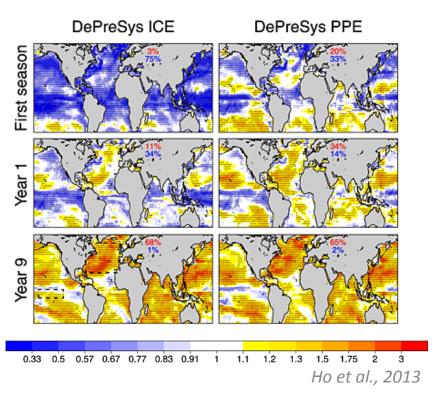
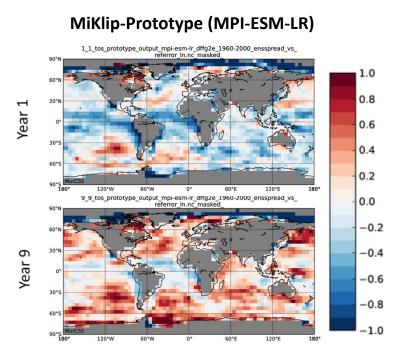


A comparison of two ensemble generation methods based on oceanic singular vectors and atmospheric lagged initialization for decadal predictions

MiKlip Project – Module A (WP: A Coordination)

Camille Marini, Yulia Polkova, Armin Köhl and Detlef Stammer


CLIVAR-ICTP International Workshop on DCVP


Trieste 2015

Motivation: toward reliable decadal climate predictions

Spread-error ratio for SST

MiKlip MURCSS tool, logarithmic ensemble spread score

- underdispersive (overconfident) ensemble spread at initial time
 - so far, few decadal prediction studies have represented the uncertainty in the 3D ocean initial state
- methods for perturbing the ocean state exist: Hawkins and Sutton (2011); Zanna et al.; Tziperman and Ioannou (2002); Romanova and Hense (2015); etc.

Ensemble generation methods (EGM) that aim to represent fastest growing errors

- Bred vectors (e.g., MiKlip AODA-PENG ← Toth and Kalnay, 1993)
- Singular vectors (e.g., Hawkins and Sutton, 2011 ← Palmer et al., 1994; Molteni et al., 1996 and Kleeman et al., 2003 and others)
 - ■optimized for maximum error growth and scaled to represent the analysis error
 - characterized by perturbation growth norm and optimization time
 - computationally expensive (SVs of a tangent propagator and adjoint of a dynamical system)

Ongoing projects that investigate EGMs for decadal prediction

- EU Project SPECS (WP3.2 Improvements in ensemble generation)
- German project MiKlip (Module A, AODA-PENG)

Recipe to generate oceanic singular-vectorbased perturbations (OSVs)

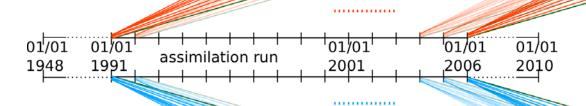
- 1. Reduce the space (multivariate 3D EOFs; 28 PCs explain 68% of variance)
- **2. Fit a linear propagator to the PC time series (LIM)** *following Penland and Matrosova* (1994), and Penland and Sardeshmukh (1995):

$$\frac{d\mathbf{x}}{dt} = \mathbf{B}\mathbf{x} + \mathbf{F}; \ \mathbf{x}(t+\tau) = e^{\tau \mathbf{B}}\mathbf{x}(t) = \mathbf{G}(\tau)\mathbf{x}(t)$$

3. Singular vectors = eigenvectors of $\mathbf{G}(\tau)^T \mathbf{NG}(\tau)$ under the quadratic (L₂) norm N and over optimization time τ =5 years:

$$\sigma(\tau) = \frac{\|x(\tau)\|_{N}^{2}}{\|x(0)\|_{N}^{2}} = \frac{\mathbf{x}(0)^{T}\mathbf{G}(\tau)^{T}\mathbf{NG}(\tau)\mathbf{x}(0)}{\mathbf{x}(0)^{T}\mathbf{x}(0)}$$

- **4. Phase-space rotation and scaling** (to represent the RMSE pattern of the initial conditions taken from the GECCO2 synthesis) *following Molteni et al.*, 1996
- **5. Initial conditions** = 4 SV that are added/subtracted from the unperturbed initial state

