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What makes a “good” forecast?

Quality forecasts should correspond with what actually happens (includes skill, reliability, 
sharpness, discrimination, and other forecast attributes) 

Value forecasts should be potentially useful (includes salience, timeliness, specificity) 
Consistency forecasts should indicate what the experts really think 

Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather 
forecasting. Weather and Forecasting, 8, 281–293.

courtesy of Simon Mason



Skill
Is one set of forecasts better than another? 

A skill score is used to compare the quality of one forecast strategy 
with that of another set (the reference set). The skill score defines the 
percentage improvement over the reference forecast. 

Skill scores are relative measures of forecast quality. 

But better in what respect? We still need to define “good” …
courtesy of Simon Mason



Skill: Assessing a set of forecasts 
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–!can be based either on real-time forecasts,  
or on hindcasts (also called re-forecasts) made retrospectively for past years

A proper scoring rule is 
designed such that 

quoting the true 
distribution as the 

forecast distribution is an 
optimal strategy in 

expectation



Simple deterministic score: Pearson’s correlation

• Pearson’s correlation measures association (are 
increases and decreases in the forecasts associated 
with increases and decreases in the observations?). 

• It does not measure accuracy. 

• When squared, it tells us how much of the variance of 
the observations is correctly forecast.

Sensitive to outliers 
r = 0.64

courtesy of Simon Mason



Pearson’s Correlation

Pearson’s correlation measures association (are 
increases and decreases in the forecasts associated with 
increases and decreases in the observations?). 

It does not measure accuracy!



Sub-seasonal example:
ECMWF Sub-monthly 

forecast skill

  

ABSTRACT 

CONCLUSIONS 
1) All the three model hindcast sets indicate very good skill for the first week, and relatively good skill for the 2nd week 
over the tropics, but dramatically decreased skill for weeks 3 and 4 except the equatorial Pacific and maritime continent. 

2) The ECMWF hindcast demonstrates noticeably better skill than the other two, especially for weeks 3 and 4. 

3) The predictability of sub-monthly precipitation appears to connect with intra-seasonal MJO phase/strength and low-
frequency ENSO variability. 

Acknowledgments: We are grateful to the provision of the three EPS hindcast data sets, from the Japanese Meteorological 
Agency, the National Centers for Environmental Prediction, and the European Centre for Medium-range Weather Forecasts. 
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The prediction skill of precipitation over sub-monthly time scale is investigated based on hindcasts from three global 
ensemble prediction systems (EPS). The results valid for up to four weeks indicate good skill or predictability over 
some regions during the boreal summer monsoon season (e.g., June through September), particularly over southeastern 
Asia and the maritime continent. The hindcasts from all the three models correspond to high predictability over the first 
week compared to the following three weeks. The ECMWF forecast system tends to yield higher prediction skill than 
the other two systems, in terms of both anomaly correlation and mean squared skill score. 
 
The sources of sub-monthly predictability are examined over the maritime continent with focus on the intra-seasonal 
MJO and interannual ENSO phenomena. Rainfall variations for neutral-ENSO years are found to correspond well with 
the dominant MJO phase, whereas for moderate/strong ENSO events, the relationship of rainfall anomaly with MJO 
appears to become weaker, while the contribution of ENSO to the sub-monthly skill is substantial. However, there is 
exception that if a moderate/strong MJO event propagates from Indian Ocean to the maritime continent during typical 
ENSO years, the MJO impact can become overwhelming, regardless of how strong the ENSO event is. These results 
support the concept that “windows of opportunity” of high forecast skill exist as a function of ENSO and the MJO in 
certain locations and seasons, that may lead to subseasonal to seasonal forecasts of substantial societal value in the 
future. 

Evaluation of Sub-monthly Forecast Skill from Global Ensemble Prediction Systems 
Shuhua Li and Andrew W. Robertson 

International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, NY 10964 
(shuhua@iri.columbia.edu) 
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FIGURE 4: Real-time MJO phase space 
during June 1 to Sept. 30 for 2002 (El Nino) 
and 2001(neutral-ENSO). 

  

MJO phase: Jun – Sep, 2002 & 2001 

• Hindcasts of precipitation from three global ensemble prediction systems over the common period 1992-2008:  
  JMA long-range forecasting model, NCEP CFS version 2, and ECMWF integrated forecast system (IFS). 
• Horizontal resolution: approximately 1.125, 0.94, 0.5 degrees; and ensemble size: 5-4-5, respectively. 
• CMAP precipitation data from NOAA Climate Prediction Center. 
• Two skill metrics – Anomaly Correlation Coefficients (ACC) and Mean Square Skill Score (MSSS). 

