Modelling the Madden-Julian
Oscillation

Steve Woolnough
National Centre for Atmospheric Science
University of Reading



Outline

* History of modelling of the MJO
* Challenges of Modelling the MJO

* Two examples process studies
* Sensitivity to convective entrainment

* Role of air-sea coup
* High resolution moco
* MJO in sub-seasona
* Summary

2nd December 2015

INg
elling of the MJO

prediction systems

ICTP Advanced Workshop on S2S Prediction:

Modelling the MJO



listory of modelling the MJO

A faithful representation of the MJO in weather and climate
models is a long-standing challenge in Atmospheric
Modelling

* Slingo et al. (Clim. Dyn, 1996) analyzed 15 GCMs
contributing to the first AMIP experiment and found

* most models were not able to capture one or more essential
feature of the MJO, its:

* period,
e amplitude, or
» eastward propagation
* however they note that the best models tended to have

e convection schemes closed on buoyancy rather than moisture
convergence

* A better representation of the mean state precipitation
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listory of modelling the MJO

 Lin et al. (J. Climate, 2006) diagnose 14 models from CMIP3
and found

 Most models (12 out of 14) have less than half the observed MJO
variance

e are unable to capture the eastward propagation of the MJO

* However they note that the two best performing models have
closures or trigger functions that depend on moisture convergence

 Hung et al, (J. Climate, 2013) compare CMIP5 models to
CMIP3 and found a general overall improvement
* Improved MJO variance
* Improved relationship between eastward and westward power

* However the argue only one in 20 models was able to simulate a
realistic eastward propagation of the MJO
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Challenges of modelling the MJO

 The MJO relies on an interaction between the planetary scale tropical
dynamics and atmospheric convection

e Convection is organized across many scales from the planetary scale of
the MJO to mesoscale systems and individual clouds

 We rely on convective (and other) parametrizations to represent these

smaller scales and “trust” they will interact with the dynamics on the
large-scales in the correct way

~6000km ~2000km ~200km

> “

Multiscale organiza’tic‘)n in the MJO, from Chen et al. (JA$:, 1‘996; centre) and

Rickenbach and Rutledge (JAS, 1998; right)
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Aspects of convection which may be important

* Whilst the interaction between the convection and the
large-scale dynamics is fundamental to the MJO, the details
of the key important characteristics of convection for the
MJO are still unknown; a number have been suggested, e.g.

 the stratiform heating (e.g. Chang and Lim, 1988; Fu and Wang
2009) and its impact on wave speeds and growth

* the role of shallow heating (e.g. Wu 2003, Li et al 2009) and the
moistening by the associated circulation

* the role of moistening directly by shallow convection (e.g.
Woolnough et al. 2010)

* the sensitivity of convection to environmental humidity (e.g.
Hannah and Maloney 2011)

* Itsis likely that no signal aspect on its own will determine
the quality of the MJO simulation
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Current status of the MJO modellmg

* Jiang et al. (JGR, 2015)
compared a 27 simulations from
24 models as part of an
intercomparison project to
explore the relationship
between the MJO simulation
and modelled diabatic processes

* About % of models capture an
eastward propagating signal,
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Current status of the MJO modellmg
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* Jiang et al. (JGR, 2015)
compared a 27 simulations from
24 models as part of an
intercomparison project to
explore the relationship
between the MJO simulation
and modelled diabatic processes

* About % of models capture an
eastward propagating signal,
including

e “super parametrized” CAM

* TAMUCAM in which the
vertical profile of heating is

imposed as a function of
MJO phase
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Current status of the MJO modellmg
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Current status of the MJO modelling

* Jiang et al (2015) found no systematic relationship between
MJO fidelitity and

* the basic state

* The partitioning of convection between large-scale and convective
rain (this is different from convective and stratiform rain)

* The vertical profile of diabatic heating

* Jiang et al (2015) did find relationships between MJO fidelity

* the relationship between precipitation and relative humidity
suggesting a dependence of the sensitivity of convection to
humidity

* The gross-moist stability, a measure of how efficient convection and
the resulting circulation is at removing moist-static energy from the
column (this does depend indirectly on the vertical profile of
heating)

ICTP Advanced Workshop on S2S Prediction:

Modelling the MJO 1o
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Current status of the MJO modelling

* A number of studies looking at the relationship between
MJO fidelity and aspects of the representation of convection
have been performed

* Either in large model intercomparison projects or perturbing
some aspect of the model physics rather than comparing
different models