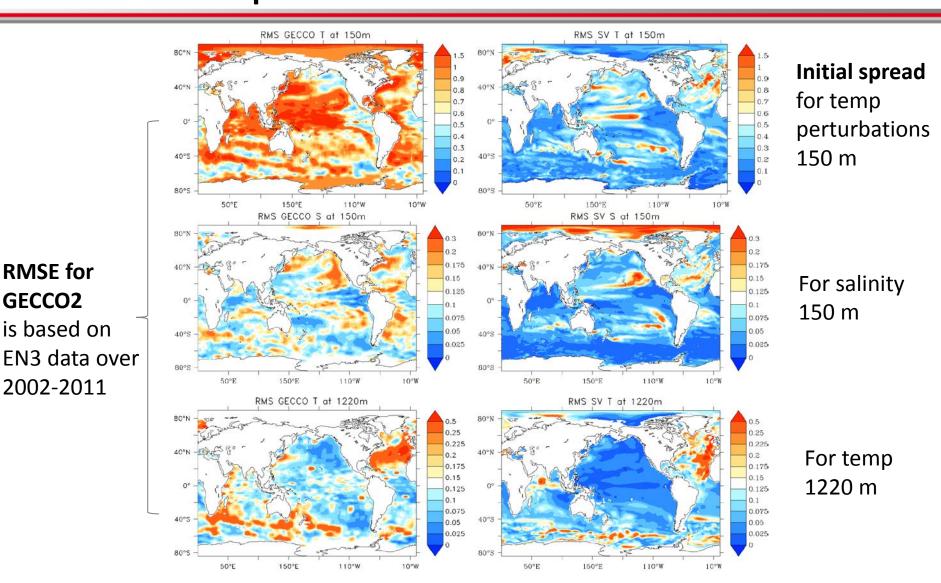

Marini C., Polkova I., Köhl A. and Stammer D. (2015, submitted to MWR)

Experimental setup

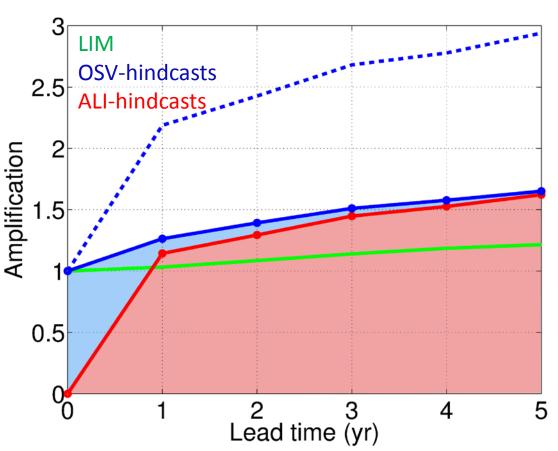
- 1. Assimilation of GECCO2 anomalies in MPI Earth System Model (MPI-ESM-LR)
- 2. Two sets of ensemble hindcasts:
- 2a. Hindcasts based on atmos perturbations
- Initial conditions:
 - diff atmos state (1-8 days lag)
 - same ocean state (assim. GECCO2 anomalies)

atmospheric initial conditions shifted by 1 to 8 days unperturbed

- 2b. Hindcasts based on oceanic perturbations
- Initial conditions:
 - same atmos state
 - diff ocean state (assim. GECCO2 anomalies +/- perturbations)


unperturbed oceanic initial conditions perturbed by +SV1, +SV2, +SV3, +SV4 -SV1, -SV2, -SV3, -SV4

RMSE for

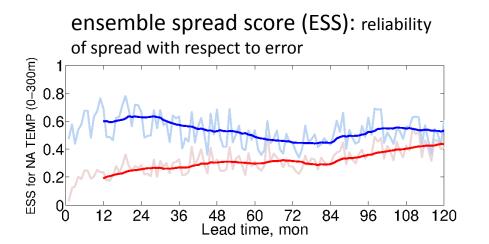

GECCO2

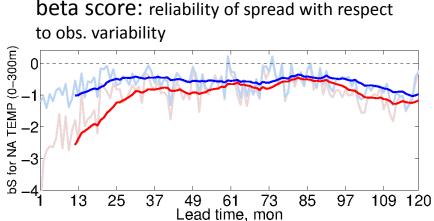
GECCO2 RMSE vs initial spread of OSV perturbations