Linkage: Precip versus ENSO and MJO 
FIGURE 3: (a) Anomaly correlation between 
CMAP pentad precipitation and 5-day average 
Real-time Multi-variate MJO (RMM) during June 
to August, 1992-2008. It demonstrates high 
(negative) correlation of rainfall with RMM 
components over the maritime continent.  
(b) Correlations between ECMWF precipitation 
hindcast for week-3 and CMAP rainfall during 5 
ENSO years (top) and 5 neutral years (bottom). 
The impact of ENSO on rainfall predictability is 
manifested by the comparison in the tropics, in 
particular over the equatorial Pacific and the 
maritime continent. 

Precip time-series: ECMWF hindcast vs CMAP 

FIGURE 5: Time series of rainfall anomalies over a portion of  
Borneo Island, from CMAP precipitation data (blue) and ECMWF 
hindcast (red), valid for weeks 2 and 3 during Jun-Sep for El Nino 
year 2002 and neutral-ENSO year 2001, respectively. The single 
upper-case letters denote the dominant MJO phase sector (A, I, M, 
P for MJO phase 8-1, 2-3, 4-5, and 6-7, respectively), where the 
MJO strength is greater than 1.0.  

Global EPS and Precipitation Data 

FIGURE 1: Correlation skill maps of precipitation hindcasts from the 
ECMWF forecast system over the period 1992–2008. The ACC 
calculations are made based on all the starts during late May through 
mid-September, and valid for weeks 1-4. Among the three global EPS, 
the ECMWF displays generally higher ACC skill than the other two 
systems, especially over the tropics and the maritime continent for 
weeks 2-4, as shown below. 

ACC Skill Map from ECMWF: Precipitation 
Hindcasts (weeks 1-4) and CMAP Data 

FIGURE 2: Aggregate ACC skill from three EPS hindcasts 
over the tropics and southeastern Asia  
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degrees of freedom, a CORA value of 0.2 is highly sta-
tistically significant, with a p value of 0.003 shown as
pink areas in Figs. 1–3.
The CORA distribution for the CFSv2 and ECMWF

precipitation forecasts exhibit most of the above char-
acteristics (Figs. 2 and 3). However, the CORA skill of
ECMWF is notably higher than the other two models,

especially over the tropics for weeks 2–4. Indeed, relatively
high CORA values over the tropical Pacific resemble
a slightly broader ITCZ-like characteristic than that
from JMA or CFSv2. The high CORA feature from the
ECMWF precipitation hindcast is also seen over the
equatorial Atlantic and tropical Indian Ocean, as well as
the Maritime Continent (Fig. 3), where higher CORA

FIG. 2. As in Fig. 1, but for the CFSv2 hindcast.
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exists compared to the JMAandCFSv2 hindcasts. These
dominant characteristics will be further discussed in the
next section based on aggregate CORA skill over the
tropical land area only and a specific region of interest,
the Maritime Continent.
Skill levels over the continents are generally disap-

pointing especially in weeks 3–4, although the ECMWF
model does exhibit substantial skill at week 2 over South

America, Eurasia, and Australia. The rapidly decreased
skill level beyond one week in the extratropics is gener-
ally consistent with the skill analysis using the Predictive
Ocean Atmosphere Model for Australia (POAMA)
coupled system (Zhu et al. 2014). Skill levels over Africa
are poor even in week 1, which suggests that the ob-
servational data quality may be poor on the weekly time
scale. This could also be due to less predictability in that

FIG. 3. As in Fig. 1, but for the ECMWF hindcast.

2876 MONTHLY WEATHER REV IEW VOLUME 143

Anomaly correlation skill of weekly precipitation

maps. The correlation skill is generally very high during
the first week and drops rapidly in most regions in the
subsequent three weeks. Nevertheless, there is consis-
tently high CORA for all the leads, or weeks 1–4, over
the equatorial Pacific, located to the south of the

intertropical convergence zone (ITCZ). Weeks 2–4 also
exhibit relatively higher skills (0.2–0.3) over the tropical
Atlantic, and the Maritime Continent. The 13 hindcasts
per year over 17 years yields a very large sample size of
221 hindcasts. Using a two-sided Student’s t test with 220

FIG. 1. Correlation of anomalies between JMA model precipitation hindcast and CMAP
rainfall data for weeks 1–4 during the period 1992–2008. The white areas denote dry mask
during the June–September season, where the total CMAP rainfall over 122 days is less
than 20mm.

