
(Atmospheric) Climate Dynamics

Fred Kucharski

This course consists of 12 lectures.

- Each lecture is 90 minutes long.

- At the end of each lesson, exercises will be given as homework and discussed
in the beginning of the following lesson.

- Recommended textbooks:
James R. Holton: Dynamic Meteorology, Third edition, Academic Press.
Joseph Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag.
Others are suggested in the indivudual lectures. Many others are good as well,
so choose!

- Evaluation criteria: 1/3 for weekly assignments, 2/3 for final examination.

- Lecture notes will be available at
http://users.ictp.it/∼kucharsk/lecture notes CD section1.pdf, etc.

- If you find mistakes, corrections are highly appreciated!

Topics in the course

- Vorticity equation for synoptic-scale motion; potential vorticity conservation
[1.5 h]

- Quasi-geostrophic motion; Thermo-Hydrodynamic equations in pressure coor-
dinates [1.5 h]

- Rossby waves; free Rossby waves; forced Rossby waves [1.5 h]
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- Baroclinic instability; two-layer model [1.5 h]

- Equatorial waves; Rossby-gravity waves; Kelvin waves [1.5 h]

- ENSO atmosphere and ocean feedback mechanisms; Gill model; Reduced
Gravity Model [1.5h]

- Boundary Layer Processes; turbulent fluxes; Ekman pumping [1.5 h]

- The General Circulation; Hadley Cell; Ferrell Cell [1.5 h]

- Tropical zonal and meridional circulations; Walker circulation; Sverdrup bal-
ance [1.5h]

- Energetics of the General Circulation; Lorenz’ energy cycle [1.5 h]

- Analysis of climate Variability; EOF analysis, PCA analysis [3 h]
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1 Vorticity equation for synoptic-scale motion

Figure 1: Idealised situation (meridional-vertical secton) of the extratropical mean
state. Potential temperature (solid lines, K) and zonal wind (dashed, m/s). As we
will show later in ths Climate Dynamics course the wind approximately fulfill the
thermal wind equation ∂ug/∂z ≈ −g/(fT ) ∂T/∂y.

Vorticity is an important concept for the analysis of all kind of atmospheric
motions, but in particular for large-scale atmospheric motions. We use the ap-
proximate horizontal equations of motion (in the vertical the equation of motion
degenerates to the hydrostatic equation) on a sphere, but neglecting all metric
terms that occur in the total derivative. Furthermore, we use the abbreviations
dx = rcosφ dλ, dy = r dφ, dz = dr). Also recall the definition of the Coriolis
parameter f ≡ 2Ω sinφ, and note that we have already neglected the small term
proportional to the vertical velocity Coriolis term.
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Figure 2: Typical surface pressure [hPa] and potential temperature [K] distributions
in extratropical cyclones.

If we apply ∂/∂y to Eq. 1 and ∂/∂x to Eq. 2 and substract the first from the second,
we obtain using the definition ξ = ∂v/∂x− ∂u/∂y (Exercise!)
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The coriolis parameter only depends on y, so we may write:
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This is the vorticity equation usually used to analyse synoptic-scale motions (the
direction is perpenticular to the earths surface). It states the the rate of change of
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absolute vorticity following the motion is given by the sum of three terms, called the
divergence term, the tilting or twisting term, and the solenoidal term, respectively.

The first term on the right-hand side may be interpreted as expression of the an-
gular momentum conservation. Imagine a ice scater who rotates and while rotating
moves his arms closer to his body: His rotation accelarates. But since we are dealing
with large scales, in Eq. 4 the absolute vorticity, η = ξ + f , has to be considered.
The interpretation of the second term is that vertical vorticity may be generated
by the tilting of horizontal vorticity components by a non-uniform vertical motion
field. The meaning of the third term is the soleniodal term. It can be expressed as
(exercise!):

1
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)

=
1

ρ2
(∇ρ×∇p) · k , (5)

where α = 1/ρ is the specific volume and k is the unit vector in vertical direction. In
order to create vorticity through the solenoidal term, lines of constant density have
to intersect with lines of constant pressure. A land-sea breeze is a typical example
where vorticity in created in such a way.

1.1 Scale analysis of the vorticity equation

In order to understand which terms and therfore mechanisms are the dominant ones
in the vorticity equation (4) in this section a ’scale-analysis’ will be performed. The
scale analysis uses the dimensions of the synoptic scales we are interested in, but
also observed magnitudes of flow velocites and other quantities. It is not a rigorous
proceedure (you use part of the answer as input), but it helps to identify dominant
mechanisms.

The scales are given in the following table:

Table 1: Scale parameters for synoptic-scale flow.

U ∼ 10 m s−1 horizontal velocity scale
W ∼ 1 cm s−1 vertical velocity scale
L ∼ 106 m length scale
H ∼ 104 m vertical scale
δp ∼ 10 hPa horizontal pressure scale
ρ ∼ 1 kg m−3 mean density
δρ/ρ ∼ 10−2 fractional density fluctuation
L/U ∼ 105 s time scale
f0 ∼ 10−4 s−1 Coriolis parameter
β = df/dy ∼ 10−11 m−1 s−1 ’beta’ parameter

This gives

ξ =
∂v

∂x
− ∂u

∂y
∼ U

L
∼ 10−5s−1 , (6)
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and
ξ/f0 ∼ U/(f0L) ≡ Ro ∼ 10−1 , (7)

the ratio of relative to planetary vorticity is equal to the Rossby number, which
is small for synoptic flow. Therefore, ξ may be neglected compared to f in the
divergence term in the vorticity equation
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The magnitudes of the various terms in equation 4 can now be estimated as follows:
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The estimation of the divergence is an overestimation. Indeed it will be shown
later in this course the the divergent part of the flow (which is also the non-
geostrophic part) is an order of magnitude smaller that the rotational part (geostrophic).
We have therfore
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which means that the divergence is typically one order of magnitude smaller than
the vorticity of synoptic-scale motion. Therefore,

f
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Therefore in the vorticity equation (4), we have the first order balance
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The synoptic-scale vorticity equation 11 states that the rate of change of absolute
vorticity following the horizontal motion is approximately given by the generation
(destruction) of vorticity owing to horizontal convergence (divergence). Indeed, this
is considered to be the main mechanism of cyclone (and anticyclone) developments,
connecting cyclonic motion to low pressure and anticyclonic motion to high pressure
(only for large-scale motions!).

1.2 The Barotropic (Rossby) Potential Vorticity Equation

As barotropic model of the Atmosphere we assume that there is incompressibility
and the flow may be confined by the height of two given boundaries, h(x, y, z, t) =
Ht−Hb (see also lecture on equatorial waves). The incompressibility condition may
be expressed as

∂u

∂x
+
∂v

∂y
= −∂w

∂z
. (13)

We also assume that the horizontal velocities are independent of height. With this
we can integrate the vorticity equation (11) vertically to obtain

h
dh(ξ + f)

dt
= (f + ξ)[w(Ht)− w(Hb)] . (14)

Note that in equation (14), the relative vorticity ξ may be replaced, to a first ap-
proximation, by the geostrophic relative vorticity

ξ ≈ ξg ≡ ∇2gh/f0 = ∇2Φ/f0 , (15)

where we have assumed that the meridional scale, L, is small compared to the radius
of the earth so that the geostrophic wind may be defined using a constant reference
latitude of the Coriolis parameter f ≈ f0 ≡ 2Ω sinφ0. Also, in the operator (12) the
horizontal velocities may be approximated by the geostrophic ones

v ≈ vg ≡ f−1
0 k×∇gh = f−1

0 k×∇Φ , (16)

Equations 15 and 16 can be derived from the geostrophic equations and integration
of the hydrostatic equation for an incompressible fluid (exercise!). Note that, for
beauty, we have re-introduced the small ξ effect on the rhs of Eq. (14). Since
w(Ht) = dHt/dt, w(Hb) = dHb/dt we have,

1

ξ + f

dh(ξ + f)

dt
=

1

h

dhh

dt
. (17)

Integrating left and right side leads to

dh
dt

[ln(ξ + f)] =
dh
dt

[lnh] , (18)

which implies that
dh
dt

(ξ + f)

h
= 0 , (19)
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which is the potential vorticity conservation theorem for a barotropic fluid, first ob-
tained by C. G. Rossby. The quantity conserved following the horizontal motion is
the barotropic potential vorticity. It explains nicely some features of the observed
stationary waves, e.g. induced by the Rocky mountains. If the flow is purely hor-
izontal, i.e. rigid lid and lower boundary, then we obtain the barotropic vorticity

equation
dh(ξ + f)

dt
= 0 , (20)

which states that the absolute vorticity is conserved following the horizontal motion.
The flow in the mid-troposhere approximately fulfills this condition and equation
(20) my be used to explain the movement of air particles in Rossby waves!

Note that using the approximations (15) and (16) the barotropic vorticity equa-
tion (20) can be re-written in terms of the streamfunction ψ ≡ Φ/f0 = gh/f0 or
equivalently also in terms of geopotential Φ = gh (exercise!)

dh
dt

∇2ψ + β
∂ψ

∂x
= 0 . (21)

Also the operator dh/dt can be expressed in terms of streamfunction

dh
dt

=
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
(22)

Equations (21) and (22) can be used conveniently to compute Rossby wave solutions
numerically (exercise in section 3!)

Excercises

1. Show that applying ∂/∂y to Eq. 1 and ∂/∂x to Eq. 2 leads to Eq. 3.

2. Show the validity of Eq. 5.

3. Show that the geostrophic formulations 15 and 16 can be derived from the
usual geostrophic wind

vg ≡
1

ρf0
k×∇p

and that with this the barotropic vorticity equation 20 can be written as Eq.
21 with 22.

4. An air parcel at 30 N moves northward conserving absolute vorticity. If its
initial relative vorticity is 5 × 10−5s−1, what is its relative vorticity upon
reaching 90 N?

5. An air column at 60 N with ξ = 0 initially stretches from the surface to a
fixed tropopause at 10 km. If the air column moves until it is over a mountain
barrier 2.5 km high at 45 N, what are its absolute vorticity and relative vorticity
as it passes the moutain top, assuming that the flow satisfies the barotropic
potential vorticity equation?
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2 Quasi-geostrophic motion

2.1 The basic equations in isobaric Coordinates

The basic governing equations are (see Eqs. 1 and 2)

The horizontal momentum equations

dv

dt
+ fk× v = −1

ρ
∇p , (23)

where v = iu+ jv and the nabla operator has just the horizontal components.
The vertical equation of motion degenerates for all large-scale motion (e.g. scales

more than 100 km) into the hydrostatic equation:

∂p

∂z
= −ρg . (24)

Equation (24) states that there is a monotonic relation between pressure p and
height z, which leads to the possibility of using p as a vertical coordinate. The basic
equation for deriving all transformation from the height to the pressure coordinate
system is: ψ(x, y, p, t) = ψ(x, y, z, t), which leads, for example to

∂ψ

∂x
|p=

∂ψ

∂x
|z +

∂ψ

∂z

∂z

∂x
|p . (25)

Inserting ψ = p and applying Eq. (25) also to the derivative in y direction gives
the transformation for the horizontal pressure gradient force ∇zp = ρg∇pz = ρ∇pΦ.
Thus the horizontal momentum equation reads

dv

dt
+ fk× v = −∇pΦ . (26)

This looks a little like the horizontal momentum equation of the shallow water model,
but it is not! Applying ψ(x, y, p, t) = ψ(x, y, z, t) to a vertical derivative and letting
ψ = p gives the hydrostatic equation in pressure coordiantes

∂Φ

∂p
= −1

ρ
= −α = −RT

p
. (27)

The total derivative d/dt is invariant and can be expressed as (as follows directly
from ψ = ψ(x, y, p, t))

d

dt
=

∂

∂t
+

∂

∂x

dx

dt
+

∂

∂y

dy

dt
+

∂

∂p

dp

dt
(28)

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
(29)

=
∂

∂t
+ v · ∇p + ω

∂

∂p
. (30)

ω = dp/dt (called the ’omega’ vertical velocity) is the pressure change following the
motion. Note that when w is positive ω is typically negative.
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The Continuity Equation

The easiest way to derive the continuity equation is through the principle of mass
conservation. For an infinitesimal mass element we may write:

δm = ρδV = ρδxδyδz = −δxδy 1
g
δp . (31)

Note that the first part of equation (31) is just the definition of the density. In the
second part the hydrostatic equation (24) has been used to replace the vertical per-
turbation by a pressure perturbation. Let’s calculate the derivative of (31) following
the motion (conservation of mass)

1

δm

d

dt
δm =

g

δxδyδp

d

dt

δxδyδp

g
= 0. (32)

After appying the product rule of differentiation, and changing the order of differ-
entiation we obtain

1

δx
δ
d

dt
x+

1

δy
δ
d

dt
y +

1

δp
δ
d

dt
p =

δu

δx
+
δv

δy
+
δω

δp
= 0 . (33)

Letting δx, δy, δz → 0, it follows the continuity equation in pressure coordiantes:
(

∂u

∂x
+
∂v

∂y

)

p

+
∂ω

∂p
= 0 . (34)

In pressure coordinates the full continuity equation takes the form of that of an
incompressible fluid, i.e. the time derivative of density does not occur anymore
explicitely.

The Thermodynamic Energy Equation

Recall Eqs. 108 or 110 for the Enthalpy, and after multiplying with T from our
Earth System Thermodynamics course (for ds = 0), which was approximately valid
for the atmosphere in which phase transitions from water vapor to liquid water are
allowed (do you remember what the symbols Llv and mv stand for?):

cp
dT

dt
− RT

p

dp

dt
= −Llv

dmv

dt
. (35)

If we further allow diabatic processes to occur (e.g. radiation), then we can simply
add Tds/dt on the rhs and abbreviate those terms as Q.

cp
dT

dt
− α

dp

dt
= Q . (36)

Q is thus the heat added by diabatic processes (i.e. condensation, radiation).
Using the total derivative in pressure coordinates and the definition of ω we have

(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)

p

− Spω =
Q

cp
, (37)
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where the stability factor

Sp =
RT

cpp
− ∂T

∂p
= −T

θ

∂θ

∂p
(38)

has been introduced. In Eq. (38) we have used the definition of the potential
temperature (Exercise!)

θ = T

(

p0
p

) R
cp

. (39)

p0 is a constant reference pressure here. Using the dry adiabatic lapse rate Γd = g/cp,
we have also (excercise!)

Sp = (Γd − Γ)/(ρg) , (40)

where the definition of the lapse rate −dT/dz = Γ has been used.
The set of equations (26), (27), (34) and (37) is the basis for our analysis of

synoptic-scale motion, but also the basis for many numerical models of the atmo-
spheric circulation.

2.2 Some observed features of the extratropical mean flow

A primary goal of dynamic meteorology is to interpret the observed structure of
large-scale atmospheric motions in terms of physical laws governing the motions.
These laws, which express the conservation of momentum, mass, and energy com-
pletely determine the relationships among the pressure, temperature, and velocity
fields. However, the pure laws provide an enourmously complicated picture of the
motions. For extratropical synoptic-scale motions, however, the horizontal velocites
are approximately geostrophic. Such motions, which are ofter referred to as quasi-

geostrophic, are simpler to analyze than, for example tropical disturbances. They
are also the major systems of interest in traditional short-range weather forecasting
and are thus a reasonable starting point for dynamical analysis. In this section we
show that for extratropical synoptic-scale systems the twin requirement of hydro-
static and geostrophic balance constrain the baroclinic motions so that to a good
approximation the structure and evolution of the three-dimensional velocity field
are determined by the distribution of geopotential height on isobaric surfaces. The
equations that express these relationships constitute the quasi-geostrophic system.
Before developing this system of equations it is useful to summarize briefly the ob-
served structure of mid-latitude synoptic systems and the mean circulations in which
they are embedded.

