  months	
  visit	
  each	
  year	
  

•  Associate	
  programme	
  –	
  junior	
  
to	
  senior,	
  3	
  visits	
  in	
  6	
  years.	
  

•  Oceangraphy	
  
•  Regional	
  climate	
  modelling	
  	
  
•  Aerosols	
  (REGCM)	
  
•  TeleconnecOons	
  (Speedy)	
  
•  Health	
  ApplicaOons	
  (VECTRI)	
  
•  Hydrology	
  (CHYM)	
  
•  Solid	
  earth	
  geophysics	
  
•  CompuOng	
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NowcasOng	
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Seasonal	
  

Decadal	
  

Aim	
  of	
  this	
  workshop	
  

•  Ensembles	
  
•  IniOalizaOon	
  
•  Hindcasts	
  

Need	
  to	
  consider:	
  



Aim	
  of	
  the	
  School	
  

•  Introduce	
  subseasonal	
  phenomena	
  that	
  can	
  lead	
  to	
  
predictability	
  (e.g.	
  MJO,	
  planetary	
  waves)	
  

•  Give	
  an	
  overview	
  of	
  NWP	
  systems	
  
•  Introduce	
  the	
  new	
  S2S	
  database	
  at	
  ECMWF	
  

–  Explain	
  the	
  web	
  interface	
  
–  Show	
  how	
  to	
  retrieve	
  S2S	
  datasets	
  using	
  python	
  scripts	
  

•  Introduce	
  observaOon	
  databases	
  (IRI)	
  and	
  the	
  reanalysis	
  
dataset	
  for	
  evaluaOon	
  

•  Show	
  examples	
  of	
  S2S	
  applicaOons	
  in	
  drought	
  and	
  flood	
  
forecasOng	
  

•  Give	
  you	
  a	
  chance	
  to	
  have	
  hands-­‐on	
  experience	
  at	
  
manipulaOng	
  the	
  S2S	
  datasets	
  in	
  a	
  series	
  of	
  lab	
  classes	
  

•  Now:	
  Uncertainty	
  in	
  forecasOng	
  systems,	
  simple	
  
introducOon	
  to	
  the	
  way	
  S2S	
  and	
  seasonal	
  forecasOng	
  
systems	
  are	
  set	
  up...	
  	
  uncertainty	
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The	
  conOnium	
  hypothesis	
  	
  

How	
  large?	
  
•  compuOng	
  

power	
  
•  Domain	
  of	
  

simulaOon?	
  
•  Length	
  of	
  

problem	
  (5	
  days	
  
forecast	
  of	
  100	
  
year	
  climate	
  
projecOon?)	
  



Progression	
  in	
  resoluOon	
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T799	
   T1279	
  

From	
  
climate	
  
model	
  
resoluOons	
  

To	
  
medium	
  
range	
  
NWP	
  



What	
  is	
  the	
  issue	
  concerning	
  finite	
  grid	
  scales?	
  

Many	
  processes	
  are	
  subgrid-­‐scale!	
  
They	
  must	
  therefore	
  be	
  represented	
  by	
  
parametrizaOons	
  –	
  simple	
  models	
  that	
  
represent	
  the	
  effect	
  of	
  the	
  small	
  scales	
  in	
  
terms	
  of	
  the	
  grid-­‐resolved	
  variables.	
  	
  



Key	
  physical	
  
processes	
  to	
  be	
  
parametrized	
  in	
  

NWP	
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Again,	
  in	
  such	
  models	
  the	
  effects	
  
of	
  subgrid-­‐scale	
  and	
  non-­‐local	
  

turbulent	
  transports	
  need	
  to	
  be	
  
represented	
  



ParameterizaOons	
  

•  Why	
  are	
  we	
  worried	
  about	
  parametrizaOons?	
  
– Not	
  always	
  derivable	
  from	
  theory	
  	
  
– May	
  contain	
  ad-­‐hoc	
  assumpOons,	
  parOcularly	
  to	
  close	
  
the	
  equaOon	
  set.	
  

– May	
  contain	
  parameters	
  that	
  are	
  difficult	
  to	
  measure	
  
from	
  observaOons	
  or	
  derive	
  from	
  theory.	
  

•  Result:	
  model	
  uncertainty	
  	
  
•  Example:	
  in	
  CMIP3/AR4	
  cloud	
  parametrizaOon	
  
schemes	
  were	
  the	
  larges	
  cause	
  of	
  differences	
  in	
  
climate	
  sensiOvity	
  between	
  the	
  models.	
  	
  This	
  has	
  
not	
  changed	
  in	
  CMIP5/AR5.	
  



Example	
  from	
  Andrews	
  et	
  al.	
  GRL	
  (2012)	
  shows	
  the	
  
large	
  differences	
  between	
  CMIP5	
  model	
  cloud	
  

feedback	
  relaOve	
  to	
  the	
  clear-­‐sky	
  radiaOve	
  feedbacks	
  

noted a similar relationship between total anthropogenic
forcing and climate sensitivity in the CMIP3 models. In our
results, which are for CO2-only forcing, the correlation
coefficient between F and !a is !0.41, which is not sig-
nificant at the 95% level.
[14] Using the same linear regression technique, we

decompose the feedback parameter a into longwave (LW)
clear-sky, shortwave (SW) clear-sky, and LW and SW cloud
radiative effect (CRE) components (all fluxes defined as

positive downwards). For two of the AOGCMs, regression
plots are shown in Figure 3 (all models are shown in Figures
S1–S6 in the auxiliary material).1 CRE terms are defined as the
difference between all-sky (i.e., with clouds if present) and
clear-sky (i.e., clouds artificially removed) net downward

Figure 2. Comparison of the 2xCO2 equilibrium climate sensitivity, 4xCO2 adjusted radiative forcing (from fixed-SST,
Fsst, and regression, F) and various climate feedback terms. The models are ordered from left to right in order of their equi-
librium climate sensitivity. Note that in the top panel, a is reported as the climate feedback parameter, rather than !a, to
maintain the same scale. Errors bars represent 95% (2.5–97.5%) confidence interval on the fit (see Section 2.3).

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL051607.