 However these studies do not always draw the same
conclusions

e Relationships between gross properties of the model (e.g.
the normalized gross moist stability) and MJO fidelity are
often not directly relatable to the formulation of physical
parametrizations
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Sensitivity to convective entrainment

* A number of studies have shown improved simulation of the
MJO by increasing the sensitivity of convection to
environmental humidity (e.g. Tokioka et al, 1988; Bechtold
et al, 2008; Neale et al, 2008; Hirons et al, 2012a,b;
Klingaman and Woolnough 2014a)

e Klingaman and Woolnough explore the sensitivity to
convective entrainment rate for convection in the Met
Offlce Unlfled I\/Iodel

- Composite evolution of the
. " . MJO in Wheeler-Hendon

g 050 | . " é ‘ZE 0.50 | . Moz Phase Space-

22 o] i & "¢ Observations (right) and

2 Few « | the standard configuration

E =
- of the Met Office UM at
GA2.0 (left)

Indian Ocean
RMMI
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Indian Ocean
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Sensitivity to convective entrainment

RMM2

Western Hemisphere and Africa

Intially explore the sensitivity to

convective entrainment in
hindcast experiments
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Sensitivity to convective entrainment

Observations
craint 850 hPa zonal wind, averaged 5S-5N craint 200 hPa zonal wind, averaged 55-5N

Increase the entrainment (and
detrainment) rate for deep and
mid-level convection by 50%
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Sensitivity to convective entrainment

e Repeat for a number of hindcasts
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entrainment hindcasts for 14 strong MJO cases initialized in phase 2 (left) and 10
days later (right). Dots spaced every five days.
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Sensitivity to convective entrainment

* Repeat the experiment in the climate model

Lag composite evolution of strong MJO acuvity in each phase - wheeler_obs . . : - JUTET— - .
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e Krishnamurti et al. (JAS, 1988)
identified a relationship
between the atmospheric and
oceanic variability on
intraseasonal timescales

 TOGA-COARE field campaign in
1992-3 increased interest in
the role of air-sea interaction
in the MJO, (Weller and
Anderson, JAS, 1996; Hendon
and Glick, J. Clim., 1997)

* Motivated a number of
modelling studies to explore
the impact of coupling on the
MJO

2nd December 2015
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Role of air-sea interaction

Schematic of the Madden-Julian Oscillation
- cross-section along equator

upper level divergence

Increased shortwave
flux

enhanced
evaporation

mean westerly wind

approx. 60° of longitude
or ~30 days

After Flatau et al. (J. Atmos. Sci., 1997)
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Role of alr-sea interaction

* Whilst most modelling studies show coupling improves the
representation of the MJO, a number of studies find

contradictory results (e.g. Hendon, 2000; Liess et al., 2004;
Sperber et al., 2005).

 There a number of plausible explanations
* Air-sea interaction isn’t important for the MJO
* Errors in the basic state degrade the MJO simulation

* Poor representation of the air-sea interaction processes in the
model

« either due to a misrepresentation of important processes in the model

e or errors in the basic state (e.g. surface wind errors, lead to errors in the
nature of the coupled feedbacks)

* An atmosphere only model with no or weak intraseasonal
variability may not be able to develop coupled feebacks

e Consensus is that air-sea interaction modifies the properties
of the MJO, but is not critical to the existence of the MJO

ICTP Advanced Workshop on S2S Prediction:
2nd December 2015 Modelling the MJO 19



Role of the diurnal cycle in SST

* During the suppressed phase of the MJO, light winds and
clear sky conditions lead to a strong diurnal cycle in SST

* Bernie et al. (J. Clim, 2005) showed that to capture these
diurnal variations in SST requires
 at least 3hourly atmosphere ocean coupling,
* upper-ocean resolution of the order of 1m,

* and that the impact of neglecting these diurnal variations could
lead to an underestimation of the intraseasonal variability in SST.

e Until recently coupled GCMS have typically had upper ocean
resolution of the order of 10m

* Woolnough et al. (QJRMS, 2007) demonstrated the impact
of poor representation of the diurnal air-sea coupling in a
set of hindcasts for TOGA-COARE in the ECMWF monthly
forecasting system

ICTP Advanced Workshop on S2S Prediction:

Modelling the MJO 20
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Role of the diurnal cycle in SST
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initialized during TOGA-COARE in the ECMWF monthly forecasting system
with persisted SSTs, a dynamical ocean model with 10m upper layer, and

a thermodynamic mixed layer model with 1m upper layer

(from Woolnough et al., QJRMS, 2007)
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Role of basic state errors