Zonally averaged cross sections do provide some useful information on the gross
structure of the planetary-scale circulation, in which synoptic-scale eddies are em-
bedded. Fig. 3 and 4 show the zonal mean meridional-vertical sections of tem-
perature (left) anomaly from zonal mean and zonal velocity (right) for northern
(December-to-February; DJF) and southern winter (June-to-August; JJA), respec-
tively. The veritical direction is measured in pressure (hPa). The average pole-
to-equator temperature gradient in the Northern Hemisphere troposphere is much
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larger in winter than in summer. In the southern hemisphere the difference between
summer and winter temperature distributions is smaller, owing mainly to the large
thermal inertia of oceans together with the greater fraction of the surface that is
covered by oceans in the Southern Hemisphere. The zonal flow and the meridional
temperature gradients satisfy to a large degree the thermal wind relation (Exercise!),
the largest zonal wind speeds are located in upper levels in regions with the largest
meridional temperature gradients

∂ug
∂p

=
R

fp

(

∂T

∂y

)

p

. (41)

The core of maximum zonal wind speed (called jet stream axis) is located just
below the tropopause (the boundary between troposphere and stratosphere). In both
hemispheres the location is about 30-35 during winter and 40-45 during summer.

Figure 3: Northern winter meridional-height sections of temperature deviations from
zonal mean (left) and zonal wind (right). Units are K for temperature and m/s for
wind.

However, there are some important deviations from the zonal mean picture.
Fig. 5 shows the zonal wind distribution at the 200 hPa level. As can be seen the
largest wind speeds are concentrated just off the coast of Asia and North America,
where also the largest meridional temperature gradients occur. Also, whereas the
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Figure 4: Southern winter meridional-height sections of temperature deviations from
zonal mean (left) and zonal wind (right). Units are K for temperature and m/s for
wind.

pacific jet is quite zonal, the Atlantic one is clearly tilted from the south-west to the
north-east. It is in these regions where most extratropical cyclones and anticyclones
develop. I will be shown in section 4 that the mechanisms where these systems draw
energy from is the meridional temperature gradient due to an instability called
baroclinic instability. The systems propagate downstream along the storm tracks

that approximately follow the jet axis.
The large departure of the northern winter climatological jet stream from zonal

symmetry can also be inferred from examination of Fig. 6, which shows the DJF
mean 500 hPa geopotential contours (the z from Φ = gz in Eq. 26). Even after aver-
aging the geopotential height contours for one season, very striking departures from
zonal symmetry remain. These are clearly linked to the distribution of continents
and Oceans (for example orographic Rossby waves due to approximate barotropic
potential vorticity conservation [see section 1.2]).

The most prominent asymmetries are the throughs to the east of the American
and Asian continents. Referring back to Fig. 5, we see that the intense jet at 35 N
and 140 E is a result of the semipermanant trough in that region (that is the isolines
of height show strong gradient in that region).

Thus, it is apparent that the mean flow in which synoptic systems are embedded
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Figure 5: Northern winter (DJF) 200 hPa zonal wind. Units are m/s.

should really be regarded as a longitude-dependent time-averaged flow. In addition
to its longitudinal dependence, the planetary-scale flow also varies from day to day
owing to its interactions with transient synoptic-scale disturbances.

It is a common observation in fluid dynamics that jets in which strong velocity
shears occur may be unstable with respect to small perturbations. By this is meant
that any small disturbance introduced into the jets will tend to amplify, drawing
energy from the jet as it grows. Most synoptic-scale systems in mid-latitude appear
to develop as the result of an instability of the jet-stream flow. This instability, called
baroclinic instability, depends on the meridional temperature gradient, particularly
at the surface. Hence, through the thermal wind relationship, baroclinic instability
depends on vertical wind shear.

2.3 The Quasi-geostrophic approximation

The main goal of this chapter is to show how the observed structure of midlatitude
systems can be interpreted in terms of the constraints imposed on synoptic-scale
motions by the dynamical equations. Specifically we show that for equations that
are hydrostatic and nearly geostrophic the three-dimensional flow is determined
approximately by the isobaric distribution of geopotential height [Φ(x, y, p, t)]. For
this analysis, it is convenient to use the isobaric coordianate system both because
meteorological measurements are generally referred to constant-pressure surfaces
and because the dynamical equations are somewhat simpler in isobaric coordinates
than in height coordinates. Thus, use of the isobaric coordinate system simplifies
the development of approximate prognostic and diagnostic equations.

2.3.1 Scale Analysis in Isobaric Coordinates

We consider the set of equations (26), (27), (34) and (37). In the following we will
drop the notation ()p to indicate derivatives at constant pressure, which is valid
in this section for all horizontal and time derivatives. The stability parameter is
positive [Sp ≈ 5 × 10−4 K Pa−1 in the mid-troposphere]. This set of equations,
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Figure 6: Northern winter (DJF) 500 hPa zonal geopotential height. Units are
decametre.

although simplified by use of the hydrostatic approximation and by neglect of some
small terms that appear in the complete spherical coordinate form, still contains
terms that are of secondary significance for mid-latitude synoptic-scale systems.
They can be further simplified by the observation that the horizontal flow is nearly
geostrophic and that the ratio of the magnitudes of vertical to horizontal velocities
is of the order of 10−3.

We first separate the horizontal velocitity into geostrophic and ageostrophic parts
by letting

v = vg + va , (42)

where the geostrophic wind is defined as

vg ≡ f−1
0 k×∇Φ , (43)

and va is just the difference between the total horizontal wind and the geostrophic
wind. Here we have assumed that the meridional scale, L, is small compared to the
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radius of the earth so that the geostrophic wind may be defined using a constant
reference latitude of the Coriolis parameter (f ≈ f0 as in equation 15). Note that
the definition (43) implies that the geostrophic wind is non-divergent.

For the systems of interest |vg| ≫ |va|. More precisely,

|va|
|vg|

∼ O(Ro) ≈ 10−1 . (44)

The Rossby number Ro has been introduced in Eq. (7).
The momentum can then be approximated to O(Ro) by its geostrophic value, and

the rate of change of momentum or temperature following the horizontal motion can
be approximated to the same order by the rate of change following the geostrophic
wind. Thus, in the total derivative (30), v can be replaced by vg and the vertical
advection, which arises from ageostrophic flow, can be neglected. The rate of change
of momentum following the total motion is then approximately equal to the rate of
change of the geosptrophic momentum following the geostrophic wind:

dv

dt
≈ dgvg

dt
, (45)

where
dg
dt

=
∂

∂t
+ vg · ∇ =

∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
. (46)

Note, however, that the vertical advection in the thermodynamic equation, 37, has
been combined already with the adiabatic expansion term to provide the stability
term Spω.

Although a constant f0 can be used in defining vg, it is still necessary to retain
the dynamical effect of the variation of the Coriolis parameter with latitude in the
Coriolis force term in the momentum equation. This variation can be approximated
by expanding the latitudinal dependence of f in a Taylor series about a reference
latitude φ0 and retaining only the first two terms to yield

f = 2|Ω| sin φ ≈ f0 + βy , (47)

that is the sinφ-dependence is approximated linearly for a given latitude φ0 by a
Taylor series expansion (therefore β = 2|Ω|cosφ0/a; a being the mean radius of
the earth). This approximation is usually referred to as mid-latitude beta-plane

approximation. For synoptic-scale motions the ratio of the first two terms in the
expression of f has the order of magnitude

βL

f0
≈ cosφ0

sinφ0

L

a
∼ O(Ro) ≪ 1 . (48)

This justifies letting the coriolis parameter have a constant value f0 in the geostro-
phyc approximation and approximating its variation in the coriolis force term by
(47).
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From Eq. (26) the acceleration following the motion is equal to the difference
between the Coriolis force and the pressure gradient force. This difference depends
on the departure of the actual wind from the geostrophic wind. We can write, using
(42), (47) and (43)

fk× v +∇Φ = (f0 + βy)k× (vg + va)− f0k× vg

≈ f0k× va + βyk× vg . (49)

The approximate horizontal momentum equation thus has the form

dgvg

dt
= −f0k× va − βyk× vg . (50)

Since the geostrophic wind (43) is non-divergent, the continuity equation (34)
may be written as

∇ · va +
∂ω

∂p
= 0 , (51)

which shows that ω is only defined by the ageostrophic part of the wind field (i.e.
it is the ageostrophic wind that drives vertical motions that are relevant for energy
conversions!!!).

In the thermodynamic energy equation (37) the horizontal advection can be
approximated by its geostrophic value. However, as mentioned above, the vertical
advection is not neglected, but forms part of the adiabatic heating and cooling term.
This term must be retained because the static stability is usualy large enough on
the synoptic scale that the adiabatic heating or cooling owing to vertical motion
is of the same order as the horizontal temperature advection despite the smallness
of the vertical velocity. It can be somewhat simplified, though, by dividing the
total temperature field Ttot, into a basic state (standard atmosphere) portion that
depends only on pressure, T0(p), plus a deviation from the basic state, T (x, y, p, t)

Ttot = T0(p) + T (x, y, p, t) . (52)

Since |dT0/dp| ≫ |∂T/∂p| only the basic state portion of the temperature field need
to be included in the static stability term and the quasi-geostrophic thermodynamic
energy equation may be expressed in the form

∂T

∂t
+ vg · ∇T −

(

σp

R

)

ω =
Q

cp
, (53)

where σ ≡ −RT0p−1d ln θ0/dp and θ0 is the potential temperature corresponding to
a basic state temperatue T0 (σ ≈ 2× 10−6 m2 Pa−2 s−2 in the midtroposhere).

Equations (50), (43), (27), (51) and (53) constitute the quasi-geostrophic equa-
tions. If Q is known these form a complete set in the dependent variables Φ, T,vg,va
and ω.
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2.4 The Quasi-Geostrophic Vorticity Equation

Just as the horizontal momentum can be approximated to O(Ro) by its geostrophic
value, the vertical component of the vortivity can also be approximated geostrophi-
cally. Using Eq. (43) the geostrophic vorticity ξg = k · ∇ × vg can be expressed in
terms of the Laplacian of the geopotential

ξg =
∂vg
∂x

− ∂ug
∂y

=
1

f0
∇2Φ . (54)

Equation (54) can be used to determine ξg(x, y) at any given time from a known
field Φ(x, y). Alternatively, (54) can be solved by inverting the Laplacian operator
to determine Φ from a known distribution of ξ provided that suitable conditions
on Φ are specified on the boundaries of the region in question. This invertibility

is one reason why vorticity is such a useful forecast diagnostic; if the evolution
of vorticity can be predicted, then inversion of Eq. (54) yields the evolution of
the geopotential field, from which it is possible to determine the geostrophic wind.
Since the Laplacian of a field tends to be a maximum where the function itself is a
minimum, positive vorticity implies low values of geopotential and vice versa (see
Fig. 6). We will use the inversibility to solve a problem numerically in section 3.

The quasi-geostrophic vorticity equation can be obtained from the x and y com-
ponents of the quasi-geostrophic momentum equation (50) and yields (exercise!)

dgξg
dt

= −f0
(

∂ua
∂x

+
∂va
∂y

)

− βvg , (55)

which should be compared with Eq. (11). Thus the quasi-geostrophic vorticity
equation takes the form of the barotropic vorticity equation! Using (51), Equation
(55) can be re-written as

∂ξg
∂t

= −vg · ∇(ξg + f) + f0
∂ω

∂p
, (56)

which states that the local rate of change of geostrophic vorticity is given by the
sum of the advection of the absolute vorticity by the geostrophic wind plus the
concentration or dilution of vorticity by stretching or shrinking of fluid columns
(the divergence effect). The vorticity tendency owing to vorticity advection [the
first term on the right in Eq. (56)] may be rewritten as

−vg · ∇(ξg + f) = −vg · ∇ξg − βvg . (57)

The two terms on the right represent the geostrophic advections of relative vorticity
and the planetary vorticity, respectively. For disturbances in the westerlies, these
two effects tend to have opposite signs. In the upstream of a 500 hPa trough,
the geostrophic wind is directed from the negative vorticity maximum at the ridge
toward the positive vorticity maximum at the trough so that −vg · ∇ξg < 0. But at
the same time, since vg < 0 in that region, the geostrophic wind has its y component
directed down the gradient of planetary vorticity so that −βvg > 0. Hence, in
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this region the advection of relative vorticity tends to decrease the local relative
vorticity, whereas the advection of planetary vorticity tends to increase the local
relative vorticity. Similar arguments (but with reversed signs) apply to a region
downstream a trough. Therefore, advection of relative vorticity tends to move the
vorticity and trough (and ridge) pattern eastward (downstream). But advection
of planetary vorticity tends to move the troughs and ridges westward against the
advecting wind field.

The net effect of advection on the evolution of the vorticity pattern depends
upon which type of advection dominates. Given a geopotential height wavy field,
the vorticity increases with the square of the wave number, so that the first term on
the right of Eq. (57) is larger for large wave numbers (i.e. short waves; typically Lx <
3000 km), while for long waves (Lx > 10000 km) the planetary vorticity advection
tends to dominate. Therefore, as a general rule, short wavelength synoptic-scale
systems should move eastward with the advecting zonal flow while long planetary
waves should tend to be stationary of move against the zonal advection. This will be
discussed in more details when we derive the dispersion relation for Rossby waves.

Vorticity advection does not alone determine the evolution of meteorological
systems. The orographic effects, for example seems to have vanished from Eq. (56).
But they are still present, because orography will lead to vertical motions that make
the second term on the right important.

Exercises

1. Show that
RT

cpp
− ∂T

∂p
= −T

θ

∂θ

∂p
= (Γd − Γ)/(ρg)

using the definition of potential temperature, and dry adiabatic and actual
lapse rates.

2. Show that from (50) follows the quasi-geostrophic vorticity equation (55).
[Hint: apply ∂/∂x to the second component of Eq. (50) and substact ∂/∂y
applied to the first component of Eq. (50)].

3. Derive the thermal wind equation for u-component of the zonal wind (Eq. 41)
and also for the v-component in pressure coordinates using the geostrophic
relation 43.

4. Suppose that on the 500 hPa surface the relative vorticity at a certain location
at 45◦ N latitude is increasing at a rate of 3 × 10−6s−1 per 3 h. The wind
is from southwest at 20 m/s. and the relative vorticity decreases toward the
northeast at a rate of 4 × 10−6s−1 per 100 km. Use the quasi-geostrophic
vorticity equation to estimate the horizontal divergence at this location on a
β plane.

5. Given the following expression for the geopotential field:
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Φ(x, y, p, t) = Φ0(p) + f0[−Uy + k−1V cos(πp/p0) sin k(x− ct)] , (58)

where U, V, c, k, p0 are constants, use the quasi-geostrophic vorticity equation
(56) to obtain an estimate for ω. Assume that df/dy = β is a constant (not
zero) and that ω vanishes for p = p0.
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3 Rossby Waves

3.1 Free Barotropic Rossby Waves

The dispersion relation for free barotropic Rossby waves can be derived by linearizing
the barotropic vortiticy equation in the form (21). This equation states that the
absolute (geostrophic) vorticity is conserved following the horizontal (geostrophic)
motion. As usual, we assume that the fields can be expressed as small perturbations
from a basic state ψ = ψ + ψ′. We linearize using a basic state that has only flow
in zonal direction ψ = −uy + const. This mean state fulfills Eq. (21). With this
mean state ∇2ψ = ∇2ψ′. Thus, by linearizing, in the first term the total derivative
operator can be replaced by the mean operator and it follows

(

∂

∂t
+ u

∂

∂x

)

∇2ψ′ + β
∂ψ′

∂x
= 0 . (59)

As usual, we seek for solutions of the type

ψ′ = Aei(kx+ly−νt) . (60)

Inserting (60) into (59) yields the dispersion relation

(−ν + ku)(−k2 − l2) + kβ = 0 , (61)

which we can solve immediately for ν

ν = uk − βk/K2 , (62)

where K2 ≡ k2 + l2 is the total horizontal wave number squared. Recalling that
cx = ν/k, we find that the zonal phase speed relative to the mean wind is

cx − u = −β/K2 . (63)

Thus, the Rossby wave zonal phase propagation is always westward relative to the
mean zonal flow. Furthermore, the Rossby wave phase speed depends inversely on
the square of the horizontal wave number. Therefore, Rossby waves are dispersive
waves whose phases speeds increase rapidly with increasing wavelength. This re-
sult is consistent with the discussion in section 2.4, in which we showed that the
advection of planetary vorticity, which tends to make the disturbances retrogress,
increasingly dominates over relative vortivcity advection as the wavelength of a dis-
turbance increases. Equation (63) provides a quantitative measure of this effect in
cases where the disturbance is small enough in amplitude.