ANDREWS ET AL.: CLIMATE SENSITIVITY IN CMIP5 MODELS L09712L09712
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This	
  leads	
  to	
  uncertainty	
  in	
  forecasts	
  due	
  to	
  an	
  
imperfect	
  model	
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This	
  leads	
  to	
  uncertainty	
  in	
  forecasts	
  due	
  to	
  an	
  
imperfect	
  model	
  

forecast	
  



But	
  uncertainty	
  is	
  also	
  a	
  result	
  of	
  inaccurate	
  
iniOal	
  condiOons	
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Ques%on:	
  how	
  can	
  we	
  account	
  for	
  this	
  uncertainty?	
  



We	
  run	
  ensembles	
  of	
  forecasts...	
  
����������
����	����������
����	

 ��
�
��
����������������������	 ��
�
��
����������������������	
!��
�
��
�����������
���	��������
��	��	!��
�
��
�����������
���	��������
��	��	

K184

�
��
1M@84

���������

	�	�	
�
����	�	���

0

0

0

0
0

0

0
0

0

0

0

0

0

0
0

0
0

0

0

0

0

0

0

0

0
0
0

0

0 0

0

0

0

0
0

00

0

0
0
0

0
0

0

0

0
0

0

0

0

0

00

0

0

0

0
0
0

0

0
0

0

0

K198�4�������

��������
�+

�����	���

Differences	
  due	
  to	
  
iniOal	
  condiOon	
  
uncertainty	
  AND	
  
model	
  uncertainty	
  



Example:	
  Ensemble	
  of	
  rainfall	
  predicOons	
  for	
  UK	
  

From	
  Bauer	
  et	
  al.	
  Nature	
  2015	
  	
  



Example	
  from	
  short-­‐range	
  
3	
  day	
  forecasts	
  of	
  the	
  2000	
  storms	
  in	
  USA	
  

from	
  Buizza	
  and	
  Chessa,	
  2002,	
  MWR	
  

1538 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 5. (a) MSLP verification valid at 1200 UTC 25 Jan. Other panels: 72-h forecasts started 23 Jan: (b) OHR TL319, (c) EPS control,
(d) 72-h ensemble mean, (e) EPS member 36 (smallest rmse), (f ) EPS member 34 (second lowest rmse), (g) EPS member 25 (lowest IE),
(h) EPS member 50 (second lowest IE), and (i) EPS member 11 (third lowest IE). Contour interval is 5 hPa. In the forecast titles, rms is
the forecast rmse, ie the intensity error, and pe the position error; for the TL319, no is the number of EPS perturbed-members with rmse
smaller than the TL319; for the EPS control, nc is the number of EPS perturbed-members better than the control; for the EPS members, irms
is the ranking position with respect to the 50 perturbed forecasts in terms of rmse, and ipie is the ranking position in terms of IE.
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Example	
  from	
  seasonal-­‐range	
  
Seasonal	
  forecasts	
  of	
  rainfall	
  over	
  Ethiopia	
  

	
  

And now also ensemble data assimilation 
  

9	
  member	
  regional	
  model	
  rainfall	
  seasonal	
  forecasts	
  for	
  East	
  
Africa	
  (Diro	
  et	
  al.	
  JGR	
  2012)	
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IniOal	
  condiOons	
  and	
  model	
  uncertainty	
  

•  PerturbaOons	
  to	
  iniOal	
  condiOons	
  
– Random	
  perturbaOons	
  (size,	
  locaOon)	
  
– Targeted	
  perturbaOons	
  (Breeding,	
  singular	
  vector	
  
techniques)	
  

– Ensemble	
  data	
  assimilaOon	
  	
  
•  PerturbaOons	
  to	
  model	
  physics	
  

– Parameter	
  selngs	
  or	
  parametrizaOon	
  choices	
  
– StochasOc	
  physics	
  

•  CombinaOon	
  of	
  both	
  the	
  above:	
  MulOmodel	
  
Systems!	
  



UncertainOes	
  in	
  model	
  
physics	
  and	
  iniOalizaOon:	
  
MulOmodel	
  systems	
  

•  Seasonal	
  forecasts:	
  
–  Eurosip	
  (ECMWF,	
  MeteoFrance,	
  
NCEP,	
  Met	
  Office)	
  

–  North	
  American	
  MulO	
  Model	
  
Ensemble	
  NMME	
  

–  CHFP	
  database	
  of	
  hindcast	
  
suites	
  

•  Subseasonal	
  Forecasts:	
  
–  S2S	
  database	
  at	
  ECMWF	
  
–  	
  Planned	
  for	
  2016:	
  NMME	
  S2S	
  
systems	
  

•  Medium	
  Range	
  
–  TIGGE	
  database	
  at	
  ECMWF	
  



NMME	
  ENSO	
  Example	
  

the data ingest and graphical outputs are intended 
to be robust (i.e., any number of models) with any 
number of ensemble members can be used. A major 
element of the NMME experiment is to continue 
this effort for the benefit of operations. Meanwhile, 
we have built up a live hindcast dataset of about 30 
years that is open to anybody and can be used for 
research. Quite probably, this NMME dataset is now 
the most extensive multimodel seasonal prediction 
archive currently available that includes models 
that are continuing to make real-time predictions. 
Table 1 summarizes the NMME-1 hindcast datasets 
and identifies the point of contact for each predic-
tion system.

In addition, NOAA/CPC has agreed to evalu-
ate the hindcasts, combine the forecasts, perform 

verification, provide an NMME website (www.cpc 
.ncep.noaa .gov /products /NMME), and make 
the real-time NMME forecast delivery to NOAA 
forecasters. CPC is also maintaining an NMME 
newsletter. The hindcast data and real-time forecast 
data are also available for download or analysis at 
the International Research Institute for Climate 
and Society (IRI) (http://iridl.ldeo.columbia.edu 
/SOURCES/.Models/.NMME/). The CPC site primar-
ily serves the real-time needs of the project, and the 
IRI site, along with the analysis tools that are being 
developed at the IRI (http://iridl.ldeo.columbia.edu 
/home/.tippett/.NMME/.Verification/), primarily 
serves research needs in terms of assessing the 
prediction skill and predictability limits associated 
with NMME-1 in terms of designing the NMME-2 

TABLE 1. NMME partner models and forecasts.