2874 MONTHLY WEATHER REV IEW VOLUME 143ECMWF CFSv2 JMA

T399/255, coupled after day 10 T126, coupled T159, persisted SST



ECMWF Performance over Borneo 

(a) 2002 ECMWF vs CMAP
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(b) 1999 ECMWF vs CMAP

  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  
 

-5

0

5

10
PC

P 
an

om
al

y 
(m

m
/d

ay
)

P7 A8 A1 A1 M5 I2 A1 A1

CMAP
ECMWF-week2
ECMWF-week3

Correlation
0.53
0.40

StdDev
2.84 (3.11)
3.75 (3.82)

(c) 2001 ECMWF vs CMAP
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Figure 12: Time series of precipitation anomalies (mm/day) over a portion of Borneo Island,

from the CMAP data and ECMWF hindcast, valid for weeks 2 and 3 during June–September

for (a) 2002, (b) 1999, and (c) 2001, respectively. The upper-case letters along with single

digit at the bottom of each panel denote the dominant MJO phase sector and phase number

(see the text for detail), with amplitude greater than 1.0 (Wheeler and Hendon 2004). Along

the abscissa, weeks 1–5 correspond approximately to June; weeks 6–10 to July; weeks 11–14

to August; weeks 15–18 to September; and week 19 to Oct 1–7. Correlation values with

CMAP are given in each panel, together with the respective standard deviations, with the

CMAP values in parentheses. 48

Li and Robertson (2015, in press)
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ECMWF Performance 
 over Borneo 

(a) 2002 ECMWF vs CMAP
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(b) 1999 ECMWF vs CMAP
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(c) 2001 ECMWF vs CMAP
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Figure 12: Time series of precipitation anomalies (mm/day) over a portion of Borneo Island,

from the CMAP data and ECMWF hindcast, valid for weeks 2 and 3 during June–September

for (a) 2002, (b) 1999, and (c) 2001, respectively. The upper-case letters along with single

digit at the bottom of each panel denote the dominant MJO phase sector and phase number

(see the text for detail), with amplitude greater than 1.0 (Wheeler and Hendon 2004). Along

the abscissa, weeks 1–5 correspond approximately to June; weeks 6–10 to July; weeks 11–14

to August; weeks 15–18 to September; and week 19 to Oct 1–7. Correlation values with

CMAP are given in each panel, together with the respective standard deviations, with the
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12

Time-
range

Resol. Ens. Size Freq. Hcsts Hcst length Hcst Freq Hcst Size

ECMWF D 0-32 T639/319L91 51 2/week On the fly Past 18y 2/weekly 11

UKMO D 0-60 N96L85 4 daily On the fly 1989-2003 4/month 3

NCEP D 0-45 N126L64 4 4/daily Fix 1999-2010 4/daily 1

EC D 0-35 0.6x0.6L40 21 weekly On the fly Past 15y weekly 4

CAWCR D 0-60 T47L17 33 weekly Fix 1981-2013 6/month 33

JMA D 0-34 T159L60 50 weekly Fix 1979-2009 3/month 5

KMA D 0-60 N216L85 4 daily On the fly 1996-2009 4/month 3

CMA D 0-45 T106L40 4 daily Fix 1992-now daily 4

Met.Fr D 0-60 T127L31 51 monthly Fix 1981-2005 monthly 11

CNR D 0-32 0.75x0.56 L54 40 weekly Fix 1981-2010 6/month 1

HMCR D 0-63 1.1x1.4 L28 20 weekly Fix 1981-2010 weekly 10

S2S partners



Probabilistic 
Verification: 

Was this a good 
forecast?



Below  
Normal

Above  
Normal

Historically, the probabilities of above and below are 0.33. Shifting the mean by half a standard-deviation and reducing the 
variance by 20% changes the probability of below to 0.15 and of above to 0.53.

Historical  
distribution

Forecast  
distribution

(Courtesy Mike Tippett)

Displaying forecast probabilities
Near-Normal

NORMALIZED RAINFALL

FR
E

Q
U

E
N

C
Y



Validation of a single probabilistic forecast

Forecast PDF Verifying observation



Key Attributes of Probabilistic Forecasts

• Sharpness: refers to the concentration of the forecast distributions. 
The sharper, the better, provided the predictive distributions are 
calibrated. 

• Reliability: Are the forecast probabilities correct on average, or is 
there some systematic bias toward under- or over-confidence?



Reliability
• Did we correctly indicate the 

uncertainty in the forecast? 