From Eq. (63) we may calculate the stationary free Rossby wave wavelength

K2 = β/u ≡ K2
s . (64)

This means that stationary free Rossby waves only exist if there is a positive mean
flow u. This condition is important for Rossby waves that may be generated by
tropical convection.
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The group velocity of Rossby waves may be calculated as (exercise!):

cgx ≡ ∂ν

∂k
= u+ β

k2 − l2

K4
(65)

cgy ≡
∂ν

∂l
= 2

βkl

K4
. (66)

Therefore, the energy propagation of stationary Rossby waves is always eastward
(Fig. 7; exercise!).

These waves can also be derived from the original, compressible equations, but
the analysis is much more complicated. There are some minor modifications in the
phase velocities if the full equations are considered, but the main results remain
valid.

3.2 Forced Topographic Rossby waves

Forced stationary Rossby waves are of primary importance for understanding the
planetary-scale circulation pattern. Such modes may be forced by longitudinal de-
pendent latent heating, or by flow over topography. Of particular importance for the
Northern Hemisphere extratropical circulation are stationary Rossby modes forced
by flow over the Rockies and the Himalayas.

As the simplest possible dynamical model of topographic Rossby waves we use
the barotropic vorticity equation for a homogeneous fluid of variable depth (e.g.
Eqs. 14 or 17). We assume that the upper boundary is at fixed height H and the
lower boundary is at the variable height hT (x, y). We also use the quasi-geostrophic
scaling |ξ| ≪ f0. Then, from 14 and 17 we have

H
dh(ξ + f)

dt
= −f0

dhT
dt

, (67)

where is has been also assumed that h ≡ H − ht ≈ H on the left side (i.e. the
mountain height is much smaller than the troposphere height). After linearizing (as
we did to derive Eq. 59)

(

∂

∂t
+ ū

∂

∂x

)

∇2ψ′ + β
∂ψ′

∂x
= −f0

H
ū
∂hT
∂x

. (68)

Lets consider the solutions of Eq. (68) for the special case of a sinusoidal lower
boundary. We specify the topography to have the from

hT (x, y) = h0 sin(kx+ φ) cos ly , (69)

where φ is an arbitrary phase (therefore equivalent to A cos kx + B sin kx). If we
insert the streamfunction perturbation

ψ′ = ψ0 sin(kx+ φ) cos ly , (70)
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then Eq. (68) has the steady-state solution (i.e. dropping the partial time derivative)
[exercise!]

ψ0 = f0h0/[H(K2 −K2
s )] . (71)

The streamfunction is either exactly in phase (ridges over the mountains) or exactly
out of phase (troughs over the mountains) with the topography depending on the
sign K2 −K2

s . For long waves, (K < Ks), the topographic vorticity source in Eq.
(68) is primarily balanced by meridional advection of planetary vorticity (the β
effect). For short waves (K > Ks) the source is balanced primarily by the zonal
advection of relative vorticity.

The topographic wave solution (71) has the unrealistic characteristic that when
the wave number exactly equals the critical wave number Ks the amplitude goes
to infinity. This is the resonant response case when the wave number reaches the
stationary wave number of free Rossby waves.

Fig. 7 gives another example for a stationary Rossby wave, caused by ENSO
forcing.

Figure 7: Stationary Rossby wave induced by ENSO.

Exercises

1. Derive the group velocites for Rossby waves (65) and (66) and show that
for stationary Rossby waves fulfilling Eq. (64), the cgx component is always
positive.

2. Show that (71) is the solution of (68) with (69).

3. Using the linearized form of the potential vorticity equation (11) and the β-
plane approximation, derive the Rossby wave speed for a homegeneous in-
compressible ocean of depth h. Assume a motionless basic state and small
perturbations that depend only on x and t,

u = u′(x, t), v = v′(x, t), h = H + h′(x, t) , (72)

23



where H is the mean depth of the ocean. With the aid of the continuity
equation for a homogeneous layer

∂h′

∂t
+H

∂u′

∂x
= 0 (73)

and the geostrophic wind relationship v′ = gf−1
0 ∂h′/∂x. Show that the per-

turbation vorticity equation can be written in the form

∂

∂t

(

∂2

∂x2
− f20
gH

)

h′ + β
∂h′

∂x
= 0 (74)

and that h′ = h0e
ik(x−ct) is a solution provided that

c = −β(k2 + f20 /gH)−1 . (75)

If the ocean is 4 km deep, what is the Rossby wave speed at latitude 45◦ N for
a wave of 10000 km zonal wavelength?

4. Rossby-type waves can be generated in a rotating cylindrical vessel if the depth
of the fluid is dependent on the radial coordinate. To determine the Rossby
wave speed formula for this equivalent β effect, we assume that the flow is
confined between rigid lids in an annular region whose distance from the axis
of rotation is large enough so that the curvature terms in the equations can
be neglected. We then can refer the motion to cartesian coordiantes with x
directed azimutally and y directed toward the axis of rotation. If the system
is rotating at angular velocity Ω and the depth is linearly dependent on y,

H(y) = H0 − γy , (76)

show that the perturbation (shallow water) continuity equation (dH/dt =
−H∇ · v) can be written as

H0

(

∂u′

∂x
+
∂v′

∂y

)

− γv′ = 0 (77)

and that the perturbation quasi-geostrophic vorticity equation is thus

∂

∂t
∇2ψ′ + β

∂ψ′

∂x
= 0 , (78)

where ψ′ is the perturbation geostrophic streamfunction and β = 2Ωγ/H0.
What is the Rossby wave speed in this situation for waves of wavelength 100
cm in both the x and y directions if Ω = 1s−1, H0 = 20 cm, and γ = 0.05?
(Hint: Assume that the velocity field is geostrophic except in the divergence
term.)
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5. Solve the nonlinear potential vorticity conservation equation (19) using (22)
and including a Ekman pumping term reξ, re = 1/day numerically for a chan-
nel with the centre at 45◦N of Ly = 3 · 106 m meridional width and a zonally
periodic domains of a length of Lx = 2 · 107 m using a spatial discretization
of ∆x = ∆y = d = 1 · 105 m and a ∆t of 1 h. Assume that the top is fixed
at a height H = 1.2 ·104 m, so that the total height of the fluid is given by
h = H − ht. Let a sinusoidal mountain be if the shape

ht(x, y) = h0 sin(N2πx/Lx) cos(πy/Ly) ,

where h0 = 1 ·103 m, and let N (the number of the moutain waves in the
channel) be a) N=2 and b) N=8. The initial condition zonal flow, which,
expressed in streamfunction means

ψ(x, y, 0) = −10(y − Ly) .

Compare the solutions for a) and b) (after 7 days) and especially compare the
position of the eddy streamfunction crests relative to the mountain crests for
both cases and interpret the results. Hint: Equation (19), with the condition of
a fixed upper height H and given lower topography, including Ekman pumping
terms can be written as

∂

∂t
ξ = F (x, y, t)−reξ = −

[

∂

∂x
(uξ) +

∂

∂y
(vξ)

]

−βv+f0
h

[

∂

∂x
(uh) +

∂

∂y
(vh)

]

−reξ .

(79)
and

u = −∂ψ
∂y

(80)

v =
∂ψ

∂x
(81)

ξ = ∇2ψ , (82)

given that the quasi-geostrophic approximations (15) and (16) are valid. Note
that Eq. (79) can be written in its formulation because the geostrophic wind
(Eq. 80) is divergence free and the height does not depend explicitely on time.

Discretize the terms in Eq. (79) as (using an implicit discretization of the
Ekman damping)

ξ(t+∆t) = ξ(t) + ∆tFi,j(t)−∆treξ(t+∆t) (83)

with

Fi,j(t) = − 1

2d
[(ui+1,jξi+1,j − ui−1,jξi−1,j) + (vi,j+1ξi,j+1 − vi,j−1ξi,j−1)]− βvi,j

+
f0

hi+1,j

1

2d

[(ui+1,jhi+1,j − ui−1,jhi−1,j) + (vi,j+1hi,j+1 − vi,j−1hi,j−1)] (84)

25



where the right side is evaluated at the time t, where the fields are already
known. This leads to

ξ(t+∆t) = (ξ(t) + ∆tFi,j)/(1 + ∆tre) (85)

Knowing the vorticity, the streamfunction can be determined by Eq. (82),
which can be discretized as (see MMG lectures)

(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j)/d
2 = ξi,j . (86)

If we can solve this equation for ψi,j , we can derive the velocity fields by using
Eqs. (80), (81) in discretized form

ui,j = −(ψi,j+1 − ψi,j−1)/(2d) (87)

vi,j = (ψi,j+1 − ψi,j−1)/(2d) (88)

(89)

A scheme how to solve the initial value problem is:

(a) Given the initial condition ψi,j , (86) can be solved to determine ξi,j, (87)
and (88) can be used to determine the velocities

(b) Evaluate Fi,j using Eq. (84).

(c) ξt+∆t can be determined by integrating (85).

(d) Knowing ξt+∆t, (86) can be inverted to calculate ψt+∆t

(e) Go back to (a).

Integrate this scheme for 7 days to reach a steady-state solution and plot the
eddy streamfunction and topography.
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4 Baroclinic Instability

4.1 A two-layer Model

Even for a highly idealized mean flow profile the mathematical treatment of baro-
clinic instability in a continuously stratified atmosphere is rather complicated. Thus,
we focus on the simplest model that can incorporate baroclinic processes. The at-
mosphere is represented by two discrete layers bounded by surfaces numbered 0,2,
and 4 (generally taken to be the 0-, 500-, and 1000-hPa surfaces, respectively). The
quasi-geostrophic vorticity equation for the midlatitude β plane is applied at levels
denoted 1 and 3 and the thermodynamic energy equation is applied at level 2. Be-
fore writing the specific equations of the two-layer model, it is convenient to define a
geostrophic streamfunction, ψ ≡ Φ/f0 (see definitions leading to Eq. 21). Then the
geostrophic wind (Eq. 43) and the geostrophic vorticity (Eq. 54) can be expressed
as

v = k×∇ψ, ξ = ∇2ψ (90)

The quasi-hydrostatic vorticity equation (56) and the hydrostatic thermodynamic
equation (53) can be written with help of (27) in terms of ψ and ω as (assuming no
diabatic processes)

∂

∂t
∇2ψ + v · ∇(∇2ψ) + β

∂ψ

∂x
= f0

∂ω

∂p
(91)

∂

∂t

(

∂ψ

∂p

)

= −v · ∇
(

∂ψ

∂p

)

− σ

f0
ω . (92)

We now apply the vorticity equation (91) at the two levels designated as 1 and
3, which are in the middle of the two layers. To do this we must estimate the
divergence term ∂ω/∂p at these levels using finite difference approximations to the
vertical derivatives

(

∂ω

∂p

)

1

≈ ω2 − ω0

δp
,

(

∂ω

∂p

)

3

≈ ω4 − ω2

δp
, (93)

where δp is the pressure interval between levels 0-2 and 2-4 and subscript notation
is used to designate the vertical level for each dependent variable. The resulting
vorticity equations are

∂

∂t
∇2ψ1 + v1 · ∇(∇2ψ1) + β

∂ψ1

∂x
= f0

ω2

δp
(94)

∂

∂t
∇2ψ3 + v3 · ∇(∇2ψ3) + β

∂ψ3

∂x
= −f0

ω2

δp
, (95)

where we have used the fact that ω0 = 0 and assumed that ω4 = 0, which is approx-
imately true for a level lower boundary surface. We next write the thermodynamic
energy equation (92) at level 2. Here we must evaluate ∂ψ/∂p using the difference
formula

(∂ψ/∂p) ≈ (ψ3 − ψ1)/δp .
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The result is

∂

∂t
(ψ1 − ψ3) = −v2 · ∇(ψ1 − ψ3) +

σδp

f0
ω2 . (96)

The first term on the right-hand side in Eq. (96) is the advection of the 250-750
hPa thickness by the wind at 500 hPa. However, ψ2, the 500 hPa streamfunction,
is not a predicted field in this model. Therefore, ψ2 must be obtained by linearly
interpolating between the 250- and 750-hPa levels

ψ2 = (ψ1 + ψ3)/2 . (97)

If this interpolation formula is used, (94)-(96) become a closed set of prediction
equations in the variables ψ1, ψ3, and ω2.

4.2 Linear Perturbation Analysis

To keep the analysis as simple as possible we assume that the streamfunctions ψ1 and
ψ3 consists of basic state parts that depend linearly on y alone, plus perturbations
that depend only on x and t (similar to section 3). Thus, we let

ψ1 = −U1y + ψ′

1(x, t)

ψ3 = −U3y + ψ′

3(x, t) (98)

ω2 = ω′

2(x, t) .

The zonal velocities at levels 1 and 3 are then constants with the values U1 and U3,
respectively. Hence, the perturbation field has meridional and vertical velocity com-
ponents only. Inserting (98) into (94)-(96) and linearizing yields the perturbation
equations (see section 3)

(

∂

∂t
+ U1

∂

∂x

)

∂2ψ′

1

∂x2
+ β

∂ψ′

1

∂x
= f0

ω′

2

δp
(99)

(

∂

∂t
+ U3

∂

∂x

)

∂2ψ′

3

∂x2
+ β

∂ψ′

3

∂x
= −f0

ω′

2

δp
(100)

(

∂

∂t
+ Um

∂

∂x

)

(ψ′

1 − ψ′

3)− UT
∂

∂x
(ψ′

1 + ψ′

3) =
σδp

f0
ω′

2 , (101)

where we have linearly interpolated to express v2 in terms of ψ1 and ψ3 and have
defined

Um ≡ (U1 + U3)/2, UT ≡ (U1 − U3)/2 .