Model
Hindcast 

period
Ensemble 

size
Lead times 
(months)

Arrangement of 
ensemble members

Contact and 
reference

CFSv1 1981–2009 15 0.5–8.5 First 0000 UTC r2 days, 
21st 0000 UTC r2 days, 
and 11th 0000 UTC r2 days

Saha  
(Saha et al. 2006)

CFSv2 1982–2010 24(28) 0.5–9.5 Four members (0000, 
0600, 1200, and 1800 UTC) 
every fifth day

Saha  
(Saha et al. 2014)

GFDL Climate Model, 
version 2.2 (GFDL 
CM2.2)

1982–2010 10 0.5–11.5 All first of the month 
0000 UTC

Rosati  
(Zhang et al. 2007)

IRI-ECHAM4f* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

IRI-ECHAM4a* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

CCSM3 1982–2010 6 0.5–11.5 All first of the month 
0000 UTC

Kirtman  
(Kirtman and Min 2009)

Goddard Earth 
Observing System, 
version 5 (GEOS5)

1981–2010 11** 0.5–9.5 One member every 
fifth day

Schubert  
(G. Vernieres et al. 
2011, unpublished 
manuscript)

Third Generation 
Canadian Coupled 
Global Climate Model 
(CMC1-CanCM3)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

Fourth Generation 
Canadian Coupled 
Global Climate Model 
(CMC2-CanCM4)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

* Real-time forecasts terminated in Jul 2012.
** The number of forecast and hindcast ensemble members is not constant during the period. It has grown from 6 for the 

initial Aug 2011 forecasts (and associated hindcasts) to 11 starting with our Jun 2012 forecasts. The additional (beyond 6 
initialized every fifth day) ensemble members are based on breeding and other perturbations applied on the day closest 
to the beginning of the month.
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*=deceased	
  

forecast quality. Here, we show the first step in this 
process—simply documenting how the multimodel 
compares to any single model. For example, Fig. 4 
shows scatterplots of the root-mean-square error of 

the SST anomaly (SSTA) 
for individual models’ 
0.5- to 5.5-month-lead 
ensemble-mean hind-
casts versus the corre-
sponding multimodel 
ensemble-mean hind-
casts for tropical SST for 
September starts. The 
percentage noted in each 
panel corresponds to the 
number of points where 
the individual model 
beat the multimodel. 
For every single indi-
vidual model, most of 
the points are above the 
diagonal (i.e., the per-
centage of points below 
the diagonal is less than 
50%), indicating that 
the multimodel tends to 
have smaller errors than 
the individual models. 
Generally, the models 
cluster around 26%–

48%. The Community Climate 
System Model, version 3 (CCSM3), 
is an outlier and is being replaced 
with the Community Climate 
System Model, version 4 (CCSM4) 
in NMME-2.

Preliminary examination (not 
shown) has suggested that in gen-
eral the individual model having 
the highest anomaly correlation 
skill is Climate Forecast System, 
version 2 (CFSv2). However, this 
identification of the generally 
best model does not suggest that 
the other models, when allowed 
to contribute to the multimodel-
mean forecast, do not further 
enhance the performance. To 
demonstrate the benefit reaped 

by using the multimodel ensemble over the single 
best-performing model, the ranked probability skill 
score (RPSS)3 of the multimodel ensemble hindcasts 
and the CFSv2 hindcasts of SST for December–

FIG. 2. As in Fig. 1, but for 6.5-month lead.

FIG. 3. SSTA correlation coefficient with each ensemble member 
weighted equally. Retrospective forecasts are initialized in Aug 1982–
2009 and verified in the following Feb (i.e., 5.5-month lead).

3 RPSS is a probabilistic forecast skill metric [see Weigel et al. (2007) for details]. The RPSS evaluates the hindcasts probabilisti-
cally (using tercile-based categories and the equal-odds climatology forecasts as the reference forecast). A good rule of thumb 
is that an RPSS of 0.08 corresponds to a deterministic correlation of 0.4.

590 APRIL 2014|

From	
  Kirtmann	
  et	
  al.	
  BAMS	
  2014	
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The	
  standard	
  deviaOon	
  between	
  the	
  forecasts	
  is	
  
referred	
  to	
  as	
  the	
  inter-­‐ensemble	
  “spread”	
  

QUESTION:	
  How	
  large	
  should	
  the	
  spread	
  be?	
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In	
  general,	
  for	
  any	
  given	
  forecast	
  lead	
  Ome,	
  we	
  want	
  the	
  spread	
  
to	
  be	
  comparable	
  to	
  the	
  RMS	
  forecast	
  error	
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“Over-­‐confident”	
  forecasOng	
  system	
  –	
  observaOons	
  
oqen	
  lie	
  outside	
  the	
  ensemble	
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Overlap	
  in	
  week	
  1-­‐6	
  

•  possibility	
  to	
  
use	
  sub-­‐
seasonal	
  
products	
  in	
  the	
  
first	
  48	
  days	
  

•  why	
  would	
  one	
  
do	
  this?	
  is	
  the	
  
monthly	
  
system	
  beser?	
  

which would reduce the actual skill below that reported
in these investigations. This approach is adopted in
this initial study because no continent-wide malaria-
incidence dataset exists that can be used to evaluate
malaria forecasts. One purpose of this study is thus to
identify regions of the continent where the system
demonstrates particular potential usefulness that can
then be examined in future country-specific, focused
studies that use the District Health Information System/
Software (DHIS) and other health data.

2. Methods

a. Overview of the malaria-prediction system and
description of the weather-prediction model

Our MEWS consists of two modeling components:
a weather-forecasting system and a dynamical malaria
model (Fig. 1). For the first 32 days of the weather fore-
cast, the systemuses temperature and precipitation that are
provided by a high-spatial-resolution weather-prediction

system. These forecasts extend the 15-day ensemble pre-
diction system (EPS) out to 32 days once (recently in-
creased to twice) per week, and at ECMWF is officially
termed the extended-range forecast (Vitart et al. 2008).
From day 33 onward, the forecasts of the lower-resolution
and longer-range system-4 seasonal-forecasting system
(Molteni et al. 2011) are used for the remainder of the
4-month forecast. Toemphasize thedifference in time scales
of the two systems, they will be referred to respectively
as the monthly and seasonal forecasts hereinafter. Both
weather-forecast systems provide 51 individual forecasts
starting from slightly different initial conditions so as
to sample forecast uncertainty. Further details of the
weather-forecasting systems that contribute to this
seamless system are given in the appendix.
Temperature from both systems is adjusted using cor-

rection of the mean bias as a function of location, calen-
dar month, and forecast lead time with respect to the
analysis data and is subsequently statistically downscaled
to 27-km resolution using a fixed lapse-rate correction to