• Shows how well the forecast 
probabilities correspond to the 
subsequent observed relative 
frequencies of occurrence, across the 
full range of issued forecast 
probabilities 

• The issued probabilities (from 
hindcasts) have to be binned, eg 
0.45-0.55, 0.55-0.65, etc, so need 
long hindcast sets and pooling over 
space

This set of forecasts is well calibrated!

IRI Real-time Forecast Reliability



Sharpness
• Sharpness measures whether the 

forecasts vary much from the 
climatological distribution. 

• Most seasonal forecasts avoid being 
overly precise (3, or maybe 5, 
categories). 

• If probabilities near 0 and 1 (100%) 
are used often, then the forecast is 
said to be sharp. If most of the 
forecast probabilities are in the range 
40 to 60% then this forecast system 
would be said to be "smooth" or "not 
sharp” (as on right). 

frequency of issuance of each probability interval 
for each of the forecast categories



Jul-Aug-Sep (1950-1995)

Jul-Aug-Sep (1950-1995)
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S2S Sub-project on verification and products: 
Science questions

• What forecast quality attributes are important when 
verifying S2S forecasts and how they should be 
assessed?   

 
Which verification methods and forecast attributes are 
appropriate for reporting S2S forecast quality to users, 
and which provide added insight into forecast system 
development and improvement?  

• How should issues of short hindcast period availability 
and reduced number of ensemble members in hindcasts 
compared to real-time forecasts be dealt with when 
constructing probabilistic skill measures? 



• How can we best identify windows of forecast opportunity, 
including assessing the contributions of climate drivers, 
such as the MJO and ENSO, to S2S forecast skill (e.g. 
consider skill assessment conditioned on ENSO 
phases)?  

• Which verification methods are most appropriate for the 
verification of extreme events, particularly given 
challenges associated with their rarity, small sample sizes 
and large uncertainties? 

• How can we best verify active and break rainfall phases 
and wet/dry spells in current S2S forecast systems? 

• How can we best address verification in a seamless 
manner, for comparing forecasts across timescales? 



An S2S example

! "!

!"# $%&''()*+,-*./-#$01)2#./%!,+/#3&%/!*'.#4%&5*5,+,.,/'6#7888(2979#:;1#'.*%.'#
!
#$%&''()! *+,--./&'$0&120! 12+*$'2! 3+,4&4$'$1$2-! 5+,6! &''! -1&+1-! ,5! 7#8! 9.62642+-!
+25,+2*&-1-! 5+,6! :;'(! 1,! 82312642+! ,/2+! 1<2! =<,'2! >???.@A>A! 32+$,0! &+2! %,=!
*,%-$02+20B!#$C;+2!D!3+2-2%1-!1<2!-E$''!&--,*$&120!=$1<!2&*<!*&12C,+(!5+,6!&''!-1&+1-!
,5!1<2!:F8!-2&-,%!5+,6!>???!1,!@A>A)!*,63;120!$%!&!-$6$'&+!*+,--./&'$0&120!6&%%2+B!
G<2!+2'$&4$'$1(!5,+!2&*<!*&12C,+(!$-!&C&$%!2%*,;+&C$%C)!&%0!%&1;+&''(!02*+2&-2-!5+,6!
=22E!>!1,!9!'2&0-B!
!

!
!"#$%&'()!H2'$&4$'$1(!0$&C+&6!5,+!5,+2*&-1-!$--;20!$%!:F8!,/2+!1<2!>???.@A>A!32+$,0!5+,6!,%2!1,!5,;+!=22E-!'2&0!
,/2+!&!I8!,%'(!=$%0,=!J'&%0!&%0!,*2&%!3,$%1-K!