Thus, Um and UT are, respectively, the vertically averaged mean zonal wind and the
mean thermal wind for the interval δp/2. The dynamical properties of this system
are more clearly expressed if (99)-(101) are combined to eliminate ω′

2. We first note
that (99) and (100) can be rewritten as

(

∂

∂t
+ (Um + UT )

∂

∂x

)

∂2ψ′

1

∂x2
+ β

∂ψ′

1

∂x
= f0

ω′

2

δp
(102)

(

∂

∂t
+ (Um − UT )

∂

∂x

)

∂2ψ′

3

∂x2
+ β

∂ψ′

3

∂x
= −f0

ω′

2

δp
. (103)

28



We now define the barotropic and baroclinic perturbations as

ψm ≡ (ψ′

1 + ψ′

3)/2, ψT ≡ (ψ′

1 − ψ′

3)/2 (104)

Adding (102) and (103) and using the definitions in (104) yields

[

∂

∂t
+ Um

∂

∂x

]

∂2ψm
∂x2

+ β
∂ψm
∂x

+ UT
∂

∂x

(

∂2ψT
∂x2

)

= 0 , (105)

while subtracting (103) from (102) and combining with (101) to eliminate ω′

2 yields

[

∂

∂t
+ Um

∂

∂x

]

(

∂2ψT
∂x2

− 2λ2ψT

)

+β
∂ψT
∂x

+UT
∂

∂x

(

∂2ψm
∂x2

+ 2λ2ψm

)

= 0 , (106)

where λ2 ≡ f20/[σ(δp)
2]. Equations (105) and (106) govern the evolution of the

barotropic (vertically averaged) and baroclinic (thermal) perturbation vorticities,
respectively. As usual we assume that wavelike solutions exist of the form

ψm = Aeik(x−ct), ψT = Beik(x−ct) . (107)

Substituting these assumed solutions into (105) and (106) and dividing through by
the common exponential factor, we obtain a pair of simulataneous linear algebraic
equations for the coefficients of A,B

ik[(c− Um)k
2 + β]A− ik3UTB = 0 (108)

ik[(c − Um)(k
2 + 2λ2) + β]B − ikUT (k

2 − 2λ2)A = 0 . (109)

From the Mathematical Methods course we know that a homogeneous set of equa-
tions has only nontrivial solutions if the determinant of the coefficients for A and B
is zero. Thus the phace speed c must satisfy the condition

(c− Um)k
2 + β −k2UT

−UT (k2 − 2λ2) (c− Um)(k
2 + 2λ2) + β

= 0 , (110)

which gives a quadratic dispersion equation in c

(c−Um)
2k2(k2 +2λ2)+ 2(c−Um)β(k

2 +λ2)+ [β2 +U2
Tk

2(2λ2 − k2)] = 0 , (111)

The solution for c is

c = Um − β(k2 + λ2)

k2(k2 + 2λ2)
± δ1/2 , (112)

where

δ ≡ β2λ4

k4(k2 + 2λ2)2
− U2

T (2λ
2 − k2)

(k2 + 2λ2)
. (113)

We have shown that (107) is a solution for the system (105) and (106) only if the
phase speed satisfies (112). Although (112) appears to be rather complicated, it is
immediately apparent that if δ < 0 the phase speed will have an imaginary part and
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the perturbations will amplify exponentially. Before discussing the general physical
conditions required for exponential growth it is useful to consider two special cases.

As the first special case we lat UT = 0 so that the basic state thermal wind van-
ishes and the mean flow is barotropic. There can be no instability if the thermal wind
vanishes (i. e. without horizontal mean-state temperature gradients). The available
potential energy stored in the mean state temperature gradients is responsible for
baroclinic growth! The phase speeds in this case are

c1 = Um − βk−2 (114)

and
c2 = Um − β(k2 + 2λ2)−1 (115)

These are real quantities that correspond to the free (normal mode) oscillations
for the two-level model with a barotropic basic state current. The phase speed
c1 is simply the dispersion relationship for a barotropic Rossby wave with no y
dependence (see Eq. [63]). Substituting the expression (114) in place of c in (108)
and (109) we see that in this case B = 0, so that the perturbation is barotropic in
structure. The expression (115), on the other hand, may be interpreted as the phase
speed of an internal baroclinic Rossby wave. Note that c2 is a dispersion relationship
analogous to the Rossby wave speed for a homogeneous ocean with a free surface,
which was given in problem 3 of section 3. But, in the two-level model, the factor
2λ2 appears in the denominator in place of the f0/gH for the oceanic case. In each
of these cases there is vertical motion associated with the Rossby wave so that static
stability modified the phase speed.

Comparing (114) and (115) we see that the phase speed of the baroclinic mode is
generally much less than that of the barotropic mode, since for average midlatitude
tropospheric conditions λ2 ≈ 2 × 10−12 m−2, which is comparable in magnitude to
k for zonal wavelength of ∼ 4500 km.

Returning to the general case where all terms are retained in (112), the stability
criterion is most easily understood by computing the neutral curve, which connects
all values of UT and k for which δ = 0 so that the flow is marginally stable. From
Eq. (112), the condition δ = 0 implies that

β2λ4

k4(2λ2 + k2)
= U2

T (2λ
2 − k2) (116)

or
k4/(4λ4) = 1/2{1 ± [1− β2/(4λ4U2

T )]
1/2} . (117)

Fig. 4.2 shows nondimensional quantity k2/2λ2, which is a measure of the zonal
wavelength, plotted against the nondimensional parameter 2λ2UT /β, which is pro-
portional to the thermal wind, according to Eg. (117).

As indicated in the figure, the neutral curve separates the unstable region of the
UT , k plane from the stable region. It is clear that the inclusion of the β effect serves
to stabilize the flow, for unstable roots exist only for |UT | > β/(2λ2). In addition to a
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Figure 8: Neutral stability curve for the two-level baroclinic model

minimum value of UT required for unstable growth depends strongly on k. Thus, the
β effect strongly stabilizes the long-wave end of the wave spectrum (k → 0). Again,
the flow is always stable for waves shorter than the critical wavelength Lc =

√
2π/λ

(why?). The long-wave stabilization associated with the β effect is caused by the
rapid westward propagation of long waves, which occurs only when the β effect is
included in the model.

Differentiating Eq. (116) with respect to k and setting dUT /dk = 0, we find the
minimum value of UT for which unstable waves exist occurs when k2 =

√
2λ2. This

wave number corresponds to the wave of maximum instability. Wave numbers for
observed disturbances should be close to the wave number of maximum instability,
for if UT were gradually raised from zero the flow would first become unstable
for perturbations of wave number k = 21/4λ. Those perturbations would then
amplify and in the process remove energy from the mean thermal wind, thereby
decreasing UT and stabilizing the flow. Under normal conditions of static stability
the wavelength of maximum instability is about 4000 km, which is close to the
average wavelength for midlatitude synoptic systems.

Exercises

1. Suppose that a baroclinic fluid is confined between two rigid horizontal lids in
a rotating tank in which β = 0 but friction is presented in the form of linear
drag proportional to the velocity (i.e., Fr = −µv). Show that the two-level
model perturbation vorticity equations in cartesian coordinates can be written
as

(

∂

∂t
+ U1

∂

∂x
+ µ

)

∂2ψ′

1

∂x2
− f0

ω′

2

δp
= 0
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(

∂

∂t
+ U3

∂

∂x
+ µ

)

∂2ψ′

3

∂x2
+ f0

ω′

2

δp
= 0 ,

where perturbations are assumed in the form given in Eq. (98). The thermo-
dynamic equation remains (101). Assuming solutions of the form (107), show
that the phase speed satisfies a relationship similar to (112), with β replaced
everywhere by iµk and that as a result the condition for baroclinic instability
becomes

UT > µ(2λ2 − k2)−1/2 .
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5 Equatorial Wave Theory

Lecture based on ’An Introduction to Dynamic Meteorology’ by J. R. Holton, Aca-
demic Press, INC., 3rd edition, 511 pp.

Figure 9: Dispersion diagram for tropical Outgoing longwave radiation. Source:
www.cgd.ucar.edu,NOAA.

Equatorial waves are an important class of eastward and westward propagating
disturbances that are trapped about the equator (that is, they decay away from the
equatorial region). In a dispersion diagram for observed equatorial quantities, these
wave can be identified as regions of increased energy density (Fig. 9).

Diabatic heating by organized tropical convection may excite equatorial wave
motions (see Fig. 10). Through such waves the dynamical effects of convective
storms can be communicated over large longitudinal distances in the tropics. Such
waves can produce remote responses to localized heat sources. Furthermore, by
influencing the pattern of low-level moisture convergence they can partly control
the spatial and temporal distribution of convective heating. In order to introduce
equatorial waves in the simplest possible context, we here use a shallow-water model
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Figure 10: Equatorial Kelvin and Rossby waves triggered by an SST-induced heat-
ing. Source: Kucharski et al. 2008: A Gill-Matsuno-type mechanism explains the
tropical Atlantic influence on African and Indian monsoon rainfall. Q. J. R. Mete-
orol. Soc. (2009), 135, 569-579, DOI: 10.1002/qj.406

and concentrate on the horizontal structure.

5.1 The shallow water equations

The shallow water equations are a drastic simplification to the real atmospheric flow.
However, dispite it’s simplicity it gives often a good insight into many atmospheric
wave phenomena. The basic assumptions in the shallow water model are

(i) The flow is incompressible ρ = const.

(ii) The flow is shallow enough so that the horizontal velocity components are
independent of height.

(iii) The flow is hydrostatic. Accelerations in the vertical direction may be ne-
glected.
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Let us consider the horizontal momentum equations 1 and the hydrostatic equa-
tion 24

∂u

∂t
+ (v · ∇)u = −1

ρ

∂p

∂x
+ fv (118)

∂v

∂t
+ (v · ∇)v = −1

ρ

∂p

∂y
− fu (119)

1

ρ

∂p

∂z
= −g , (120)

Further consider the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 . (121)

Integrating the hydrostatic equation from a height z to the top of the fluid leads to
(assuming the pressure is vanishing there)

∫ h(x,y,t)

z

∂p

∂z
dz = −

∫ h(x,y,t)

z
ρgdz , or (122)

−p(x, y, z, t) = −ρg[h(x, y, t) − z] . (123)

Thus the horizontal pressure gradient force in the equations of motion 118, 119 may
be expressed as

−1

ρ

∂p

∂x
= −g∂h

∂x
= −∂Φ

∂x
(124)

−1

ρ

∂p

∂y
= −g∂h

∂y
= −∂Φ

∂y
, (125)

where we have defined Φ(x, y, t) = gh(x, y, t). Thus, keeping in mind that there the
horizontal velocities do not depend on the vertical direction and ignoring the coriolis
term proportional to the vertical velocity, the horizontal equations of motion may
be written as

∂u

∂t
+ (u · ∇)u = −∂Φ

∂x
+ fv (126)

∂v

∂t
+ (u · ∇)v = −∂Φ

∂y
− fu , (127)

The number of dependent variables in Eqs. 126 and 127 is reduced to 3, (u, v,Φ).
Thus, if we have another equation only containing (u, v,Φ), then the system may
be complete. This is achieved by simplyfication of the continuity equation 121 and
vertical integration. First, we note that because of ρ = const, Eq. 121 reduces to

∂w

∂z
= −∇ · u . (128)
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If we integrate this equation vertically from 0 to h(x, y, t) we have

∫ h

0

∂w

∂z
dz = −

∫ h

0
∇ · u dz (129)

w(h) :=
dh

dt
=

∂h

∂t
+ u · ∇h = −(∇ · u)h (130)

Eq. 130 may as well be written as

∂Φ

∂t
+ u · ∇Φ = −Φ∇ · u . (131)

Eqs. 126, 127 and 131 build a complete set of differential equations for (u, v,Φ), and
are called the shallow water equations.

5.2 Linearization for an Equatorial β-plane

Now we linearize the set of equations 126, 127 and 131 about a motionless mean
state with height he on an equatorial β-plane. Generally speaking, the β-plane
assumption states that f = 2|ω| sinφ ≈ f0 + βy, that is the sinφ-dependence is
approximated linearly for a given latitude φ0 by a Taylor series expansion (therefore
β = 2|ω|cosφ0/a; a being the mean radius of the earth). If we set the base point at
the equator we have f0 = 0, therefore f ≈ βy.

∂u′

∂t
= −∂Φ

′

∂x
+ βyv′ (132)

∂v′

∂t
= −∂Φ

′

∂y
− βyu′ (133)

∂Φ′

∂t
= −ghe

(

∂u′

∂x
+
∂v′

∂y

)

, (134)

where the primed variables denote the perturbations from the basic state. This is
our basic set of linearized equations (with variable coefficients!) to study equatorial
wave dynamics. By adjusting the scale height he as well the ocean case may be
included.

Discuss Inertia-Gravity waves for extratropical situation and approximation f =
f0 = const, and assume u′(x, t), v′(x, t),Φ′(x, t).

5.2.1 Equatorial Rossby and Rossby-Gravity Modes

In order to find solutions to the linearized system 132, 133 and 134, we assume that
the y-dependence can be separated







u′

v′

Φ′






=







û(y)
v̂(y)

Φ̂(y)






ei(kx−νt) . (135)
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Substitution of Eq. 135 into 132-134 then yields a set of ordinary differential equa-
tions in y for the meridional structure functions û, v̂, Φ̂:

−iνû = −ikΦ̂ + βyv̂ (136)

−iνv̂ = −∂Φ̂
∂y

− βyû (137)

−iνΦ̂ = −ghe
(

ikû+
∂v̂

∂y

)

. (138)

If Eq. 136 is solved for û = k/νΦ̂ + iβyv̂/ν and inserted into Eq. 137 and 138 we
obtain

(β2y2 − ν2)v̂ = ikβyΦ̂ + iν
∂Φ̂

∂y
(139)

(ν2 − ghek
2)Φ̂ + iνghe

(

∂v̂

∂y
− k

ν
βyv̂

)

= 0 . (140)

Finally, Eq. 140 is inserted into Eq. 139 to eliminate Φ̂, yielding a second-order
differential equation in the single unknown, v̂

∂2v̂

∂y2
+

[(

ν2

ghe
− k2 − k

ν
β

)

− β2y2

ghe

]

v̂ = 0 . (141)

We seek solutions of this equation for the meridional distribution of v̂, subject to the
boundary condition that the disturbance fields vanish for |y| → ∞. This boundary
condition is necessary since the approximation f ≈ βy is nor valid for latitudes
much beyond ±30◦, so that solutions must be equatorially trapped if they are to
be good approximations to the exact solutions on the sphere. Equation 141 differs
from the classic equation for a harmonic oscillator in y because the coefficient in
square brackets is not a constant but is a function of y. For sufficiently small y this
coefficient is positive and solutions oscillate in y, while for large y, solutions either
grow or decay in y. Only the decaying solutions, however, can satisfy the boundary
conditions.

It turns out that solutions to Eq. 141 which satisfy the condition of decay
far from the equator exist only when the constant part of the coefficient in square
brackets satisfies the relationship (which is as well the dispersion relation!)

√
ghe
β

(

−k
ν
β − k2 +

ν2

ghe

)

= 2n+ 1; n = 0, 1, 2, ...... (142)

which is a cubic dispersion equation determining the frequencies of permitted equa-
torially trapped free oscillations for zonal wave number k and meridional mode
number n. These solutions can be expressed most conveniently if y is replaced by
the nondimensional meridional coordinate

ξ =

(

β√
ghe

)1/2

y . (143)

37



With the Eqs. 142 and 143, Eq. 141 becomes

∂2v̂

∂ξ2
+
(

2n + 1− ξ2
)

v̂ = 0 . (144)

This is the differential equation for a quantum mechanical, simple harmonic oscilla-
tor. The solution has the form

v̂(ξ) = Hn(ξ)e
−ξ2/2 , (145)

where Hn(ξ) designates the nth Hermite polynomial. The first of these polynomials
have the values

H0 = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2 . (146)

Thus, the index n corresponds to the number of nodes in the meridional velocity
profile in the domain |y| < ∞. Inserting the solution 145 into Eq. 144 leads to
one of the defining differential equations for Hermite polynomials. In general, the
three solutions of Eq. 142 can be interpreted as eastward- and westward-moving
equatorially trapped gravity waves and westward-moving equatorial Rossby waves.
The case n = 0 (for which the meridional velocity perturbation has a gaussian
distribution centered at the equator) must be treated separately. In this case the
dispersion relationship 142 (which is something like a characteristic equation that
gives the ν(k)-dependence from which we may derive the phase velocities) factors as

(

ν√
ghe

− β

ν
− k

)(

ν√
ghe

+ k

)

= 0 . (147)

The root ν/k = −
√
ghe, corresponding to a westward-propagating gravity wave,

is not permitted since the second term in parentheses in Eq. 147 was explicitely
assumed not to vanish when Eqs. 139 and 140 were combined to eliminate Φ. The
roots given by the first term in parentheses in Eq. 147 are

ν = k
√

ghe

[

1

2
± 1

2

(

1 +
4β

k2
√
ghe

)1/2
]

. (148)

The positive root corresponds to an eastward-propagating equatorial inertio-gravity
wave, while the negative root corresponds to a westward-propagating wave, which
resembles an inertio-gravity wave for long zonal scale k → 0 and resembles a Rossby
wave for zonal scales characteristic of synoptic-scale disturbances. This mode is
generally referred to as a Rossby-gravity wave.