FIG. 1. Schematic of the forecast-system setup, with boxes representing models, triangles
showing processes, and diamonds used for products. The operational NWP reanalysis of
temperature and rainfall is used to drive the malaria model to provide a malaria analysis of
epidemiological and entomological indicators, which are used as initial conditions for the
forecast. The malaria forecast uses climate information from the high-resolution monthly EPS
climate forecasts in the first month (m1, consisting of days 1–32), which is seamlessly combined
with the seasonal-forecast system for m2–4. Both precipitation and temperature are rescaled,
and temperature is calibrated before application to the malaria model, which then provides
forecasts of PR and EIR.
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Figure 2. Schematic showing the difference between weekly and daily initialization and the additional members used for the sub-seasonal forecast. The diagram
shows how the four forecast members initialized each day are combined in a lagged ensemble. Sub-seasonal products are generated from 7 days of forecast members.
Seasonal products use 3 weeks of forecast members in the ensemble. Each week a hindcast set for a given initialization date is completed. The same hindcast is used to
bias correct both seasonal and sub-seasonal products.

it is initialised, and the construction of the ensemble used to
generate products issued by the Met Office. The previous system
was described in Arribas et al. (2011) and many of the details are
still relevant.

2.1. Model configuration

The coupled HadGEM3 model used in the seasonal forecast
system consists of the following components:

• Atmosphere: MetUM (Walters et al., 2011; Brown et al.,
2012), Global Atmosphere 3.0

• Land surface: Joint UK Land Environment Simulator
(JULES; Best et al., 2011), Global Land 3.0

• Ocean: NEMO (Madec, 2008), Global Ocean 3.0
• Sea-ice: The Los Alamos Sea Ice Model (CICE; Hunke and

Lipscomb, 2010), Global Sea-Ice 3.0

The dynamical core of the UM (called NewDynamics) uses
a semi-implicit semi-Lagrangian discretization to solve the
fully compressible, non-hydrostatic atmospheric equations of
motion. The stochastic physics scheme Stochastic Kinetic Energy
Backscatter v2 (SKEB2; Bowler et al., 2009) is included to represent
unresolved processes and provide small grid-level perturbations
during the model integration. Climate forcings (e.g. methane,
CO2, etc.) are set to observed values up to the year 2005;
after this point the emissions follow the Intergovernmental
Panel on Climate Change (IPCC) RCP4.5 scenario. Climatologies
with a seasonal variation are used for other aerosols (biogenic
aerosols, biomass burning, black-carbon, sea salt, sulphates, dust,
and organic carbon fossil fuels). These climatologies have been
generated from a climate simulation using HadGEM2 (except dust
which is from a HadGEM1a run). The Stratosphere–troposphere
Processes And their Role in Climate (SPARC; Cionni et al., 2011)
observational climatology is used for ozone, which includes a

seasonal cycle. The solar forcing is the same in the forecast and
hindcast, with an interannual variation.

2.1.1. Global Atmosphere 3.0

A detailed description of the Global Atmosphere 3.0 configuration
is given in Walters et al. (2011) where the developments between
version 2.0 and 3.0 are also discussed. The basis of this science
configuration has been adopted by all the operational global
models used in the Met Office (although the configurations
are not exactly the same due to unavoidable temporal and spatial
resolution differences). There have been numerous changes to the
physical parametrizations used in the coupled model since Global
Atmosphere 2.0: introduction of cloud inhomogeneity, reduction
of spurious drizzle, reduction of spurious deep convection,
introduction of the JULES land surface model (Blyth et al.,
2006), and the facility to read iceberg calving ancillary data.

2.1.2. High-resolution model

The higher-resolution version of HadGEM3 used in the GloSea5
system uses the Global Atmosphere 3.0 configuration. Most of
the physical parametrizations remain the same between the two
resolutions. The high-resolution model requires a reduced time
step and altered diffusion settings to increase stability. In the
ocean model with the ORCA 0.25 grid, some of the major closed
seas (Great Lakes, Lake Victoria, Caspian Sea and the Aral Sea)
are included.

The resolution of the HadGEM3 model used in GloSea4 was
N96L85 ORCA 1 L75; in GloSea5 it has been increased to N216L85
ORCA 0.25 L75. This means that the horizontal resolution in the
atmosphere has increased from 1.88◦×1.25◦ to 0.83◦×0.56◦

(i.e. approximately 120 km in midlatitudes to 50 km). Figure 1
compares the orography used in the GloSea4 and GloSea5

c⃝ 2014 The Authors and Crown copyright. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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The	
  Met	
  
Office	
  
system	
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  forecast	
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  each	
  day	
  are	
  
combined	
  in	
  a	
  lagged	
  
ensemble.	
  	
  

•  Sub-­‐seasonal	
  products	
  are	
  
generated	
  from	
  7	
  days	
  of	
  
forecast	
  members.	
  	
  

•  Seasonal	
  products	
  use	
  3	
  
weeks	
  of	
  forecast	
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in	
  the	
  ensemble.	
  	
  

•  Each	
  week	
  a	
  hindcast	
  set	
  for	
  
a	
  given	
  iniOalizaOon	
  date	
  is	
  
completed.	
  	
  

•  The	
  same	
  hindcast	
  is	
  used	
  to	
  
bias	
  correct	
  both	
  seasonal	
  
and	
  sub-­‐seasonal	
  products.	
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  et	
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2015	
  



Hindcast	
  Strategies	
  
•  “On	
  the	
  fly”	
  –	
  Each	
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is	
  accompanied	
  by	
  a	
  set	
  of	
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  on	
  the	
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  date	
  for	
  the	
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N	
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  and	
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  up	
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  to	
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  –	
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  run	
  once	
  for	
  a	
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  cycle	
  
–  GOOD:	
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  (if	
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  not	
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frequently),	
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  sizes	
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  dates	
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  S2S	
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  the	
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•  Hindcast	
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  is	
  to	
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  bias	
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•  However	
  also	
  useful	
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  size	
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Intercomparisons	
  
•  No	
  standard	
  way	
  of	
  
selng	
  up	
  the	
  hindcast	
  
framework	
  between	
  
centre.	
  
