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IRI Multi-Model Probability Forecast for Precipitation
for December-January-February 2016, Issued October 2015
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Displaying forecast probabillities
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|_Inear Regression Models

* Given a set of GCM hindcasts or other predictors x(i) and a set of observations v(i),
we can build a regression model to relate them.

y(t) = ax(t) + b + error residual
* |n this equation, x(1) is the “predictor” and y(t) Is the “predictand”
D Isthe mean bias

* The coefficients a and b are estimated by minimizing the sum of squares of the residual error
term

* Regression models trained on GCM hindcasts vs historical data are called “MOS Correction” (for
Model Output Statistics)

* Generalized linear models can be used for nonlinear relationships
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Choice of predictor(s)

v(t) = ax(t) + b + error residual
* Note that in this equation, x(t) does not have to be the same physical guantity as y(t).

 Multiple linear regression is often used to get smaller error residual.

* This leads to the main pitfall. Fact: the error residual can be reduced to zero by
including enough random predictors. How many?

= |f too many predictors are included, this is called overfitting.

= Rule of thumb: need 5-10 samples per predictor

* Raises the question of how to choose x(t)'s”

= (Golden rule: (1) predictors need to be chosen from physical considerations, and (2)
the model error (or skill) needs to be estimated using independent data
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Choice of Predictand

Vi = axXt+ + b + error

* [he predictand could be station-scale precip, yielding a
statistical downscaling

e |t could even be a more-relevant variable like reservolir inflow, or
crop production data

= we can thus “tailor” the forecasts to specific users using
regression models
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Varieties of linear regression

» simple regression: a single predictor and a single predictand:
y=ax+Db

* multiple regression: two or more predictors, and a single predictand
Yy = ao + aiXi1 + a2x2 + ... + anxn (case of n predictors)

-- e.g., Principal Components Regression (PCR)

» multivariate (pattern) regression: two or more predictors, two or more predictands
y = Ax+b (matrix A, vectors y,x,b)

-- e.g., Canonical Correlation Analysis (CCA)
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motivated by experience at Climate Outlook

IRI Tool for MOS correction & Fora (COFS) in Africa
downscaling seasonal forecasts




Principal Components Regression
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B. Lyon (IRI)

Jalloring seasonal forecasts 1o reservoir INflow A Lucero Pacasa

Historical Angat Inflow Observations
Sea Surface Temperatures
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Forecasts and Cross-Validated Hindcasts
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Basic requirements for
regression model fitting

Vi = axXt+ + b + error

@ A long historical time series of y (OND
streamflow)

@ A matching historical time series of x (e.g.
September Nino3.4 SST)
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Sept OND
Nino3.4 | Inflow
X 2
(©) | (0t m)

1981 26.5285 |11.2799
1982 28.2017 |5.009
1983 26.1886 |5.7266
1984 26.4288 |6.0093
1985 26.0805 |8.5389
1986 27.352 12.021
1987 28.4074 |7.8353
1988 25.7203 |11.4695
1989 26.4601 |4.4186
1990 26.9618 |8.4525
1991 27.4065 |3.6189
1992 26.6667 |8.6925
1993 27.1416 |11.1192
1994 27.2457 |6.2394
1995 26.1964 |14.5434
1996 26.4368 |9.7648
1997 28.8881 |2.2057
1998 25.6589 |14.8412
1999 25.7636 |11.5271
2000 26.3237 |11.5968
2001 26.7461 |8.394
2002 27.7331 [4.9591
2003 27.1061 |4.4899
2004 27.5801 |8.2306
2005 26.7958 |10.4253
2006 27.3255 |7.8595
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(2) Cross-validated hindcasts (yhat)

Cross-validated
Hindcasts
of OND Inflow

Hindcast =
forecast made for previous years

Cross-validation =
the year to be forecast is excluded from
the data used to train the model used for
that year, to mimic the eal-time forecast
situation, and prevent statistical
“overfitting”

1990 1995 2000 2005 2010
Y ear




Leave-one-out cross-validation

| eave-one-out cross-validation

Predict Training
It 1951 period
1952 Training Predict Training
period 1952 Period
1953 Training Predict Training
period 1953 period
1954 Training Predict Training
period 1954 Period
1955 Training Predict Training
period 1955 period

... then correlate 1951-2000.
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Error residuals of OND-inflow hindcasts

(2) Cross-validated hindcasts (yhat) (b) Histogram of error residuals (yhat-y)

These residuals
should be approx.
normally
distributed for
the regression

assumptions to
be valid.