5.2.2 Equatorial Kelvin Waves

In addition to the modes discussed in the previous section, there is another equatorial
wave that is of great practical importance. For this mode, which is called the
equatorial Kelvin wave, the meridional velocity perturbation vanishes and Eqs. 136
to 138 are reduced to the simpler set
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−iνû = −ikΦ̂ (149)

βyû = −∂Φ̂
∂y

(150)

−iνΦ̂ = −ghe (ikû) . (151)

Eliminating Φ between Eq. 149 and Eq. 151, we see that the Kelvin wave dispersion
equation is that of the shallow-water gravity wave

c2 =

(

ν

k

)2

= ghe . (152)

According to Eq. 152 the phase speed c can be either positive or negative. But, if
Eq. 149 and Eq. 150 are combined to eliminate Φ we obtain a first-order equation
for determining the meridional structure

βyû = −c∂û
∂y

, (153)

which may be integrated immediately to yield

û = u0 e
−βy2/(2c) , (154)

where u0 is the amplitude of the perturbation zonal velocity at the equator. Equation
154 shows that if solutions decaying away from the equator are to exist, the phase
speed must be positive (c > 0). Thus Kelvin waves are eastward propagating and
have zonal velocity and geopotential perturbations that vary in latitude as Gaussian
functions centered on the equator. The e-folding decay width is given by

YK = |2c/β|1/2 , (155)

which for a phase speed c = 30 m s−1 gives YK = 1600 km. The meridional force
balance for the Kelvin mode is an exact geostrophic balance between the zonal
velocity and the meridional pressure gradient. It is the change in sign of the Coriolis
parameter at the equator that permits this special type of equatorial mode to exist.
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Figure 11: Illustration of Kelvin (upper panel) and Rossby-gravity (lower panel)
waves.
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Figure 12: Dispersion diagram for equatorial Rossby-gravity and Kelvin waves.
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6 ENSO atmosphere and ocean feedback mechanisms

Suggested Literature:

a) Gill, A. E., 1980: ’Some simple solutions for heat-induced tropical circulation’,
Quart. J. R. Met. Soc., 106, 447-462.

b) Reference for reduced gravity model in oceans:
’Ocean Circulation’ by R. X. Huang, University Press, Cambridge, 791 pp.

c) Online textbooks:
oceanworld.tamu.edu/resources/ocng textbook/contents.html
oceanworld.tamu.edu/resources/oceanography-book/contents.htm

d) ’El Nino, La Nina, and the Southern Oscillation’ by S. G. Philander, Academic

Press, INC., 293 pp.

e) For the ocean simulations presented:
Chang, P., 1994: ’A study of the seasonal cycle of sea surface temperature in
the tropical Pacific Ocean using reduced gravity models’, J. Geophy. Res., 99,
C4, 7725-7741

6.1 Some general observations

The typical equatorial Pacific backgound state is shown in Fig. 13, in a vertical-
zonal section. As can be seen it gets colder as we go from the surface downward
(why?). And it also gets colder if we go from west to east. Looking at a map of sea
surface temperature (SST), we see this equatorial asymmetry clearly (Fig. 14).

A schematic what is the situation in normal conditions (or La Nina) is given
in 15. Trade winds are blowing near the equator from east to west (the reason
theses trade winds will be discussed later in this course, but briefly it is due to the
maximum convective heating that occurs in the mean around the equator). These
trade winds push the warm surface waters to the west. What is happening then in
the east?

In El Nino conditions this normal situation breaks down and we get to a situation
where also the eastern Pacific is flushed with warm waters (intuitively one would
think that this is the ’normal’ situation).

The typical sea surface temperature anomaly for an El Nino event is shown in
Fig. 17. A warming of typically more than 1K is occuring in the eastern Pacific and
surrounded by a cooling (so-called Horse-shoe pattern).

Fig. 18 shows the typical (composite) response of the atmosphere (rainfall [or
heating!], and low-level winds) to the typical (composite) El Nino SST anomaly of
Fig. 17.
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Figure 13: Average January temperature as a function of depths and longitude along
the equator. Map from Pacific Marine Enviromental Laboratory of NOAA, Seattle.

The response in the central equtorial Pacific is a weakening of the trade winds,
which is the positive atmospheric feedback, because a initial warm anomaly in the
eastern Paficic will cause a response that is strengthening the original SST anomaly
(why?). What is the typical period of ENSO? We will try to understand this at-
mospheric response and the subsequent ocean response in the following subsections
from a more theoretical point of view.

6.2 Atmospheric response to SST or heating anomaly

Kelvin and equatorial Rossby-gravity waves are also relevant for shaping the staionary
response to an equatorial heating, so-called Gill response (Gill, 1980). In the Gill
model a simple parameterization of the effect of heating on divergence, Q, is added
to the continuity equation

∂u′

∂t
= −∂Φ

′

∂x
+ βyv′ (156)

∂v′

∂t
= −∂Φ

′

∂y
− βyu′ (157)

43



Figure 14: Mean sea-surface temperature calculated from the optimal interpolation
technique (Reynolds and Smith, 1995) using ship reports and AVHRR measurements
of temperature.

∂Φ′

∂t
= −ghe

(

∂u′

∂x
+
∂v′

∂y

)

−Q , (158)

Finally, rayleigh friction and Newtonian cooling are added to the equations by re-
placing the time derivatives ∂/∂t by ∂/∂t + ǫ, and the equations are solved for a
stationary state. The result of the (complicted) computations are illustrated in Fig.
19. To the west of the heating, we find the Rossby-gravity wave-type response, to
the east we find the Kelvin wave-type response. Note that the Gill model is used, for
example, to explain the atmospheric part of the positive (Bjerknes) feedback that
leads to the ENSO phenomenon. Also note that Q has to change sign to explain the
upper-level response (upper-level divergence in case of a positive heating! Discuss!).

6.3 Response in the equatorial Ocean

6.3.1 Reduced gravity model

In this subsection we want to derive the equatorial ocean response to an atmospheric
forcing of the gill-type. If we consider the mean stratification of the equatorial Pacific
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Figure 15: La Nina conditions in the Pacific with strong trade winds (black ar-
rows) pushing surface water toward the west (white arrows) and heavy rain in the
west driving the atmospheric circulation (black arrows). Colors give temperature
of the ocean surface, red is hottest, blue is coldest. From: NOAA Pacific Marine
Environmental Laboratory.

Ocean of Fig. 13, one sees that warm water is residing on top of colder waters,
divided by the thermocline. The simplest model of the upper Pacific are assuming
therefore that there are 2 layers, devided by a density jump. Let layer 2 be the
lower layer of density ρ2 and height h2, and the upper layer be of density ρ1 and
height h1. The aim here is to derive the pressure gradient force in the upper layer in
this situation. We derive the pressure gradient force by integrating the hydrostatic
equation 120 first in layer 2

∫ h2(x,y,t)

z

∂p2
∂z

dz = −
∫ h2(x,y,t)

z
ρ2gdz , or (159)

p2(h2)− p2(x, y, z, t) = −ρ2g[h2(x, y, t)− z] . (160)

Then we integrate further in layer 1

∫ z

h2(x,y,t)

∂p1
∂z

dz = −
∫ z

h2(x,y,t)
ρ1gdz , or (161)
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Figure 16: El Nio conditions in the Pacific with weak or reversed trade winds in
the west (black arrows) allowing surface water to surge eastward (white arrows) and
with heavy rain in the central equatorial Pacific driving the atmospheric circulation
(black arrows). Colors give temperature of the ocean surface, red is hottest, blue is
coldest. From: NOAA Pacific Marine Environmental Laboratory.

p1(x, y, z, t) − p1(h2) = −ρ1g[z − h2(x, y, t)] . (162)

Continuity demands that p1(h2) = p2(h2), therefore inserting 159 into 161 leads
to:

p1(x, y, z, t) = p2(x, y, z, t) − (ρ2 − ρ1)g[h2(x, y, t)− z] . (163)

Calculating the horizontal pressure gradient of this leads to:

∇p1(x, y, z, t) = ∇p2(x, y, z, t) − (ρ2 − ρ1)g∇h2(x, y, t) . (164)

Assuming the lower layer motionless and without pressure gradient ∇p2(x, y, z, t) =
0 and H = h1 + h2 = const (rigid lid; an approximation here), and therefore
∇h1 = −∇h2 we get

∇p1(x, y, z, t) = (ρ2 − ρ1)g∇h1(x, y, t) , (165)

or
1

ρ1
∇p1(x, y, z, t) =

ρ2 − ρ1
ρ1

g∇h1(x, y, t) . (166)
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Figure 17: Composite sea surface temperature anomaly for an El Nino condition.
Units are K.

The pressure gradient in the upper layer can be, to a first approximation, expressed
in terms of the change in density between lower and upper layer and the gradient of
the thermocline depth h1. Since with respect the standard one-layer case the factor
g is replaced by (ρ2 − ρ1)/ρ1g = g′, this model is called reduced gravity model. The
density change (ρ2 − ρ1)/ρ1 is typically about 1%. The reduced gravity model is
identical to the shallow water equations, but with the pressure gradient force 166,
because if the slight change of density between the 2 layers. We add a wind-stress
forcing on the rhs of the following equations to mimic the ocean forced case. There
equations are similar to atmospheric Gill model, but with forcing in the momentum
equations instead of in the continuity equation.

∂u

∂t
+ (u · ∇)u = −g′∂h

∂x
+ fv +

1

ρh
τx (167)

∂v

∂t
+ (u · ∇)v = −g′∂h

∂y
− fu+

1

ρh
τy (168)

∂h

∂t
+ u · ∇h = −h∇ · u . (169)

We have used h instead of h1 for simplicity as the thermocline depth, and ρ instead
of ρ1 as density in the upper layer. It is quite instructive to consider the motionless
stationary state of such a model (even in a more complex situation this may be a
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Figure 18: Composite of response to an El Nino forcing. Shading Precipitation in
mm/day, vectors 925 hPa wind.

good approximation):

∂h

∂x
=

1

ρhg′
τx (170)

∂h

∂y
=

1

ρhg′
τy , (171)

assuming a typical situation in the equatorial Pacific with purely easterly trade
winds (τx < 0, τy = 0) it becomes clear why the equatorial Pacific thermocline is
tilted from west to east!!!!

It is interesting to note that the (forcing) free Eq. (167) - (169) are formally
identical to the shallow water equations 126, 127 and 131 that we used to derive the
equatorial Rossby and Kelvin waves, if we replace g by g’, the reduced gravity. This
means that the reduced gravity equations support the same solutions as the shallow
water equations near the equator, if we also in all phase velocities replace g by g’.
We will see these kind of waves in the following example.

In the following we present and discuss the ocean adjustment to a constant
atmospheric wind-stess forcing of the ocean derived from a model similar, but slightly
more complicated than Eq. 167 - 169. The addition is basically an equation for the
surface temperature that is not present in Eq. 167 - 169. In a strict sense, the surface
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Figure 19: Illustration response to equatorial heating according to the gill model.
Equatorial rossby waves shape the response to the west and Kelvin waves shape the
response to the east

temperature would never be influenced by the thermocline depth as long as this is
positive. However, in the real world, there is a still a gradient present in the upper-
layer, meaning that if the thermocline is nearer to the surface, the temperature is
lower there, just as seen in Fig. 13. Furthermore, if temperature is allowed to vary
horizontally then there will also be horizontal advection of temperature.

6.4 Ocean response to a zonal wind stress anomaly

Fig. 20 shows the wind-stress forcing applied with maximum at equator at 180 E,
and a Gaussian shape of with 10 degress in east-west and 5 degrees in north south
direction. The forcing is of magnitude 0.015 N/m2, which is a typical response of the
atmosphere to a typical ENSO anomaly. This forcing is mimicing the atmospheric
Gill-response on the equator to the ENSO-induced heating (SST) anomaly. We are
considering the time evolution of the thermocline response to the constant forcing.
Fig. 21a shows the response after the first month of forcing, and we see interestingly
that the response resembles the Gill response that we discussed for the atmosphere
to a diabatic heating anomaly, with an equatorial Kelvin wave to the east of the
wind stress forcing and 2 Rossby waves struddeling the equator to the west. The
kelvin wave signal moves to the east as time evolves and the Rossby wave signal
moves to the west (as they should). The Kelvin waves reach the eastern boundary
after about 4 month (Fig. 21b) and appear to transform into coastal Kelvin waves
that move north- and soutward from the equator. The maximum response is reached
after about 6 month, and is then decaying somewhat. The stationary response is
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seen in Fig. 21f. The thermocline tilt in the steady-state solution seems to balance
the wind-stress forcing, showing that Eq. 170 are a good approximation.

Figure 20: Zonal wind stress forcing. Units are N/m2.

Fig. 22 show the corresponding response in sea surface temparatures (using
an additional equation not present in Eq. (167) - (169)). Remember that the
atmospheric forcing was mimicing the Gill-type response to a warm SST anomaly.
From Fig. 22 we clearly identify that the ocean response to the atmospheric forcing
provides a positive feedback: The SST in the eastern equatorial Pacific is further
increased. The SST response evolves slower than the thermocline response (because
the response starts in the central/western Pacific where the thermocline is relatively
deep in the mean state and its fluctuations are therefore less coupled to the surface.
The maximum positive feedback seems to occur after about 6 to 12 months and
it decays to reach an equilibrium. This decay could be interpreted as the delayed
negative feedback provided by the ocean to the ENSO phenomenon.

Exercises

1. Assume a mean wind stress distribution along the equator:

τx = 0 for lon ≤ 170 E

τx = −0.06 N/m2 for 170 E ≤ lon ≤ 240 E

τx = 0 for lon ≥ 240 E

(172)

Using the approximation 170, calculate the thermocline distribution along the
equator, assuming that the thermocline depth at the western edge is 150 m.
What is the total change in height between 170 E and 240 E?

2. Calculate the oceanic Kelvin wave speed of (using the reduced gravity approx-
imation) of an ocean with a mean thermocline depth of 100 m.
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Figure 21: Thermocline response to anomalous zonal wind stress forcing of Fig. 20.
a) after 1 month, b) after 2 months, c) after 4 months, d) after 6 months, e) after
12 months. f) stationary response. Units are m.
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Figure 22: SST response to anomalous zonal wind stress forcing of Fig. 20. a) after
1 month, b) after 2 months, c) after 4 months, d) after 6 months, e) after 12 months.
f) stationary response. Units are K.
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7 (Atmospheric) Planetary Boundary Layer Processes

Figure 23: Mean DJF Sea Level Pressure (SLP) and surface winds in the North
Pacific from observations (NCEP-NCAR re-analysis). Units are m/s for wind and
hpa for SLP.

Figure 24 shows the winter mean (DJF) climatology of Sea Level Pressure (SLP)
and surface winds in the North Pacific. As we expect for geostrophy, winds are
mainly parallel to the isobars (lines of constant pressure). However, there seems to
be a systematic tendency for a component of the winds towards the low pressure.
In this section we will try to understand this systematic departure from geostrophy.
Do you have a guess why this departure exists?

