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What makes a “good” forecast?

Quality forecasts should correspond with what actually happens (includes skill, reliability,
sharpness, discrimination, and other forecast attributes)

Value forecasts should be potentially useful (includes salience, timeliness, specificity)
Consistency forecasts should indicate what the experts really think

Murphy, A. H., 1993: What is a good forecast”? An essay on the nature of goodness in weather
forecasting. Weather and Forecasting, 8, 281-293.

courtesy of Simon Mason NS



SKill

|S one set of forecasts better than another?

A skill score is used to compare the quality of one forecast strategy

with that of another set (the reterence set). The skill score defines the
percentage improvement over the reference forecast.

Skill scores are relative measures of forecast quality.

But better in what respect” We still need to define “good” ...

courtesy of Simon Mason
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Skill: Assessing a set of forecasts
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A proper scoring rule is
Score 3 designed such that
guoting the true
distribution as the
forecast distribution is an
optimal strategy In
expectation
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Skill Score

— can be based either on real-time forecasts,
or on hindcasts (also called re-torecasts) made retrospectively for past years

International Research Institute

for Climate and Society
EARTH INSTITUTE | COLUMBIA UNIVERSITY



Simple deterministic score: Pearson’s correlation
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with increases and decreases in the observations?).
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Observations and Cross-Validated Hindcasts
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 \When squared, it tells us how much of the variance of
the observations is correctly forecast.

Observations (red) /Hindcasts (green) {/ 1000)
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It does not measure accuracy!




Sub-seasonal example:
ECMWF Sub-monthly
forecast skill

Weekly average
precip

Jun—Aug
anomaly correlation
skill

Lead-dependent
climos subtracted

Li and Robertson (2015)
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Anomaly correlation skill of weekly precipitation

ECMWF

ECMWF Precip Fcst vs CMAP: 1992—-2008
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FCMWEF Pertformance over Borneo
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W s S2S partners WCRP.&

5‘:’:“.2&' :mmn World Climate Research Programme

Time- Resol. Ens. Size Freq. Hests  Hest length Hcst Freq  Hcst Size

range
ECMWF D 032 T639/319L91 51 2/week On the fly | Past |8y 2/weekly |l
UKMO D 0-60 N96L85 4 daily On the fly § 1989-2003  4/month 3
NCEP D 0-45 N126L64 4 4/daily Fix 1999-2010 4/daily I
EC D 0-35 0.6x0.6L.40 21 weekly On the fly | Past |5y weekly 4
CAWCR D 0-60 T47L17 33 weekly Fix 1981-2013  6/month 33
JMA D 0-34 TI159L60 50 weekly Fix + 1979-2009  3/month 5
KMA D 0-60 N216L85 4 daily On the fly ' 1996-2009  4/month 3
CMA D 0-45 T106L40 4 daily Fix ' 1992-now daily 4
Met.Fr D 0-60 TI127L31 51 monthly Fix ( 1981-2005  monthly |l
CNR D 0-32 0.75x0.56 L54 40 weekly Fix ‘ 1981-2010  6/month I
HMCR D 0-63 |.1x1.4 L28 20 weekly Fix 1981-2010 weekly 10




|IRI Multi-Model Probability Forecast for Precipitation
for June-July-August 2015, Issued May 2015
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Displaying forecast probabillities
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Validation of a single probabilistic forecast

IRI Multi-Model Probability Forecast for Precipitation Ob f’f,\%féjp. F:Lf,clgdrttff,' (2,? Ngébcgc? 1

for June-July-August 2015, Issued May 2015
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Key Attributes of Probabilistic Forecasts

 Sharpness: refers to the concentration of the forecast distributions.

The sharper, the better, provided the predictive distributions are
calibrated.

* Reliability: Are the forecast probabilities correct on average, or is
there some systematic bias toward under- or over-confidence?
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Rellapllity

IRl Real-time Forecast Reliability

e Did we correct V indicate the 1.1(')rop|caTl Pre?pnatlon - Net Assessment Forecast (Lead-1)

S c
uncertainty in the forecast?

e Shows how well the forecast M
porobabilities correspond to the c
subsequent observed relative € o6l )
frequencies of occurrence, across the 2
full range of issued forecast o ~
probabilities g 04 )

* The issued probabilities (from - 0ol A, R
hindcasts) have to be binned, eg Ny —
0.45-0.55, 0.55-0.65, etc, so need ﬁ T e
long hindcast sets and pooling over 00721 -t :

Space 00 01 02 03 Fotzé‘castoéob:tﬁ“y 07 08 09 1.0

This set of forecasts Is well calibrated!
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Sharpness

Tropical Precipitation - Net Assessment Forecast (Lead-1)
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Examples of Seasonal Hindcast
Reliabllity of 3 GCMs

JAS Precip., 30S-30N (3-model)
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929 dUb-project on verirication and products:
Science questions

* What forecast quality attributes are important when
verifying S2S forecasts and how they should be
assessed?

Which verification methods and forecast attributes are
appropriate for reporting S2S forecast quality to users,
and which provide added insight into forecast system
development and improvement?

* How should issues of short hindcast period availability
and reduced number of ensemble members in hindcasts
compared to real-time forecasts be dealt with when
constructing probabilistic skill measures?



How can we best identify windows of forecast opportunity,
iIncluding assessing the contributions of climate drivers,
such as the MJO and ENSO, to S2S forecast skill (e.g.
consider skill assessment conditioned on ENSO
phases)?

Which verification methods are most appropriate for the
verification of extreme events, particularly given
challenges associated with their rarity, small sample sizes
and large uncertainties?

How can we best verify active and break rainfall phases
and wet/dry spells in current S2S forecast systems?

How can we best address verification in a seamless
manner, for comparing forecasts across timescales?



An S25 example

CFSv2 re-forecasts calibrated with extended logistic regression (Wilks 2009)
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Figure 5: Reliability diagram for forecasts issued in JAS over the 1999-2010 period from one to four weeks lead
over a US only window (land and ocean points)

courtesy of Nicolas Vigaud, IRl
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Which Forecast Format?

Daily weather Fcst
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Summary of main points

* Forecast verification requires large sets of forecasts of reforecasts/
hindcasts. This poses guestions for S2S where the hindcast sets are
shorter than typically for seasonal forecasts, and the ensemble sizes
are reduced

» Verification of probabilistic forecasts involves considering many
attributes of forecast quality. Reliability and sharpness are important
attributes.

o (Calibration intimately involves verification because it seeks to maximize
sharpness while maintaining reliability. But re-forecast data must not be
used twice!
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