1990 1995 2000 2005 2010 -000 -400 -200 0 200 400
Y ear Error residual
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@ How do we get the forecast PDF using Fofecast

regression models? " Historical distribution
distribution :

® Assume a normal distribution
(transformation can be applied), with
the mean given by the regression
model

@ Estimate the spread from the errors
of past forecasts
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How do we make probabilistic forecasts from this?
Assume a normal distribution with mean given by
reqression prediction y(t)

Forecasts and Cross-Validated Hindcasts
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Probabilistic forecast of 2009 OND-inflow

(a) Prob. Density Function (PDF) (b) Prob. of Exceedance

Cross-validated anomaly correlation
skill = 0.512

©
(o}

2009 Forecast distribution mean =
689

=
=
@
c
O
(]
o)
O
b
o

Frob. of Exceedance
(]
on

o
I~

2009 Forecast distribution
standard deviation = 287

Climatological distribution mean &
st devn: 843, 333

500 1000 500
y or yhat y or yhat

19



Predictability of Philippines Rice Production
from GCM hindcasts and published rice production data

ACC Skill of (a) Regional & (b) Provincial Production

Jan-Jun (Dry Season)

from prev. Jun 1
20° 00"N

Canonical correlation analysis of
x=GCM predicted Oct-Dec

precip,
y=Jan-Jun rice production
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Koide et al (2013, JAMC)




Statistical Hindcasts of (o) gty 557 pomanes 8 Mode (ceh)
Monsoon Onset Date =

- Canonical correlation analysis of”
CMAP onset dates vs. July
monthly SST field

y(t) = A.x(t) + C

t:1979,1980, .. .. 2009.

« Cross-validated anomaly
correlation skill

r(y(t),y(t))

after Moron, Robertson & Boer (2009)
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Seasonal predictability of daily rainfall statistics

Seasonal Total = Rain Day Frequency X Mean Intensity
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ASMC/IRI Seasonal-Intraseasonal Climate Prediction
and its Applications Workshop
21st May—30th May 2007, Singapore




GCM Downscaled Precip. Anomaly Correlation Skill

(from 2007 Singapore Workshop ASEAN participants)
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Quantile regression

* The ultimate goal of regression analysis is to model the conditional
distribution of the response variable given a set of explanatory
variables - this is called Distributional Regression

* Quantile regression is a reduced form in which the predictand is a
quantile of the forecast PDF. Logistic regression is well suited to
poredicting a probabillity rather than a measurable physical quantity

P o Is the probability of not
In — f(X) P = Pr {V S Q} . exceeqlmgl qganhle q
1 — p 'S equation is linear on the
logistic, or log-odds scale
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GFS Day 6-10 Accumulated Precip Forecast for Minneapolis
28 Nov — 2 Dec 2001

.99
(b)
X Is GFS ensemble Individual regressions
mean precip 9%
at nearest grid point, 90 £
square rooted 3 80 5 _ _
| N = 0o n|—2—| = rx)
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quantiles (cumulative 20 &
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-xtended logistic regression

e | ogistic regression lines obtained separately for each quantile can cross

e Extended logistic regression alleviates this:

p (q) this specifies parallel functions of
— the predictors x, whose
hl 1 . p(q) f(X) _I_ g(q) intercepts bO = (g ) increase

monotonically with the threshold
guantile, g

International Research Institute

for Climate and Society
EARTH INSTITUTE | COLUMBIA UNIVERSITY



GFS Day 6-10
Precip Forecast for
Minneapolis
28 Nov — 2 Dec 2001

Wilks (2009)
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An S25 example

CFSv2 re-forecasts calibrated with extended logistic regression (Wilks 2009)
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Figure 5: Reliability diagram for forecasts issued in JAS over the 1999-2010 period from one to four weeks lead
over a US only window (land and ocean points)

done separately for each gridpoint

4-member ensemble averages, every da
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Seasonal forecasts are sometimes tailored, expressing the forecast in terms of a predictand of

interest (e.g. rainfall frequency, monsoon onset date, drought probability, river flow, crop yield..).

This can also be a form of forecast calibration or statistical downscaling, according to the choice
of predictand.

Regression models are the workhorse of forecast tailoring and calibration, with predictor
(explanatory) variables taken from GCM ensemble-mean forecasts or antecedent climate conditions.

Usually a Gaussian or transformed Gaussian distribution is assumed.

Most regression approaches are limited to the conditional mean as a function of the predictor
variables. The spread needs to be estimated separately.

Quantile regression using extended logistic regression has been used in weather forecasting
and seems well suited to calibrating sub-seasonal forecasts.
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