So for we have ignored the effect of friction on the flows. However, in order
to understand climate dynamics it is important to consider the effects of friction,
particulartly the one provided by the planetary boundary layer, which covers roughly
the lowest kilometer(s) of the atmoshere. The boudary layer frictional processes are
ultimately induced my the molecular viscosity. However, this effect is only relevant
in the few millimeters closest to the surface. In the largest part of the planetary
boundary layer turbulent eddies take over the role of molecular friction. This is part
of the energy cascade, meaning that in the large-scale flow ever smaller eddies are
embedded that carry energy to ever smaller scales until finally molecular viscosity
takes over. As for all sections, a whole lecture course could be devoted to this topic.
Therefore we will concentrate on the features that are most relevant and essential
to understand climate dynamics.

7.1 The Boussinesq Approximation

The density in the lowest part of the Atmosphere varies little (about 10 % of its
mean value). The flow may be considered as essentially incompressible if only the
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momentum equation is considered. Therefore, for simplicity we assume the density
to be constant. Let us consider therefore horizontal momentum equations 118 and
119, in which ρ is considered to be a constant

du

dt
= −1

ρ

∂p

∂x
+ fv (173)

dv

dt
= −1

ρ

∂p

∂y
− fu . (174)

and the continuity equation for incompressible flows 128

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (175)

This set of equations is equivalent to the barotropic shallow water equations intro-
duced and used several times already. However, the Boussinesq approximation goes
beyond this, because it also involves an approximation to the vertical momentum
equation that is different from the hydrostatic equation and allows for buoyancy
effects there. Here we do not need to consider this equation.

7.2 Reynolds Averaging

In order to simulate the effect of the smaller scale eddies on the larger scale (“re-
solved”) flow, is it useful to apply an avaraging operator to the equations. The idea
is that the total flow can be divided into a slow evolving large scale field and into
small-scale eddy fluctuations

u = u+ u′, v = v + v′ . (176)

Formally, the operator could be a temporal and/or spatial average. For the total
derivative of a quantity A

dA

dt
=

(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)

A+A

(

∂u

∂x
+
∂v

∂y
+
∂w

∂z

)

, (177)

where we have added a zero accorging to the imcompressibility condition 175. Ther-
fore we may write the total derivative (for incompressible flow!) as

dA

dt
=

(

∂A

∂t
+
∂Au

∂x
+
∂Av

∂y
+
∂Aw

∂z

)

, (178)

Application of the averaging operator yields

dA

dt
=

(

∂A

∂t
+
∂(Au+A′u′)

∂x
+
∂(Av +A′v′)

∂y
+
∂(Aw +A′w′)

∂z

)

, (179)

because
ab = (a+ a′)(b+ b′) = ab+ ab′ + a′b+ a′b′ = ab+ a′b′ ,
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and a′ = b′ = 0. Therefore application of the averaging operator to Eqs. 173 and
174 yields

du

dt
= −1

ρ

∂p

∂x
+ fv − ∂u′u′

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z
(180)

dv

dt
= −1

ρ

∂p

∂y
− fu− ∂v′u′

∂x
− ∂v′v′

∂y
− ∂v′w′

∂z
, (181)

where
d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(182)

is the rate of change following the large-scale (or resolved) flow. Applying the zonal
average to the continuity equation leads to

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (183)

If we compare Eqs. 180 and 181 with 174 and 174 we see that extra terms emerge if
we follow a particle with the average large-scale flow. These can be interpreted as the
effects of the small-scale eddies on the large-scale flow, and are called convergence
of eddy momentum fluxes. Obviousely, in order to solve Eqs. 180 and 181 for the
large-scale flow, the additional terms have to be parameterized in terms of mean flow
properties. This is big topic in fluid dynamics, and is called closure problem. Note
that a very similar problem occurs when we write down the Navier-Stokes equations
for numerical models which intrisically have a grid (and time) spacing. Turbulence
theories give some clues how such parameterizations should look like. One of the
simplest one is the flux-gradient theory, which states that the effect of small-scale
eddies on the large-scale flow is similar to the effect of molecular viscosity on smaller
scale flow. The effect of viscosity on the small scale flow is to bring the flow into
equilibrium, that is to reduce contrasts or gradient. Also note that the geometry
(horizontal surface) means that changes in the vertical direction are much larger than
in the horizontal direction (horizontal homogeneity). We have parametrizations of
the type:

u′w′ = −Km
∂u

∂z
(184)

v′w′ = −Km
∂v

∂z
, (185)

where Km can be a function of the vertical coordinate z. All other momentum fluxes
can be approximated to be close to zero in Eqs. 180 and 181.

7.3 The Ekman Layer

The Ekman layer is the layer that connects a layer very close to the surface to the
free atmosphere where we have near geostrophic equilibrium. Using the geostrophic
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wind (note that we can consider for the current analysis f = f0 = const)

ug = − 1

fρ

∂p

∂y
, vg =

1

fρ

∂p

∂x
,

with this and Eqs. 184-185, the stationary (equilibrium) approximation to Eqs. 180
and 181 are

Km
∂2u

∂z2
+ f(v − vg) = 0 (186)

Km
∂2v

∂z2
− f(u− ug) = 0 , (187)

where we have dropped the overbar for average quantities for convenience (only
average quantities appear). Note that also the mean vertical advection term has
been dropped because of smallness compared to the other terms. The horizontal
advection terms are dropped because of the horizontal homogeneity condition. If we
assume ug = const., and vg = const. with height, then we can substitute u∗ = u−ug
and v∗ = v − vg. to get a system of the type

Km
∂2

∂z2

(

u∗
v∗

)

+

(

0 f
−f 0

)(

u∗
v∗

)

= 0 . (188)

We assume a solution of the type u∗ = Aeimz , v∗ = Beimz, then it follows

(

−Kmm
2 f

−f −Kmm
2

)(

A
B

)

= 0 . (189)

Following basic albegra, non-trivial solutions of such a linear are found by setting
the determinant of the 2x2 matrix to zero

K2
mm

4 + f2 = 0 . (190)

The four solutions are for positive f (northern hemisphere; otherwise we have to use
negative f for southern hemisphere)

m1 =
√
i

√

f

km
, m2 = −

√
i

√

f

km
, m3 =

√
−i
√

f

km
, m4 = −

√
−i
√

f

km
. (191)

With
√
i = (1 + i)/

√
2, we have

m1 = (1+ i)

√

f

2km
, m2 = −(1+ i)

√

f

2km
, m3 = (i−1)

√

f

2km
, m4 = (1− i)

√

f

2km
.

(192)
The boundary conditions are geostrophy (u = ug, v = vg) as z goes to infinity,
therefore u∗ = v∗ = 0 and u = v = 0 or v∗ = −vg, u∗ = −ug at z=0. The boundary
condition as z goes to infinity excludes solutions that grow, therefore the solutions

56



with negative i (m2 and m4) are excluded. If we insert the solutions m1 and m3

back into the original system 189, we can determine the two eigenvectors, which are

x1 =

(

1
i

)

and

x3 =

(

1
−i

)

The two eigenvectors are complex conjugate and therefore not independent. There-
fore the solution simply given by m1 ,

u∗ = aeim1z = a[cos(γz) + i sin(γz)]e−γz (193)

v∗ = iaeim1z = ia[cos(γz) + i sin(γz)]e−γz , (194)

where we have used γ =
√

f/(2Km). Let a = b+ic, then the real part of the solution
is

u∗ = b cos(γz)e−γz − c sin(γz))e−γz (195)

v∗ = −b sin(γz)e−γz − c cos(γz)e−γz (196)

and with z = 0: u∗(z = 0) = −ug = b, v∗(z = 0) = −vg = −c or

u = ug − [ug cos(γz) + vg sin(γz)]e
−γz (197)

v = vg + [ug sin(γz)− vg cos(γz)]e
−γz , (198)

The height of the boundary layer may be defined where the wind is for the first
time parallel to the geostrophic wind, which is at De = π/γ = π

√

2Km/f . We
can use this formula to estimate the value of the eddy viscosity Km. Observations
of the mean boundary layer height in mid-latitudes give De ≈ 1 km, therefore
Km = 1/2f(De/π)2 ≈ 5 m2 s−1. An important application of the Ekman solutions
197 and 198 is that we can calculate the vertical velocity at the top of the Ekman
Layer induced by the action of turbulent eddies.

Let us calculate the divergence of the of the winds in the Ekman Layer

∂u

∂x
+
∂v

∂y
=

(

∂ug
∂x

+
∂vg
∂y

)

(

1− cos(γz)e−γz
)

(199)

−
(

∂vg
∂x

− ∂ug
∂y

)

sin(γz)e−γz

= −ξg sin(γz)e−γz .

This equation states that the divergence in the Ekman layer is proportional to the
negative geostrophic vorticity, a very important effect of the boundary layer. Positive
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Figure 24: Idealized and observed Ekman Layer velocities Source:
http://oceanworld.tamu.edu/resources/ocng textbook/chapter09/chapter09 02.htm.

(cyclonic vorticity) leads to convergence! Accorging to the continuity equation 175,
this will lead to vertical motion, which is on top of the Ekman Layer

w(De) = −
∫ De

0

(

∂u

∂x
+
∂v

∂y

)

dz (200)

= ξg
e−γz

2γ
[sin(γz)− cos(γz)]

∣

∣

∣

∣

∣

De

0

=
ξg
2γ

(

1 + e−π
)

≈ ξg
2γ

= ξg

√

Km

2f
,

where we have assumed that the geosptrophic wind is independent of height within
the Ekman Layer. This is again an important result, a positive vortivity leads
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to upward motion through Ekman effets on top of the boundary layer. This is
called boundary layer pumping or Ekman pumping. It may be used to explain
vertical motions and therefore rainfall anomalies induced by the Gill responses in
tropical regions as derived in Section 6.2. It states that whenever we calculate a
flow response that has (geostrophic) vorticity, this will lead to vertical motion and
therefore a rainfall response. Given that geostrophy is valid from approximately
10 degrees away from the equator, this rule can be used for many flow responses.
Remember that we have shown in chapter 5 that even the zonal winds in the close
equatorial Kelvin waves are in exact geostrophic equilibrium. We can estimate the
typical magnitude of the vertical velocity 200 by inserting ξg = 10−5s−1, De = 1km
or γ = 3 × 10−3 m −1 to be w(De) ≈ 10−5/(2 × 3 × 10−3) m s−1 or 2 × 10−3 m
s−1. This a substantial vertical velocity, comparable to the one induced by a heating
anymaly of about Q/cp 1 k/day in the tropical regions, if we use equation 37 and
Sp ≈ 5× 10−4 K Pa−1 to estimate the vertical velocity:

−Spω ≈ Spρgw ≈ Q

cp

or

w ≈ Q

cp

1

Spρg
.

Also in the Ocean Ekman Layers exist (have you discussed them?). Clearly at the
bottom of the ocean very similar processes take place as discussed here. Even at the
top of the oceans we have an Ekman Layer (have you discussed this?). However,
the main change is the boundary condition ar the surface, which is given by the
atmospheric winds that drive the ocean, in the interior the boundary condition
can be assumed to be geostrophic again. Otherwise we can use the above derived
methodology also to derive the ocean surface Ekman Layer.

Exercises

1. Verify that the Ekman solution 197 and 198 is indeed a solution of ther original
system of equations 186 and 186.

2. Calculate the scalar product between the pressure gradient and the wind within
the Ekman layer given by Eqs. 197 and 198. Is the wind directed into or out
of a low pressure system?

3. Write a fortran code that uses the Eqs. 197 and 198 and plot the solution as
as phase space diagram (u,v) as in Fig 24. Also, solve the original equations
186 and 187 numerically by keeping the local time derivative in the Ekman
equations:

∂u

∂t
= Km

∂2u

∂z2
+ f(v − vg) (201)

∂v

∂t
= Km

∂2v

∂z2
− f(u− ug) . (202)
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For both analysical and numerical solutions use Km = 5 m2 s−1, the coriolis
parameter at 45◦N,ug = 10 m s−1, vg = 0. The vertical domain should be
[0m , 3000 m]. Use as initial condition u = ug, v = 0. Compare the numerical
stationary with the analytical solution. How long does it take for the solution
to become approximately stationary?
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8 The general circulation

The general circulation of the atmosphere is usually considered to include the to-
tality of motions that characterize the global-scale atmospheric flow. Climate dy-
namics is one if the main topics of the study of the general circulation. Here we
are interested in the temporally (i.e. monthly) averaged fields of wind, temperature,
humidity, precipitation, and other meteorological variables and their long-term vari-
ations (also called low-frequency variability). For example, monsoon systems are
a very important feature of the general circulation. For example, on the web-page
http://users.ictp.it/∼ kucharsk/speedy8 clim.html we find some features relevant to
the general circulation.

Figure 25: Schematic of some features of the general circulaton.

8.1 Zonally averaged circulation

The aim of this section is to analyse the zonal mean circulation. The basis for the
following analysis are the thermo-hydrodynamic equations in pressure coordinates
Eqs. (26, 27, 34 and 37)

We apply in the following an averaging operator to these equations

A ≡ 1

2πrcosφ

∫ 2π

0
A rcosφdλ . (203)

All quantities are then expressed as the zonal mean plus a deviation from the zonal
mean A = A+A′ (see Figure 6).

For the total derivative of a quantity A

dA

dt
=

(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p

)

A+A

(

∂u

∂x
+
∂v

∂y
+
∂ω

∂p

)

, (204)
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where we added zero on the rhs according to the continuity equation. Therefore we
may write the total derivative (in pressure coordinates!) as

dA

dt
=

(

∂A

∂t
+
∂Au

∂x
+
∂Av

∂y
+
∂Aω

∂p

)

, (205)

Application of the zonal operator (203) yields (as in section 7)

dA

dt
=

(

∂A

∂t
+
∂(Av +A′v′)

∂y
+
∂(Aω +A′ω′)

∂p

)

, (206)

because ∂()∂x = 0 and

ab = (a+ a′)(b+ b′) = ab+ ab′ + a′b+ a′b′ = ab+ a′b′ ,

because the quantities () are independent of x and a′ = b′ = 0 Applying the zonal
average to the continuity equation leads to

∂v

∂y
+
∂ω

∂p
= 0 . (207)

Note that with Eq. 207 we can define a streamfunction:

Ψ =

∫ p

0
vdp , (208)

so that

v =
∂Ψ

∂p
;ω = −∂Ψ

∂y
. (209)

To show 209 will be an Exercise! From Eq. (206) we can also derive

dA

dt
=

d

dt
A+

∂A′v′

∂y
+
∂A′ω′

∂p
, (210)

where
d

dt
=

∂

∂t
+ v

∂

∂y
+ ω

∂

∂p
(211)

is the rate of change following the mean motion. Averaging the zonal component of
the momentum equation 26 and the thermodynamic equation 37 leads to

∂u

∂t
− f0v = −∂u

′v′

∂y
(212)

∂T

∂t
− Spω = −∂v

′T ′

∂y
+
Q

cp
(213)
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Here several further approximations have been introduced which are all consistent
with quasi-geostrophic scaling. A similar scaling shows that the meridinal momen-
tum equation is in quasi-geostrophic balance. For the zonal averaged meridional
momentum equation, the first order geostrophic approximated balance is

f0u = −∂Φ
∂y

. (214)

Together with the zonal avarage of the hydrostatic equation 27 this leads to the
thermal wind equation for zonal averaged motion

∂u

∂p
=

R

f0p

∂T

∂y
. (215)

This equation is similar to equation (41), but for zonal averages. Equations (212)
and (213) tell us that in order to get a steady-state meridional, vertical zirculation
cell (v, ω) we must have the balances

Coriolis force f0v ≈ divergence of eddy momentum fluxes

Adiabatic cooling ≈ diabatic heating plus convergence of eddy heat fluxes

Also note that any v and ω separately induces the other due to continuity 207.
Analysis of observations shows that outside the tropics these balances appear to

be approximately true above the boundary layer. Close to the equator we have that
the heating is mainly balanced by mean vertical motion, driving the Hadley Cell,
whereas in the extratropics the meridional,vertical circulations are mainly driven by
the convergence of eddy momentum and eddy heat fluxes. These cells are called
Ferrell Cells.