!
!
*+*' ,"-.$--"/0'102'3&%-3&.4"5&-'
!
L%!1<2!&33+,&*<!3+2-2%120!&4,/2)!1<2!2M12%020!',C$-1$*!+2C+2--$,%!6,02'!$-!4;$'1!$%!&!
*+,--./&'$0&120!6&%%2+!;-$%C)!=$1<,;1!0$-*+$6$%&1$,%!&''!=22E-!5+,6!1<2!:F8!-2&-,%!
5,+!0$552+2%1!=22E'(!+25,+2*&-1-B!!G<2!+2-;'1-!,41&$%20!&+2!+2&-,%&4'2!&%0!$'';-1+&12!
1<2!+2'2/&%*2!,5!2M12%020!',C$-1$*!+2C+2--$,%!$%!1<2!8@8!*,%12M1B!!!
!
N,=2/2+)!1<2!-2&-,%&'$1(!=$1<$%!1<2!:F8!32+$,0!*,%-$02+20!$-!*'2&+'(!%,1!&**,;%120!
5,+!&1!1<$-!-1&C2B!N2%*2)!&!%2M1!-123!=$''!*,%-$-1!$%!$%12C+&1$%C!=22E'(!-2&-,%&'$1(!$%!
1<2!-1&1$-1$*&'!6,02'B!F6,%C-1!0$552+2%1!*<&''2%C2-)!1<2!>>!(2&+-!32+$,0!*,/2+20!4(!
8@8! +25,+2*&-1-! *,;'0! 42! &%! ,4-1&*'2! 1,! *,63;12! +,4;-1! -1&1$-1$*-! &1!=22E'(! 1$62.
-*&'2-B! O$552+2%1! &'12+%&1$/2-! =$''! 42! *,%-$02+20! 5+,6! &'12+%&1$/2! 12+*$'2-!
*,63;1&1$,%! J-32*$5$*! 5,+! 2&*<! =22EK! 1,! C2,C+&3<$*&'! =2$C<1$%C! ,5! %2&+4(! C+$0.
3,$%1-!1,!$%*+2&-2!1<2!3,,'!,5!1+&$%$%C!0&1&B!
!
!
!
6&7&%&0.&-'
!
N;556&%)!PB:B)!HB#B!F0'2+)!QB!Q,++$--2()!OBGB!R,'/$%)!8B!7;+1$-)!HB!:,(*2)!R!Q*P&/,*E)!:B!
8;--E$%0! J@AA>K! P',4&'! S+2*$3$1&1$,%! &1! T%2.O2C+22! O&$'(! H2-,';1$,%! 5+,6!Q;'1$.
8&12''$12!T4-2+/&1$,%-B!:"#<=-%&>/./&%B)!@)!U".DA!
!

!e International Research Institute
for Climate and Society

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
JAS 1999 2010 Above normal class

Mean Predicted Values

Fr
ac

tio
n 

of
 P

os
iti

ve
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
JAS 1999 2010 Normal class

Mean Predicted Values
Fr

ac
tio

n 
of

 P
os

iti
ve

s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
JAS 1999 2010 Below normal class

Mean Predicted Values

Fr
ac

tio
n 

of
 P

os
iti

ve
s

!"#$%&$#$'()'"*'+),-.)/000123/3)45""6)/)'7)89)

:"#75);7<=%#) ;7<=%#) -&7>");7<=%#)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4 Jul 1999 A class

Mean Predicted Values

Fr
ac

tio
n 

of
 P

os
iti

ve
s

 

 
Week1
Week2
Week3
Week4

!"#$%#&'()*+,-(.#/*()**0(1,&234*5(6,%(#++('4#%4'(,6(4.*(789('*#',0'(6%,&(4.*(:;;;<=>:>(2*%",5(3'"0$(
#++($%"52,"04'(-"4."0(4.*(?9(5,&#"0(@+*#/*<,0*<,34(1%,''</#+"5#A,0B(

(

(

(
(
(

.6$##)?"@<"%*")%*)#"%?*)$A@<"%*")B<7=)5""6)2)&C')#"**)?"@<"%*")7A5%<?*)@7=D%<"?)'7)/000)%#7A")
E"**"<)D"<B7<=%A@")B7<):"#75)A7<=%#)@#%**)4#$A6*)5$'F)#"**"<)7@@C<<"A@"*)7B)G3)<%$AH)?%(*)$A)IJK*L9)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4 Jul 1999 A class

Mean Predicted Values

Fr
ac

tio
n 

of
 P

os
iti

ve
s

 

 
Week1
Week2
Week3
Week4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4 Jul 1999 A class

Mean Predicted Values

Fr
ac

tio
n 

of
 P

os
iti

ve
s

 

 
Week1
Week2
Week3
Week4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4 Jul 1999 A class

Mean Predicted Values

Fr
ac

tio
n 

of
 P

os
iti

ve
s

 

 
Week1
Week2
Week3
Week4

courtesy of Nicolas Vigaud, IRI

CFSv2 re-forecasts calibrated with extended logistic regression (Wilks 2009)



Which Forecast Format?
Daily weather Fcst

Week 3-4 Outlook 

Seasonal Fcst



Summary of main points
• Forecast verification requires large sets of forecasts of reforecasts/

hindcasts. This poses questions for S2S where the hindcast sets are 
shorter than typically for seasonal forecasts, and the ensemble sizes 
are reduced 

• Verification of probabilistic forecasts involves considering many 
attributes of forecast quality. Reliability and sharpness are important 
attributes. 

• Calibration intimately involves verification because it seeks to maximize 
sharpness while maintaining reliability. But re-forecast data must not be 
used twice! 