* Inness et al. (J. Clim., 2013a,b)
showed the impact of coupling
on the MJO and the impact of
basic state errors on the
representation of air-sea
interaction in the MJO by
comparing an atmosphere only
simulation and two coupled
simulations one with flux
correction to correct the basic
state
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Role of air-sea interaction in the MJO

e Klingaman and Woolnough (2014b) explore the impact of
air-sea interaction in the MJO using a high vertical
resolution thermodynamic mixed layer model coupled to
the Met Office UM

e High resolution allows model to fully capture the diurnal cycle of
SST

* Mixed layer model has prescribed seasonally and depth varying
heat and salinity tendencies applied to maintain the basic state
* The compare simulations with high and low
entrainment in both coupled and uncoupled
frameworks

* In low entrainment simulations coupling improves
amplitude but not propagation

* In high entrainment simulations coupling improves
propagation, but has little effect on amplitude
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Role of air-sea interaction in the MJO

High Entrainment
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Role of air-sea interaction in the MJO
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Maritime Continent
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High resolution modelling of the MJO

Recent advances in computing have allowed simulations of
the MJO with an explicit representation of convection,
rather than relying on parametrization

e Globally with (e.g. Muira et al., 2007; Miyakawa et al., 2014)

* Orregionally (e.g. Holloway et al., 2013)

Resolution still not cloud resolving, rather cloud permitting

Generally show improved simulation of the MJO compared
to their parametrized convection counterparts

Still not clear whether improvement

* relies on the explicit representation of convection and the ability to
capture the full range

e or arises because of improved representation of essentially
parametrizable processes (e.g. sensitivity to environmental
humidity, vertical profiles of heating)
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High resolution modelling of the MJO
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MJO in sub-seasonal prediction systems

* Despite the difficulties in simulating the MJO in climate
models recent progress has been made in MJO prediction in
operational prediction systems (e.g. Rashid et al, 2009,

Vitart, 2014)
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Evolution of the MJO skill in ECMWF monthly forecasts 2002-11. Day at which the MJO bivariate
correlation skill falls for the ensemble mean falls below 0.5, 0.6, 0.8, (left) and average amplitude
errors at lead times of 10, 20, 30 days (right). From Vitart (QJRMS, 2014)
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MJO in sub-seasonal prediction systems

 The MJO skill depends on initial phase in the forecasts
* Higher skill for forecasts initialized in phase 2-3 and 6-7

 More improvement for phases 2-3 and 6-7
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Day at which the MJO bivariate correlation skill falls for the ensemble mean falls below 0.6 for
forecasts initialized with a strong MJO in phases 2-3, 4-5,6-7,8-1 (right). From Vitart (QJRMS, 2014)
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MJO in sub-seasonal prediction systems
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MJO In sub-seasonal prediction systems

* Neena et al (JAS, 2014), examine the MJO prediction skill
and potential predictability in a comprehensive set of
hindcasts

* The find predictive skill based on the time at which the
mean square error has the same amplitude as the signal

Sl T . Il Srgememeer  The find skill for strong MJO initial

1 i prediction skill o
B {_,—‘_ﬂ; conditions between about 6-18 days

B B for single member skill and 7-27 days
for ensemble mean skill

days

Single member
predictability

Predictability limits are lower for

E bl e -

edcaniy,  Wweak MJO initial conditions and show
some phase dependence in some

Single member and ensemble mean prediction skill and
potential predictability for strong initial MJO conditions
from the ISVHE hindcasts (from Neena et al., 2014)
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MJO In sub-seasonal prediction systems

— : - Single member
N prediction skill

@ Ensemble mean
prediction skill

Single member
predictability

Ensemble mean
predictability

Single member and ensemble mean prediction skill and potential
predictability for strong initial MJO conditions from the ISVHE
hindcasts (from Neena et al., 2014)
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Summary

e Simulating the MJO in climate models remains a long-
standing challenge

* The MJO relies on an interaction between the planetary
scale dynamics and atmospheric convection and is highly
sensitive to the representation of convection in GCMs

e Sensitivity has been found to a number of aspects of model
formulation

* Modifying convection to be more sensitive to environmental
humidity often has a positive impact on the MJO but may degrade
other aspects of the simulation

e High resolution simulations of convection with an explicit
representation of convection show improved MJO simulation

 Air sea interaction shown to be important for MJO
simulation, but existence of the MJO does not depend on it

e Despite weakness in model MJO simulations operational
prediction systems do exhibit useful skill for MJO prediction
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