Exercises

1. Show that with the streamfunction definition Eq. 208, the relationships 209
are fulfilled.
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Figure 26: Illustration of the Hadley cell by a (v,−ω) vector plot. left panel: Boreal
winter, right panel: boreal summer.
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Figure 27: Upper panel: u (contours), and u′v′, middle panel: T (contour) and v′T ′,
lower panel v.
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9 Tropical zonal and meridional circulations

More reading:

1. Rodwell MJ, Hoskins BJ (2001) Subtropical Anticyclones and Summer Mon-
soons. J Clim, 14, 31923211

2. Chao WC, Chen B (2001) The origin of Monsoons. J Atmos Sci, 58, 3497350

3. Kucharski, F, Bracco, A, Barimalala, R, Yoo, J-H (2011) Contribution of the
eastwest thermal heating contrast to the South Asian Monsoon and conse-
quences for its variability, Clim Dyn, 37, 721735, DOI 10.1007/s00382-010-
0858-3

Let’s have a look at the global June-to-September rainfall distribution in Fig.
28. We can clearly identify the Intertropical Convergence Zone (ITCZ), identified
by the rainfall maximum north of the equator that can reach 30◦N in some land
region. We also see that this strip of large rainfall in not zonally homogeneous, but
is stonger in some locations than in others. Some of the features may be explained
by the distributions of sea surface temperatures (SSTs) in 29.

The western Pacific rainfall maximum is related to high SSTs in that region, as we
have already discussed several times. Also, the land-sea contrast are likely important
due to different heat capacities. As we have already discussed regarding the ENSO
phenomenon, the distribution of SSTs, rainfall and atmospheric circulations in the
tropical Pacific provide positive feedbacks between them, so that its difficult to say
what is cause and what is effect (chicken-egg problem). The mean zonal circulation
in the tropical regions is called Walker circulation (see also Fig. 15). Note that
this circulation is not a strict closed circulation cell as we could derive for the zonal
mean circulation (Hadley Cell). A good measure of this zonal tropical circulation is
the upper-level velocity potential, χ, for which we have the relation to the divergent
wind

vχ = ∇χ (216)

The distribution of the 200 hpa velocity potential χ is shown in Fig. 30a (which
height is this, approximatively). According to the definition 216, a minimum means
divergent wind. The centre of upper-level divergence (rising motion, why?) is in the
western Pacific region, and the centers of upper-level convergence (sinking motion,
why?) are located in the eastern Pacific (that is the classical Walker circulation)
and in the tropical South Atlantic region.

Fig. 30 b) shows the streamfunction, ψ, which is related to the rotational flow
in the following way (see, e.g. Eq. 16)

vψ = k×∇ψ . (217)

It is clear that there is a systematic relationship between upper-level velocity po-
tential and upper-level streamfunction, they are in ’quadrature’, that is the extreme
values of one lie in the gradient regions of the other. Can we propose an explanation
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for this behaviour? The solution is an approximate version of the vorticity equation
55 for the tropics

dgξg
dt

= −f0
(

∂ua
∂x

+
∂va
∂y

)

− βvg . (218)

It turns out that in the tropical regions relative vorticity changes and advections
are relatively small, mainly because of approximate geostrophy and small pressure
gradients. We may estimate it to be one order of magnitude smaller than in the
extratropics. Therefore, the left hand side is Eq. 218 may be set to zero. This leaves
us with the approximation

βvψ = −f0
(

∂uχ
∂x

+
∂vχ
∂y

)

, (219)

where we have used that the geostrophic wind is the rotational wind defined in
Eq. 217, and the ageostrophic wind is the divergent wind defined in Eq. 216.
Eq. 219 is called Sverdrup balance. If we take a divergence field as given (e.g.
the field that corresponds to Fig. 30a; we can imagine is has been caused by the
dominance of the west Pacific heating), then according to the Sverdrup balance,
this will cause rotational winds. An upper level divergence maximum will lead to
southward rotational motion in the northern hemisphere, an upper-level convergence
maximum will lead to northward rotational motion. This is consistent with the
streamfunction distribution in Fig. 30b, and explains why velocity potential and
streamfunction are in quadrature (exercise!). Note that the interpretation of the
Asian monsoon high to be partially forced by Sverdrup balance from the heating
differences between the western Pacific and the Atlantic Ocean is a relatively new
one. The conventional point of view is that the Asian monsoon high (Tibetan high)
is forced exclusively by the land sea contrast between the Asian land mass (including
importance of Himalayas) and the Indian Ocean. We also note that all the structures
that we have considered for upper levels should be reversed for low levels, thus a part
of the low-level monsoon trough can be attributed to the western Pacific/Atlantic
heating differences. Keep in mind that secondary vertical motions can be induced
then by surface friction, because the streamfunction centres that we can derive
are fields with vorticity, which according to equation 200 induces vertical motion.
Positive (negative) vertical motion, in turn, leads to increased (decreased) rainfall
(why?). These effects have been analysed with idealized numerical experiments in
the paper cited in the beginning of the section (see also Figs. 31, 32, 33).

Exercises

1. Let the velocity potential distribution in zonal direction at latitude 30◦N be

χ = Acos(λ) ,

where λ is longitude. Calculate using the Sverdrup balance 219 to derive the
zonal distribution of the streamfunction at the same latitude.
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Figure 28: Mean JJAS rainfall and surface winds a) from observations
(CMAP,NCEP-NCAR re-analysis), b) from the ICTPAGCM. Units are mm/day
for rainfall and m/s for wind.

68



Figure 29: Mean JJAS sea surface temperature distribution a) observed, b) and c)
idealized distributiond for numerical experimentation.
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Figure 30: Mean JJAS distributions at 200 hPa of a) observed velocity potential χ,
c) modeled observed velocity potential χ, b) observed streamfunction ψ, d) modeled
streamfunction ψ Units are 106 m2 s−2.
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Figure 31: Response in rainfall to zonal (a, d)) and zonal with removed African and
Americal continents (b, e). Units are mm/day.
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Figure 32: Response in velocity potential χ to zonal (a, d)) and zonal with removed
African and Americal continents (b, e). Units are 106 m2 s−2.
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Figure 33: Response in eddy streamfunction ψ to zonal (a, d)) and zonal with
removed African and Americal continents (b, e). Units are 106 m2 s−2.
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10 Energetics of the general circulation

Suggested textbooks, reading:

a) James R. Holton: Dynamic Meteorology, Third edition, Academic Press.

b) Joseph Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag.

c) Lorenz, E. N.; 1955: Available Potential Energy and the maintainence of the
General Circulation. Tellus, 7, 157-167

d) Peixoto, J. P. and Oort A. H.: Physics of Climate, Springer-Verlag.

e) Tailleux, R.; 2013: Available Energy and Exergy in Stratified Fluids. An-
nual Review of Fluid Mechanics, 45, 35-58, doi: 10.1146/annurev-fluid-011212-
14620

f) Marquet, M.; 1991: On the concept of Exergy and availbale enthalpy: appli-
cation to atmospheric energetics. Q. J. R. Meteorolog. Soc., 117, 449-475

g) Kucharski, F.; 1997: On the concept of exergy and available potential energy.
Q. J. R. Meteorolog. Soc., 123, 2141-2156

h) Kucharski, F. and Thorpe, A. J.; 2000: Local Energetics of an Idealized Baro-
clinic Wave Using Extended Exergy. Journal of the Atmospheric Sciences, 57,
3272-3284

We go back to the full (unapproximated) momentum equation

ρ
dv

dt
= −∇p− 2ρΩ × v − ρ∇φ−∇ · F , (220)

where F is the frictional tensor. Multiplying with the velocity gives

ρ
dk

dt
= −∇ · (pv + F · v) + p∇ · v − ρv · ∇φ+ F : ∇v , (221)

where k = 1/2(v · v) is the kinetic energy. We can reformulate equation 221 as
equation

ρ
d(k + φ)

dt
= −∇ · (pv + F · v) + p∇ · v + F : ∇v . (222)

The equation for internal energy is

ρ
du

dt
= −∇ · J− p∇ · v − F : ∇v . (223)

J is the radiative flux vector and the only heating term for a one-component system
in which no phase transitions are possible. The addition of condensatinoal heating
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is an approximation to a one-component system and strictly possible only if more
components are considered (dry air, water vapo and liquid water). The pressure
work term p∇·v may therefore be interpreted as reversible conversion term between
kinetic plus potential and internal energy. The dissipational heating, F : ∇v, is
just transferring energy into the internal energy reservoir. The other terms are
energy fluxes into the climate system. If we for the time being assume a closed
system, then these terms vanish after an integration over the this system. In this
case, we may assume that reservoirs of internal, potential and kinetic energy can only
change by exchanging energy between them. Imagine an initial situation with a given
temperature distribution, but without motion (this is, for example, the typical initial
condition of ICTP AGCM). How much kinetic energy could the climate ’gain’ in such
a situation? A naive estimation would be u = cvT ≈ 2·105 J/kg as typical local value.
However, experience tells us that typical values of specific kinetic energy are about
102 J/kg, so that there is an overestimation of a factor of about 1000 in this simple
(an naive) approach. Clearly, only a small portition of the large internal energy
reservoir can be released into kinetic energy. It is obvious that we have to consider
differences with respect to some reference state in order to define the proper amout
of internal energy that is available for conversion into kinetic energy. An approach
like ∆u = cv∆T , where ∆T = T − Tr, with Tr some reference temperature, leads
still to overestimations, but has the even more severe problem of not being positively
definite. Note that the above arguments also apply to the potential energy, because
of the proportionality of their total amounts in the atmopsphere (P = R/cvU ;
Exercise!). The problem of identifying the energy available for convertion into kinetic
energy is a classical one. For the atmosphere, Lorenz (1955) has developed a new
energy concept, called Available Potential Energy. We can re-write the equations in
a more suitable form:

ρ
dk

dt
= −∇ · (F · v) − v · (∇p+ ρ∇φ) + F : ∇v . (224)

ρ
d(u+ φ)

dt
= −∇ · (pv) + v · (∇p+ ρ∇φ) + Tρ

ds

dt
. (225)

s is the specific entropy, governing all irreversible processes (for an ideal gas we
have s = cplnθ). From these equations we see that in a hydrostatic atmosphere
(∇p = −ρ∇φ), there is no reversible conversion from the internal plus potential to
kinetic energy. If in Eq. 225 we define a function that just depends on entropy,
T0(s), then it is possible to remove from the internal plus potential energy a part
that merely depends on entropy:

ρ
d(u+ φ− q0(s))

dt
= −∇ · (pv) + v · (∇p+ ρ∇φ) + (T − T0(s))ρ

ds

dt
, (226)

where q0(s) =
∫ s
sB
T0(s

′)ds′. Note that for isothermal processes, T0(s) = T , then
q0(s) = Ts+const. and u+φ−q0(s) = u−Ts+φ, and (u−Ts) is the Free Energy (
a famous quantity for available energy for isothermal processes). The interpretation
is that we can remove from the internal plus potential energy amounts a portion
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that is not available for conversion into kinetic energy. However, the problem of the
positive definiteness of the useful energy u + φ − q0(s) remains. We have to use a
transformation of themodynamic variables that guarantees positive definiteness in
the end.

10.1 Exergy transformation

The exergy transformation is usually applied to the internal energy u to provide a
positive quantity with properties of a thermodynamic potential (see Figure 34).

Figure 34: The convex internal energy, u, as a function of specific entropy, s, and
specific volume, α, in phase space. The exergy transformation is just the (always
positive) difference between u the tangente at the reference point.

Application of this transformation to the energy u+ φ− q0 results in

eAPE = ∆u−∆q0 + pR∆α , (227)

where ∆ψ = ψ − ψR, where the subscript R indicates the reference state. The
quantity eAPE is the available potetial energy first introduced by Lorenz (1955)
in a globally integrated form. It is a positive quantity the for a closed volume
the only reversible production/destruction term is the conversion to/from kinetic
energy. This quantity therefore has all the required properties. The reference state
is arbitrary at this point, but following our idea of eAPE being the available energy,
it should be derived from a variational principle, minimizing the volume integral of
eAPE . However, for practical purposes, determination of the reference state by, for
example, horizontal averaging of temperature is sufficient. All other reference state
variables can be determined by vertically integrating the hydrostatic equation for
an ideal gas. Note that eAPE according to Eq. 227 becomes the classical exergy in
case of an isothermal reference temperature T0(s) = const. = TR. Finally, for an
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ideal gas, the lowest order approximation of eAPE is

eAPE ≈ 1

2

[

g2

N2
R

(

∆θ

θR

)2

+RTR
cv
cp

(

∆p

pR

)2
]

, (228)

where

N2
R :=

g

cp

dsR
dz

=
g2

c2p

[

TR
cp

− dTR
dz

(

dsR
dz

)

−1
]

−1

. (229)

From Eq. 229 follows that eAPE is positive if the stratification of the reference
state is staticly stable (N2

R > 0). For application of this concept to the general
circulation of the atmosphere this condition is certainly fullfilled (just look at a
potential temperature cross section in meridional and height direction, e.g. Fig.
1). However, to a system where the stratification of unstable even in the horizontal
average, the available potential energy concept cannot be applied, and we have to
return to other methods of identifying useful energy. The balance equation for eAPE
can be derived by noting that

deAPE
dt

= (T − T0(s))
ds

dt
−∆p

dα

dt
+∆α

dpR
dt

(230)

The energy equations 224 and 225 can be reformulated in the following form

ρ
dk

dt
= −∇ · (∆p+ F · v) + ∆p∇ · v + ρ

∆α

αR
v · ∇φ+ F : ∇v (231)

ρ
deape
dt

= −∆p∇ · v − ρ
∆α

αR
v · ∇φ+ ρ

T − To(s)

T
q , (232)

where the abbreviation for diabatic processes Tds/dt = q has been used. The factor
(T − T0(s))/T = η may be interpreted as Carnot factor controlling the efficiency of
the energy gain for a given heating. It can be approximated to the first order as
(exercise!)

η ≈
(

g2

cpN
2
R

∆θ

θR
+ TR

R

cp

∆p

pR

)

1

T
. (233)

The interpretation is then that the volume integrated generation of eAPE is de-
pendent of the correlation of η and q. It’s not the heating per se that is important,
but the differential heating has to be correlated with potential temperature pertur-
bations (dominant part in Eq. 233). On the other hand, frictional dissipation is the
main process that destroys kinetic energy. A few remarks are appropriate here. If
we forget for the time being about the approximative expressions given for an ideal
gas, eAPE, and its evolution equation are really very general for a stably stratified
one-component system. For example consider a simple solid body. We know from
experience that even if a differential heating is applied, the only process that may
result is heat diffusion (diabatic process), but certainly no kinetic energy can be
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gained. Indeed, in case of a solid body the function q0(s) can chosen as the internal
energy u plus the constant potential energy, because T = T (s), therefore we can
define T0(s) = T . In case of a simple incompressible fluid, we can also identify
T0(s) = T and q0(s) can be chosen to equal to the internal energy, but the potential
energy may not be constant, because of fluctuations of surface height, and could
therefore provide the available potential energy.