– Makes	
  intercomparison	
  of	
  
models	
  challenging	
  

–  and	
  organising	
  S2S	
  and	
  
other	
  similar	
  databases	
  
(e.g.	
  CHFP)	
  

–  (although	
  NMME	
  is	
  fairly	
  
standardized,	
  see	
  right)	
  

•  Aim	
  of	
  this	
  week	
  is	
  to	
  
show	
  how	
  to	
  retrieve	
  S2S	
  
forecast	
  and	
  hindcast	
  
suites	
  

the data ingest and graphical outputs are intended 
to be robust (i.e., any number of models) with any 
number of ensemble members can be used. A major 
element of the NMME experiment is to continue 
this effort for the benefit of operations. Meanwhile, 
we have built up a live hindcast dataset of about 30 
years that is open to anybody and can be used for 
research. Quite probably, this NMME dataset is now 
the most extensive multimodel seasonal prediction 
archive currently available that includes models 
that are continuing to make real-time predictions. 
Table 1 summarizes the NMME-1 hindcast datasets 
and identifies the point of contact for each predic-
tion system.

In addition, NOAA/CPC has agreed to evalu-
ate the hindcasts, combine the forecasts, perform 

verification, provide an NMME website (www.cpc 
.ncep.noaa .gov /products /NMME), and make 
the real-time NMME forecast delivery to NOAA 
forecasters. CPC is also maintaining an NMME 
newsletter. The hindcast data and real-time forecast 
data are also available for download or analysis at 
the International Research Institute for Climate 
and Society (IRI) (http://iridl.ldeo.columbia.edu 
/SOURCES/.Models/.NMME/). The CPC site primar-
ily serves the real-time needs of the project, and the 
IRI site, along with the analysis tools that are being 
developed at the IRI (http://iridl.ldeo.columbia.edu 
/home/.tippett/.NMME/.Verification/), primarily 
serves research needs in terms of assessing the 
prediction skill and predictability limits associated 
with NMME-1 in terms of designing the NMME-2 

TABLE 1. NMME partner models and forecasts.

Model
Hindcast 

period
Ensemble 

size
Lead times 
(months)

Arrangement of 
ensemble members

Contact and 
reference

CFSv1 1981–2009 15 0.5–8.5 First 0000 UTC r2 days, 
21st 0000 UTC r2 days, 
and 11th 0000 UTC r2 days

Saha  
(Saha et al. 2006)

CFSv2 1982–2010 24(28) 0.5–9.5 Four members (0000, 
0600, 1200, and 1800 UTC) 
every fifth day

Saha  
(Saha et al. 2014)

GFDL Climate Model, 
version 2.2 (GFDL 
CM2.2)

1982–2010 10 0.5–11.5 All first of the month 
0000 UTC

Rosati  
(Zhang et al. 2007)

IRI-ECHAM4f* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

IRI-ECHAM4a* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

CCSM3 1982–2010 6 0.5–11.5 All first of the month 
0000 UTC

Kirtman  
(Kirtman and Min 2009)

Goddard Earth 
Observing System, 
version 5 (GEOS5)

1981–2010 11** 0.5–9.5 One member every 
fifth day

Schubert  
(G. Vernieres et al. 
2011, unpublished 
manuscript)

Third Generation 
Canadian Coupled 
Global Climate Model 
(CMC1-CanCM3)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

Fourth Generation 
Canadian Coupled 
Global Climate Model 
(CMC2-CanCM4)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

* Real-time forecasts terminated in Jul 2012.
** The number of forecast and hindcast ensemble members is not constant during the period. It has grown from 6 for the 

initial Aug 2011 forecasts (and associated hindcasts) to 11 starting with our Jun 2012 forecasts. The additional (beyond 6 
initialized every fifth day) ensemble members are based on breeding and other perturbations applied on the day closest 
to the beginning of the month.
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Emissions	
  scenarios	
  in	
  CMIP5	
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RCP2p6	
  is	
  not	
  all	
  good	
  news...	
  

•  RCP2p6	
  and	
  8p5	
  are	
  surprisingly	
  similar	
  due	
  
to	
  high	
  use	
  of	
  biofuels	
  needed	
  to	
  respect	
  2p6	
  
Wm-­‐2	
  



HYDE	
  output	
  example	
  (using	
  CLM)	
  

RCP8p5	
  RCP2p6	
  

RCP2p6	
  actually	
  has	
  one	
  of	
  the	
  greatest	
  conversaOon	
  to	
  cropland	
  rates	
  in	
  Africa	
  	
  due	
  
to	
  high	
  use	
  of	
  biofuels.	
  	
  



Leads	
  to	
  emissions	
  scenarios	
  for	
  major	
  
greenhouse	
  gases	
  Summary for Policymakers  IPCC Fifth Assessment Synthesis Report 

Subject to final copy-edit and layout  9 

 
Figure SPM.5: (a) Emissions of CO2 alone in the Representative Concentration Pathways (lines) and the associated 
scenario categories used in WGIII (coloured areas show 5-95% range). The WGIII scenario categories summarize the 
wide range of emission scenarios published in the scientific literature and are defined on the basis of CO2-eq 
concentration levels (in ppm) in 2100. The time series of other greenhouse gas emissions are shown in Box 2.2, Figure 
1. (b) Global mean surface temperature increase at the time global CO2 emissions reach a given net cumulative total, 
plotted as a function of that total, from various lines of evidence. Coloured plume shows the spread of past and future 
projections from a hierarchy of climate-carbon cycle models driven by historical emissions and the four RCPs over all 
times out to 2100, and fades with the decreasing number of available models. Ellipses show total anthropogenic 
warming in 2100 versus cumulative CO2 emissions from 1870 to 2100 from a simple climate model (median climate 
response) under the scenario categories used in WGIII. The width of the ellipses in terms of temperature is caused by 
the impact of different scenarios for non-CO2 climate drivers. The filled black ellipse shows observed emissions to 2005 
and observed temperatures in the decade 2000-2009 with associated uncertainties. {Box 2.2, Figure 1, Figure 2.3} 
 

Ques%on:	
  Are	
  these	
  4	
  scenarios	
  all	
  equally	
  likely?	
  	
  Which	
  one	
  is	
  the	
  most	
  likely?	
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  all	
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  news...	
  

•  RCP2p6	
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  8p5	
  are	
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  similar	
  due	
  to	
  
high	
  use	
  of	
  biofuels	
  needed	
  to	
  respect	
  2p6	
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•  Are	
  these	
  scenarios	
  representaOve?	
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intensity, energy use and regional differentiated
development. However the new RCPs mean that
comparison of the 2013 IPCC results will be difficult
with the IPCC 2001 and 2007 outputs, which used
the SRES. These scenarios are just the start of the
cascade of uncertainty shown in Figure 1.