To derive a slightly different formulation that has been derived by Lorenz (1955),
equation has to be integrated over the systems volume

∫

τ

deape
dt

dτ =

∫

τ

{

−pdα
dt

+ pRα∇ · v − α

αR
v · ∇φ+

dφ

dt
+
T − To(s)

T
q

}

dτ , (234)

where dτ = ρdxdydz is a mass element. Using

p
dα

dt
=

d

dt
(pα) − α

dp

dt

and P = R/cvU (see exercise 1!), it follows
∫

τ

deape
dt

dτ =

∫

τ

{

RT

p
ω +

T − To(s)

T
q

}

dτ , (235)

where the orographic term from the exercise has been ignored. This is the inte-
gral available potential energy balance for a hydrosatic atmosphere that was first
derived by Lorenz (1955). Apart from the diabatic production term, which can be
reformulated for an idealized gas to get a formulation identical to Lorenz, this form
is highlighting the conversion term to kinetic energy −ωRT/p, which states that
energy is converted into kinetic energy by rising of warm air and sinking of cold air.
This makes the conversion term positive on average. This process is lowering the
centre of mass of the atmosphere, thus releasing kinetic energy. In baroclinic waves,
warm air is typically moving northward, and cold air southward. This together with
the tendency for motions to be adiabatic, thus following lines of contant potential
temperature (see Fig. 1), means that the warm air moving to the north tends to rise
and the cold air moving to the south tends to sink, thus providing the conditions
for conversion of available potential energy into kinetic energy.

It is further possible decompose the kinetic and available potential energy in their
zonal mean and eddy components (see Section 8.1), and to derive their evolution
equations. If we identify the global volume averages of k and eAPE and their mean
and eddy components as EK , E

′

K and EP , E
′

p then the resulting global energy cycle
according to Peixoto and Oort (1983) is shown in Fig. 37. As can be seen most
production going into Ep, but also a considerable part into E′

P . These are related to
heating in equatorial regions and cooling in polar regions for EP , and diabatic heat
release in cyclones in case of E′

P . The energy is then transformed into eddy kinetic
energy, E′

K , from where most of the dissipation occurs. A smaller part is transfered
into mean kinetic energy EK , and eventually dissipated and also transformed back
into EP .

For the ocean we have a much simpler picture, mainly driver by atmospheric
winds and friction:
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Figure 35: Distribution of classical Exergy and extended Exergy (local available
potential energy). Units are J/kg.

Exercises

1. Show that for a hydrostatic atmosphere the volume integral of potential energy
is proportional to the volume integral of internal energy, i.e. P = R/cvU .
(Hint: Use a partial integration!)

P =

∫ ∫

A

∫

∞

Zs

ρgzdzdxdy =
R

g

∫ ∫

A

∫ ps

0
Tdpdxdy +

∫ ∫

A

Φsps
g

dxdy

2. Show that

T − T0(s) ≈
(

g2

cpN2
R

∆θ

θR
+ TR

R

cp

∆p

pR

)
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Figure 36: Distribution of Carnot factors of Exergy and extended Exergy (local
available potential energy).

in first order by developing T (s, p) and T0(s) in taylor series around a reference
state sR, αR. Hint: Note that ∂T/∂s = T/cp, ∂T/∂p = α/cp and

dT0
ds

(sR) =
dTR
dz

(

dsR
dz

)

−1

.
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Figure 37: The global atmospheric energy cycle for the global integrals of mean and
eddy available potential and kinetic energies (EP , E

′

P , EK , E
′

K), respecitvely.
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Figure 38: The global oceanic energy cycle therefore the global integrals of available
potential and kinetic energies.
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11 Analysis of Climate Variability: EOF/PCA Analysis

Suggested textbooks:

a) Statistical Methods in the Atmospheric Sciences. D. S. Wilks, Second Edition,
International Geophysics Series, Academic Press, 2006

b) Statistical Analysis in Climate Research. H. von Storch and F. W. Zwiers,
Cambridge University Press, 1999

c) Analysis of Climate Variability. H. von Storch, A. Navarra (Eds.), Springer,
1995.

d) Or simply look things up on Wikipedia...............

11.1 Motivation

The problem and necessity of the analysis of climate variability becomes clear if we
consider the series of 500 hPa winter mean anomaly fields shown in Fig. 39. Lacking
a precise theory of what we are seeing (apart from the fact that we know that what
we see are solutions of the complex Navier-Stokes equations), how can we try to find
some order in the chaos that we are confronted with? One way to tackle this problem
is the Empirical Orthogonal Function (EOF) analysis (guess who introduced this in
climate analysis?) or Principle Component Analyisis (PCA).

11.2 What does the EOF analysis do?

The EOF analysis solves our problem (how, see below) by finding orthogonal func-
tions (EOFs) to represent a time series of horizontal fields in the following way:

Z ′(x, y, t) =
L
∑

l=1

PCl(t)EOFl(x, y) . (236)

Z ′(x, y, t) is the original (anomaly) time series as a function of time (t) and (hori-
zontal) space (x,y), for example the fields that are displayed in Fig. 39. EOFl(y, x)
show the spatial structures of the major factors that can account for the tempo-
ral variations of Z ′. PCl(t) are the principal components that tell you how the
amplitude of each EOF varies with time. In practice, time and space dimensions
are discretized (as in the Numerical Methods Course!). Therefore, dealing with
Z ′(x, y, t) and EOFl(y, x) means to deal with matrices.

11.3 Some useful specific definitions and notations

In the following, matrices will be denoted by capital bodyface roman letters (A,B,
Y, etc.). Vectors will be denoted by a lowercase boldface letters. Let’s consider the
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data matrix:

Z =













z11 z12 . . . z1k
z21 z22 . . . z2k
...

...
...

zn1 zn2 . . . znk













(237)

In the following we assume that time and space are discretized and time is rep-
resented by the columns of this matrix, whereas space is represented by the rows
(space (x,y) is just discretized a one vector, i.e. order f(i, j) as one long vector
f(i, 1), f(i, 2), ..., f(i,M), i = 1, N, with N ×M = k). EOF analysis is based on
anomalies, therefore anomaly data has to be defined. In order to define anomalies,
a mean has to be defined. This is done in time, meaning a k-dimensional vector of
means can be defined by averaging along the columns of the matrix of Eq. 237 (i.e.
the time mean at every grid point). This mean has to be subtracted at every time
and gridpoint in order to define the anomaly matrix. The mean subtracted is in
general different at different gridpoints, but must be the same at a fixed gridpoint.
An elegant way to write this is:

Z′ = Z− 1

n
1 Z , (238)

where 1 is a n× k matrix that contains 1 everywhere which is multiplied with Z (to
confirm, simply try this procedure with a 2x2 matrix!).

With these notations Equation 236 may be re-written in (discretized) matrix
notation as

Z′ =
k
∑

l=1

pcl el
T , (239)

where pcl is a nx1 vector and el is a kx1 vector, therefore the transponse el
T is a

1xk vector. Note that the product of an arbitrary nx1 vector a and a 1xk vector
bT is results in

abT ≡













a1
a2
...
an













[

b1, b2, . . . , bk
]

≡













a1b1 a1b2 . . . a1bk
a2b1 a2b2 . . . a2bk
...

...
...

anb1 anb2 . . . anbk













(240)

If we demand the vectors el to be orthogonal unit vectors, such that eTi ej = 0
for j 6= j, and eTl el = 1, then we have

Z′em =
k
∑

l=1

pcl el
Tem =

k
∑

l=1

pcl δlm = pcm , (241)

where δlm = 1 if l=m and zero otherwise. We call Z′em the projection (or in climate
analysis sometimes called regression) of the data matrix onto the subspace defined
by the EOF em. Thus the principle components corresponding the mth EOF can
simply be derived by projection of the data matrix Z′ onto themth EOF. The vector
pcm has therefore n components.
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11.4 Minimum criterium leading to EOF definition

EOF analysis can be interpreted as a recursive process, we start to determine the
first EOF (e1), then the second, and so on. The criterion to determinine the first
EOF is the minimization of the residual

ǫ1 =‖ Z′ − Z′e1e
T
1 ‖2 , (242)

with respect to the k dimensional vector e1 designing the first EOF in our notation.
Here, if Y is any matrix,

‖ Y ‖2= 1

(nk)
YT : Y ≡ tr

(

1

(nk)
YTY

)

=
1

(nk)

n
∑

i=1

k
∑

j=1

y2ij . (243)

This means first the matrix product of YT and Y, then the trace of the resulting
matrix by summing up the diagonal elements and this is the total variance of Y.
The normalization by (nk) is arbitrary, but represents the natural definition of the
total variance. In some cases you may find that the normalization is just done by n,
meaning in time. The final results is however independent of this. The meaning of
Eq. 242 is that we are searching for a k- dimensional subspace e1 to represent the
data such that the residual (242) is minimal.

Note that Z′e1 is a n-dimentional vector to be matrix multiplied by the k-
dimentional vector eT1 to give a kxn matrix according to Eq. 240. Also note that
Z′e1 is just the definition of the vector of (discretized) Principle Components corre-
sponding to the first EOF in Eq. 239. Some further manipulation leads to:

ǫ1 =‖ Z′ ‖2 − ‖ Z′e1 ‖2 , (244)

which means that minimizing ǫ1 according to Eq. 242 with respect to e1 is equivalent
to maximizing the principle component projections

ǫproj =‖ Z′e1 ‖2 (245)

with respect to e1 (see, e.g. Wikipedia). This leads to the often used 2-dimensional
example of the geometrical interpretation of EOFs shown in Fig. 40, where samples
of 2-dimensional data vectors are considered and we search for the unit vector (EOF)
that maximizes the variance of the projection of the data on this vector (straight
line).

The minimization (a lot of matrix calculus) leads to the eigenvalue problem

Se1 = λe1 , (246)

where λ is the largest eigenvalue and S = 1
nkZ

′TZ′ is the kxk variance-covariance
matrix of the anomalies. Therefore the first EOF e1 becomes the eigenvector of the
matrix S corresponding to the largest eigenvalue. The other EOFs are found by
simply iteratively minimizing the reduced residual

ǫ2 =‖ Z′ − Z′e1e
T
1 − Z′e2e

T
2 ‖2 ′ (247)
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and
ǫl =‖ Z′ − Z′e1e

T
1 − Z′e2e

T
2 − ...− ele

T
l ‖2 , (248)

and the results is that e2 is the eigenvector of S that corresponds to the second
largest eigenvalue, and el is the eigenvector of S that corresponds to the lth largest
eigenvalue. Since S has k eigenvectors we can continue this until l=k.

11.5 Some further properties

Note that also the principal components are orthogonal, that is pci · pcTj = 0 for
j 6= j. For practice purposes, we hope that a good approximation for the data
matrix is given by

Z′ ≈
N
∑

l=1

pcl el
T , (249)

with N ≪ k.
A further property is

k
∑

l=1

λl =
1

(nk)
Z′T : Z′ =

1

(nk)

n
∑

i=1

k
∑

j=1

z′
2
ij , (250)

which means that the sum of all eigenvalues gives the trace of the variance-covariance
matrix S which is the total variance of Z′ . To evaluate the importance of EOFs it
is usefull to consider the portion of variance explained by it:

expl var of λi =
λi

∑k
l=1 λl

(251)

A further property of eigenvalues of a matrix is of importance for the practical
implementation of the EOF analysis, and is indeed used in the fortran program that
you will use in the exercises of this section: If λ is an eigenvalue of the variance-
covariance matrix kxk Z′TZ′ (we drop the scaling 1/(nk) for here because it is just
a factor), then it is also an eigenvalue of the nxn matrix Z′Z′T . In this case the
variance-covariance matrix is defined as by the spatial variances and covariances.
Thus if n ≪ k, then we may prefer to find the eigenvalues of Z′Z′T . If there are
m independent eigenvectors (e1, e2, ..., es) of Z′TZ′ the eigenvectors of Z′Z′T are
Z′e1,Z

′e2, ...,Z
′es, which are the projections of the data matrix on the EOFs es

which are therefore the (normalized) principal components of the original prob-
lem. This means that EOFs and principal components are exchangable. Instead of
calculating the eigenvectors of Z′TZ′, we may calculate the eigenvectors of Z′Z′T ,
interpret the eigenvectors as the principal components and calculate the EOFs as
projections of the transpose data matrix Z′T onto the eigenvectors: el = Z′Tpcl.
In this case the principal components are normalized (that is standard deviation =
1), whereas the EOFs are not. In the approximation 249 it does not matter if the
principle component or the EOF is normalized, because they are multiplied with
each other.
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As stated above EOFs are found by determing the eigenvalues and eigenvectors
of the variance-covariance matrix. Do you remember how to find these? You have
to demand that the determinant of the variance-covariance matrix vanishes, this
leads to an equation, the characteristic equation that contains kth-order polynomials
and has at most k roots. There are standard techniques to find eigenvalues and
eigenvectors, you may have learned some in your Numerical Methods course?

11.6 Geometric interpretation of PCs and EOFs

The geometric interpretation of the principle components mentioned before is as
follows: The eigenvectors empirical orthogonal function (EOF) define a new coordi-
nate system in which to view the data. This coordinate system is oriented such that
each new axis is aligned along the direction of the maximum joint variability of the
data, consistent with that axis being orthogonal to the preceding one.

The goal is to account for the variation in a sample in as few variables as possible.
In the example here, the data is essentially 1-dimensional in the new coordinate
system defined by the EOFs.

11.7 Interpretation of EOFs

As we have learned by now, EOFs may be useful to compress the information con-
tained in complex data sets and to structure the data (according to the largest
variances). As for the physical interpretation of EOFs, it is tempting to try to give
physical explanations to the first few EOFs of a complex data set. Indeed, we expect
that if the variability of our fields are governed by a strong low-dimensional physical
mechanism (e.g. ENSO in the Pacific region), then one of the first EOFs will reflect
this mechanism (indeed in case of EOFs of the interannual variability in the tropical
Pacific, we find that the first EOF reflects the canonical ENSO pattern). Unfortu-
nately, the opposite is not true: Not every first (or second or third, ...) is related to
a simple and unique physical mechanism! Furthermore it is often even misleading
to try to provide a physical mechanism for higher EOFs (e.g. EOF4, EOF5, etc.),
because of the orthogonality of the EOFs. This constraint may make higher EOFs
less ’physical’ than the first or second EOF! The EOF analysis applied to the fields
in Fig. 39 gives as first 2 EOFs the maps displayed in Fig. 42. Do you have ideas
about possible ’physical’ explanations of these EOFs? They are at least well know
patterns, do you know their names?

11.8 Related Methods of Climate Analysis

The EOF analysis is probably the most basic of all analysis methods of climatic
fields. For example a different question could arise considering 500 hPa geopotential
height fields and sea surface temperature fields together. We may ask the question
are the 500 hPa fields and the sea surface temperature (SST) fields we see related?
This could be due to the fact that one is forcing the other. We may get some idea
performing an EOF analysis on both fields separately and then try to connect the
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emerging EOFs by a physical interpretation (e.g. similar to what we will do in the
exercise in this section). We could go one step further and compare (e.g. correlate)
the principle components (pcs) of the first EOFs, etc. If we are lucky and the pcs are
highly correlated, then there is likely some physical connection between the two first
EOFs. However, it could also be that the first pc in geopotential height is a little
correlated with the first pc in SSTs and also a little with the second, and so on. This
means our interpretation of the connections between 500 hPa geopotential height
and SST fields are not much easier after the EOF analysis. There are methods
to address this question systematically. For example, the Canonical Correlation
Analysis (CCA) or Maximum Covariance Analysis (MCA) provide tools to address
the question stated above in a systematic way.

Exercises

1. Using the fortran programme provided, calculate the (winter-mean: DJF)
EOFs of a) surface temperature and b) 200 hPa geopotential height in the
tropical Pacific. Display the covariance of the resulting principal components
related to the first EOF with the global surface temperature and 200 hPa
geopotential height fields and interpret the results. How much variance does
the first EOF explain in each case? Are the first EOFs of surface temperature
and 200 hPa geopotential height related? If yes, what could be the physical
mechanism?

88



Figure 39: Anomalies of winter 500 hPa height fields for several years. Units are m.
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Figure 40: A typical example of the distribution of eigenvalues.

Figure 41: A sample of n observations in the 2-D space x = (x1, x2).
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Figure 42: EOFs of the 500 hPa fields presented in Fig . 39
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