In the most recent IPCC assessment, released in
2007, the greenhouse gas scenarios were then input
into about 20 general circulation models (GCMs). Each
of the models has their own independent design and
parameterisations of key processes. For example, how
to model the positive and negative feedbacks from
clouds. Clouds are one of the largest uncertainties in
climate models as they increase the global reflection of
solar radiation up to 30%, reducing the amount of
sunlight absorbed by the Earth But this cooling is offset
somewhat by the greenhouse effect of clouds, which
reduces the net loss of heat from the Earth. The inde-
pendence of each model is important, as some confi-
dence may be derived from multiple runs on different
models providing similar future climate predictions.
While the differences between the models can help us
to learn about their individual limitations and advan-

tages. Within the IPCC, due to political expediency,
each model and its output is assumed to be equally
valid. This is despite the fact that some are known to
perform better than others when tested against reality
provided by the historic and palaeoclimate records.
This difference will be exacerbated in the 2013 IPCC
assessment as some models have greater spatial reso-
lution while others do not. Moreover, as discussed by
Palmer (2012), we understand uncertainty within a
single model but the notion of quantifying uncertainty
from many models currently lacks any real theoretical
background or basis.

The outputs from these GCMs are then used to drive
more detailed regional climate models to project
more local environmental variations. Down-scaling is
a huge problem recognised in the modelling commu-
nity (IPCC 2007b). This is because precipitation is
spatially and temporally highly variable but essential
to model if human impacts are to be predicted
(Oreskes et al. 2010). Ultimately the cascade of uncer-
tainty leads to a huge range of potential future events
at a regional level that are in some cases contradic-
tory. For example, detailed hydrological modelling of
the Mekong River Basin using climate model input
from just a single GCM (the Met Office HadCM3) led
to projected future changes in annual river discharge
ranging from a decrease of 5.4% to an increase of
4.5% (Kingston et al. 2011). Changes in predicted
monthly discharge are even more dramatic, ranging
from -16% to +55%. Advising policymakers becomes
extremely hard when the uncertainties do not even
allow one to tell if the river catchment system in the
future will have more or less water. But there may be
key communication lessons that we could learn from
the way other scientists communicate risk, for
example, with earthquake risk the public and policy-
makers have become used to the idea of probability
when it comes to timing and magnitude.

The projected regional climate changes are then
used as a basis for so-called impact models that
attempt to estimate the effect on the quality of human
life (Barker 2008). The scale of impact of climate
change is, however, driven more by the relative resil-
ience of the society affected than the magnitude of
change. The most advanced of these socioeconomic
models determine the monetary costs arising both in
market and non-market sectors. But these models fail
to adequately account for many aspects of human
suffering possibly caused by climate change, as they
evaluate the impact of climate change on human
welfare purely in monetary terms (Stern 2007).
Whereas money can be lent, exchanged, traded or
even gain interest, an individual’s welfare and life
cannot. Moreover, despite continued arguments
between economists, future losses are discounted at a
fairly arbitrary rate (Stern 2007).

Above we have considered mean state changes
such as river discharge. The single biggest problem
with impact models, however, is their inability to

Figure 1 Estimations of climate change impact and societal
response based on models containing increasing

uncertainty. Solid lines are modelled outputs while white
dotted lines are inputs to the next layer of models

Source: Adapted and expanded from Hillerbrand and Ghil
(2008)
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and its implications for policy
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Climate scientists face a serious public image problem because the next round of climate models
they are working on are destined to produce a wider rather than a smaller range of uncertainty. To
the public and policymakers, it will look as if the scientific understanding of climate change is
becoming less rather than more clear, particularly as there will be a deliberate attempt by lobbyists
and parts of the media to portray the science in this way. There is a need to communicate the
fundamental strengths and weaknesses of climate modelling as an essential tool to allow us to
understand the consequences of our actions and to develop appropriate policy. We need to
demonstrate that with greater knowledge comes greater uncertainty but also greater transparency
and confidence in our knowledge. New communications strategies that do not solely rely on the
‘weight of evidence’ argument but instead aim to win hearts and minds are required. New policy
approaches combining win–win solutions are required if issues of climate change mitigation and
adaptation are to be tackled.

KEY WORDS: climate change policy, climate models, uncertainty

T he next Intergovernmental Panel on Climate
Change (IPCC) major assessment of climate
science is due to be released in 2013, and will

include climate models containing a significant
increase in our understanding of complex climate
processes. However, these models will have a wider
rather than smaller range of scientific uncertainty. Sci-
entists need to face up to this, and develop a plan of
how to explain uncertainty to avoid climate deniers
suggesting that the science is fundamentally wrong.
Above all, the public and policymakers need be con-
vinced that climate models have reached their current
limit and must stop waiting for further certainty or
persuasion, but should start developing appropriate
mitigation and adaption policies around the world.

But for the public and policymakers to move
beyond questioning the underlying physics they need
to have a greater appreciation of why these numerical
models have reached a limit. First, models are not
reality. It may sound strange to have to state this but it
is a fundamental point which is regularly ignored.
Second, there are intrinsic problems with modelling
natural systems (Cartwright 1983). This is because it is
impossible to truly verify or validate the numerical

models as they are never closed systems and results
are never unique (Oreskes et al. 1994). This is particu-
lar true of climate models because despite being
based on fundamental physical equations they still
require many parameters that are incompletely known
(Oreskes et al. 2010).

One of these variables is the accumulation of
greenhouse gases and aerosols in the atmosphere by
the end of the century, which is an essential input to
the models. These projections are based on eco-
nomic models, which attempt to predict global fossil
fuel use over 100 years given extremely broad
assumptions about how integrated and green the
global economy will become (IPCC 2000; van
Vuuren et al. 2011). The original IPCC reports used
simplistic assumption of greenhouse gas emissions
over the next 100 years. From 2000 onwards the
climate models used the Special Report on Emission
Scenarios (SRES; IPCC 2000). The next generation of
climate model results to be published in the 2013
IPCC Science Report will use the new representative
concentration pathways (RCPs) which consider a
much wider variable input to the social-economic
models, including population, land use, energy
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QuesOon:	
  
Where	
  is	
  the	
  
iniOal	
  
condiOon	
  
uncertainty?	
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  –	
  PNAS	
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  mulOsectoral	
  impacts	
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  change	
  

using	
  one	
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  climate	
  models	
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!
!

!
Figure! 2! –! Global! surface! temperature! anomaly! (1961G1990! base! period)! for! the!
1850!control,! individual!ensemble!members,!and!observations! (HadCRUT4;!Morice!
et!al.!2012).!
!
!

However,	
  model	
  error	
  and	
  iniOal	
  condiOon	
  
“sampling”	
  error	
  are	
  oqen	
  confused.	
  

Large	
  ensemble	
  climate	
  change	
  experiments	
  
30	
  ensemble	
  members	
  –	
  historical	
  and	
  RCP8p5	
  
Single	
  climate	
  model	
  	
  



!

!
Figure!5:! Global!Maps! of!NearGfuture! (2013G2046)!Boreal!Winter! (DJF)! Surface!Air!
Temperature!Trends!for!each!of!the!30!individual!CESMGLE!members!and!the!CESMG
LE!ensemble!mean!(denoted!“EM”).!

	
  hsp://dx.doi.org/10.1175/BAMS-­‐
D-­‐13-­‐00255.1	
  

First	
  16	
  members:	
  	
  2013-­‐2046	
  temperature	
  trend	
  



!
Figure!6:!Global!Maps!of!Standard!Deviation!in!34Gyear!DJF!Surface!Air!Temperature!
trends! for! the! (top)! PreGindustrial! (1850),! (middle)! Historical! (1979G2012),! and!
(bottom)!NearGfuture! (2013G2046)!periods.!For!the!historical!and!nearPfuture!periods,!
trends!are!shown!for!both!the!30Pmember!CESMPLE!ensemble!and!the!38Pmember!CMIP5!
ensemble! (Taylor!et!al.!2012).! Stippling!on! the!historical!and!nearPfuture!CESMPLE! trend!
maps! indicates! standard!deviations! that! are! statistically! different! than! the!CESMPLE!preP
industrial! period.! Stippling! on! the! historical! and! nearPfuture! CMIP5! maps! indicates!
standard!deviations!that!are!statistically!different!than!the!CESMPLE!for!the!corresponding!
period.!Stippling!is!based!on!an!fPtest!and!a!95%!confidence!interval.!!For!CMIP5,!we!used!a!
single! (the! first)!ensemble!member!of! the! following!models:!ACCESS1P0,!ACCESS1P3,!bccP
csm1P1Pm,! bccPcsm1P1,! BNUPESM,! CanESM2,! CCSM4,! CESM1PBGC,! CESM1PCAM5,! CESM1P
WACCM,!CMCCPCM,!CMCCPCMS,!CNRMPCM5,!CSIROPMk3P6P0,!ECPEARTH,!FGOALSPg2,!FIOP
ESM,! GFDLPCM3,! GFDLPESM2G,! GFDLPESM2M,!GISSPE2PH,! GISSPE2PHPCC,! GISSPE2PR,! GISSP
E2PRPCC,!HadGEM2PAO,!HadGEM2PCC,!HadGEM2PES,! inmcm4,! IPSLPCM5APLR,! IPSLPCM5AP
MR,! IPSLPCM5BPLR,! MIROC5,! MIROCPESM,!MIROCPESMPCHEM,!MPIPESMPLR,! MRIPCGCM3,!
NorESM1PM,!and!NorESM1PME.!

Inter-­‐ensemble	
  temperature	
  “spread”	
  –	
  what	
  is	
  
the	
  difference	
  between	
  the	
  leq	
  and	
  right?	
  	
  



!
Figure!6:!Global!Maps!of!Standard!Deviation!in!34Gyear!DJF!Surface!Air!Temperature!
trends! for! the! (top)! PreGindustrial! (1850),! (middle)! Historical! (1979G2012),! and!
(bottom)!NearGfuture! (2013G2046)!periods.!For!the!historical!and!nearPfuture!periods,!
trends!are!shown!for!both!the!30Pmember!CESMPLE!ensemble!and!the!38Pmember!CMIP5!
ensemble! (Taylor!et!al.!2012).! Stippling!on! the!historical!and!nearPfuture!CESMPLE! trend!
maps! indicates! standard!deviations! that! are! statistically! different! than! the!CESMPLE!preP
industrial! period.! Stippling! on! the! historical! and! nearPfuture! CMIP5! maps! indicates!
standard!deviations!that!are!statistically!different!than!the!CESMPLE!for!the!corresponding!
period.!Stippling!is!based!on!an!fPtest!and!a!95%!confidence!interval.!!For!CMIP5,!we!used!a!
single! (the! first)!ensemble!member!of! the! following!models:!ACCESS1P0,!ACCESS1P3,!bccP
csm1P1Pm,! bccPcsm1P1,! BNUPESM,! CanESM2,! CCSM4,! CESM1PBGC,! CESM1PCAM5,! CESM1P
WACCM,!CMCCPCM,!CMCCPCMS,!CNRMPCM5,!CSIROPMk3P6P0,!ECPEARTH,!FGOALSPg2,!FIOP
ESM,! GFDLPCM3,! GFDLPESM2G,! GFDLPESM2M,!GISSPE2PH,! GISSPE2PHPCC,! GISSPE2PR,! GISSP
E2PRPCC,!HadGEM2PAO,!HadGEM2PCC,!HadGEM2PES,! inmcm4,! IPSLPCM5APLR,! IPSLPCM5AP
MR,! IPSLPCM5BPLR,! MIROC5,! MIROCPESM,!MIROCPESMPCHEM,!MPIPESMPLR,! MRIPCGCM3,!
NorESM1PM,!and!NorESM1PME.!

Leq:	
  30	
  members	
  single	
  model	
  =	
  sampling	
  uncertainty	
  
Right:	
  38	
  CMIP5	
  models,	
  one	
  member	
  per	
  model	
  

QuesOon:	
  Are	
  the	
  differences	
  on	
  the	
  right	
  due	
  to	
  model	
  uncertainty	
  or	
  
iniOal	
  condiOon	
  sampling?	
  And	
  why	
  is	
  this	
  important?	
  



Small	
  ensembles	
  may	
  lead	
  to	
  overesOmate	
  of	
  
uncertainty	
  due	
  to	
  model	
  error,	
  but...	
  

...are	
  models	
  “geneOcally”	
  diverse	
  enough?	
  
)�
�	�"

��	����	��

	�������	
��

5��

B�� (

- �

B�� (
��9<1H4

9?A@

9??9

B����9

B����C

B����3
6
<

B����@

������

�-#7B����C

�	��������
�

����������

3888
B�� (
��3<)C

388>
B�� (
��<9)9

����
������ �!"

194

134

* *


194
�������	��
������
134
�
�	
�	��
�������

Climate model genealogy: Generation CMIP5 and how we got there

Reto Knutti,1 David Masson,2 and Andrew Gettelman1,3
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[1] A new ensemble of climate models is becoming
available and provides the basis for climate change
projections. Here, we show a first analysis indicating that the
models in the new ensemble agree better with observations
than those in older ones and that the poorest models have
been eliminated. Most models are strongly tied to their
predecessors, and some also exchange ideas and code with
other models, thus supporting an earlier hypothesis that the
models in the new ensemble are neither independent of
each other nor independent of the earlier generation. On the
basis of one atmosphere model, we show how statistical
methods can identify similarities between model versions
and complement process understanding in characterizing
how and why a model has changed. We argue that the
interdependence of models complicates the interpretation
of multimodel ensembles but largely goes unnoticed.
Citation: Knutti, R., D. Masson, and A. Gettelman (2013), Climate
model genealogy: Generation CMIP5 and how we got there,
Geophys. Res. Lett., 40, 1194–1199, doi:10.1002/grl.50256.

1. Introduction

[2] Global climate models are ubiquitous and irreplace-
able tools for projections of future climate change. They
evolve and improve, but few people really understand
exactly how and why. Model developers have scientific
reasons for why they focus on improving on one process
or component and not others, but the internal decision
making processes for model development are rarely docu-
mented publicly. As a result, although new models are
presented in detail in the literature and compared with obser-
vations, they remain massive and complex black boxes to
many users, with many questions remaining unanswered.
For example, why were certain parameterizations changed
but not others? Which of those changes had the largest
impact? Is the model “better” in terms of agreement with
observations, or just “better” in terms of a more comprehen-
sive description of the processes? Which variables and data
sets were used to evaluate a given model?
[3] Because formal methods to quantify uncertainties in

projections are complex and direct observational constraints
often absent [Knutti et al., 2010; Tebaldi and Knutti, 2007;

Weigel et al., 2010], the spread of an ensemble of models
is often used as a first-order estimate of projection uncer-
tainty [Meehl et al., 2007]. This assumes that the models
are approximately a representative sample of our uncertainty
in how to best describe the climate system given limited
observations, imperfect understanding, and finite computa-
tional resources [Knutti, 2008; Yokohata et al., 2012]. It also
assumes that there are not too many similarities that would
bias the results. Of course, all models are similar because
they describe the same system, but their biases, omissions
of processes, simplifications, parameterizations of processes,
and numerical approximations are also similar. In other
words, they are often similarly biased with regard to reality,
in some but not all cases for the same reasons (e.g., high
mountains are not resolved in all models). This does not
invalidate the use of the ensemble as a first-order estimate
of uncertainty but complicates the interpretation.
[4] Masson and Knutti [2011, MK11 hereafter] produced

a “family tree” of the Coupled Model Intercomparison
Project Phase 2/3 climate models, which documents the
similarities between models in an ensemble. For simplicity,
we define model similarity as similarity in the model simu-
lated fields because it is unclear how to define similarity of
a model code or the underlying process assumptions. The
term “model independence” is not used in a sense of statisti-
cal independence but loosely to express that the similarity
between models sharing code is far greater than between
those that do not. Models from the same centers were shown
in MK11 to often be very similar in their present day clima-
tology, and models in different centers sharing the same at-
mospheric model (even in different versions) were also
closely related. MK11 argued that such similarities result
from the fact that models evolve from their ancestors by
modification and by exchange of ideas and code with other
groups. Successful pieces are kept, improved, and shared,
and less successful parts are replaced. Here, we present an
analysis of the newest generation of models to supports this
hypothesis.

2. Results

[5] We used data from the most recent World Climate
Research Programme Coupled Model Intercomparison
Project Phase 5 (CMIP5) [Taylor et al., 2012], along with
data from the earlier CMIP3 and CMIP2 intercomparisons.
Model similarity is defined as in MK11 (details in the
Supporting Information of MK11) by a Kullback-Leibler
divergence, a distance metric that considers the spatial
field of monthly values in a control simulation without
external forcing. It takes into account the seasonal cycle,
the interannual variations, and the spatial correlation. The
method and data from CMIP2/3 and observations are identi-
cal to those used by MK11. The only difference is that for
Figures 1 and 3, the metric now also includes differences

All Supporting Information may be found in the online version of this
article.
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see	
  also	
  in	
  GRL	
  (2013):	
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Figure SPM.6: Global average surface temperature change (a) and global mean sea-level rise10 (b) from 2006 to 2100 
as determined by multi-model simulations. All changes are relative to 1986–2005. Time series of projections and a 
measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). The mean and associated 
uncertainties averaged over 2081-2100 are given for all RCP scenarios as coloured vertical bars at the right hand side of 
each panel. The number of Coupled Model Intercomparison Project Phase 5 (CMIP5) models used to calculate the 
multi-model mean is indicated. {2.2, Figure 2.1} 

                                                             
10 Based on current understanding (from observations, physical understanding and modelling), only the collapse of 
marine-based sectors of the Antarctic ice sheet, if initiated, could cause global mean sea level to rise substantially above 
the likely range during the 21st century. There is medium confidence that this additional contribution would not exceed 
several tenths of a meter of sea-level rise during the 21st century. 

to	
  2030	
  –	
  scenario	
  is	
  
unimportant	
  	
  

at	
  2100	
  –	
  scenario	
  
uncertainty	
  dominates	
  
sampling/model	
  
uncertainty	
  



The	
  source	
  of	
  uncertainty	
  depends	
  how	
  far	
  ahead	
  
you	
  look...	
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Note:	
  small	
  ensembles	
  in	
  CMIP5	
  may	
  leading	
  overesOmaOon	
  of	
  model	
  component	
  of	
  
uncertainty	
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And	
  Uncertainty...	
  

•  Due	
  to:	
  
– Natural	
  variability,	
  iniOal	
  condiOons	
  
– Model	
  uncertainty	
  
– Forcing	
  (emissions)	
  uncertainOes	
  

•  Large	
  ensembles	
  are	
  required	
  in	
  an	
  asempt	
  to	
  
understand	
  sources	
  of	
  uncertainty	
  in	
  
predicOons	
  and	
  projecOons	
  