Amplification of global 3D oceanic perturbations (T,S) in a GCM

$$\sigma(t) = \sqrt{\frac{\left\|X'_{i}(t)\right\|^{2}}{\|SV_{i}\|^{2}}}$$

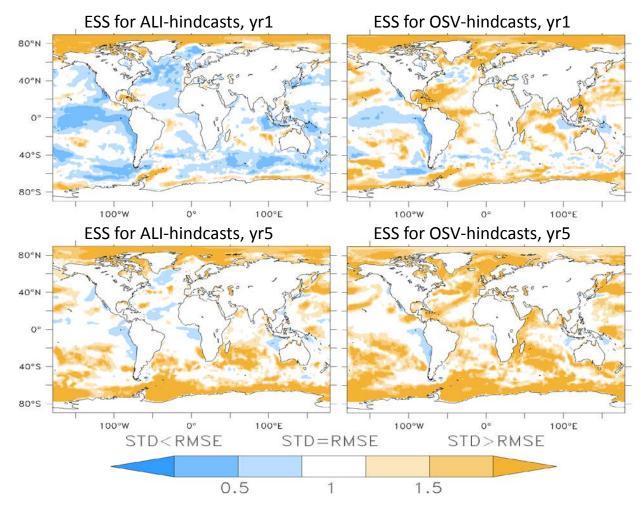
$$X'_i = X_{\text{perturbed}} - X_{\text{unperturbed}}$$


$$\sigma(t) = \sqrt{\frac{\left\|X'_{i}(t) \cdot nSV_{i}\right\|^{2}}{\|SV_{i}\|^{2}}}$$

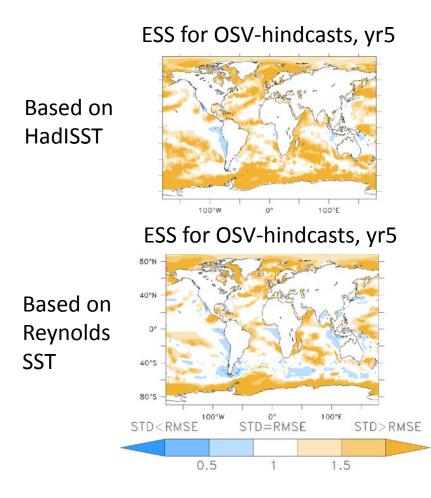

$$nSV_i = \frac{SV_i}{\|SV_i\|^2}$$

i – ensemble member

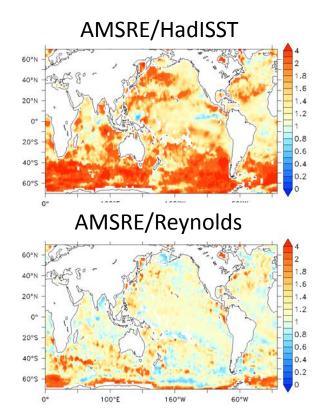
Spread scores for the North Atlantic subsurface ocean temperature (0-300m) based on EN3


OSV-hindcasts ALI-hindcasts

Overestimated spread ESS > 1, bS > 0 Underestimated spread ESS < 1, bS < 0 Perfect case ESS = 1, bS=0

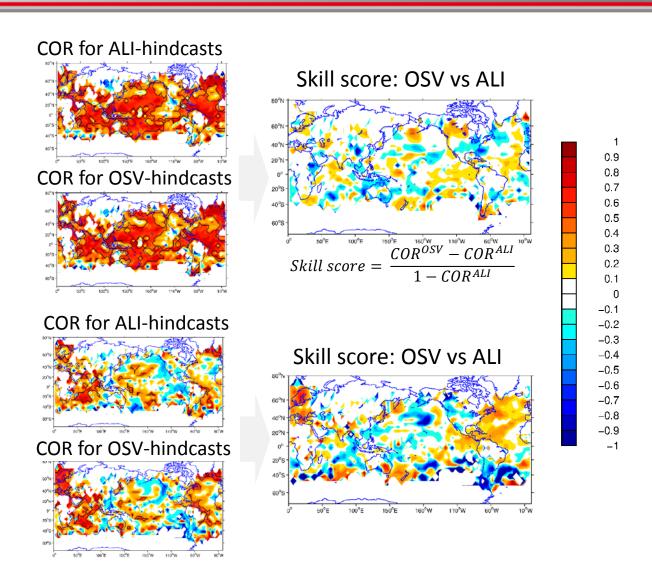

Ensemble spread score for SST (leadtime: yr1 and yr5)

Verification dataset: HadISST

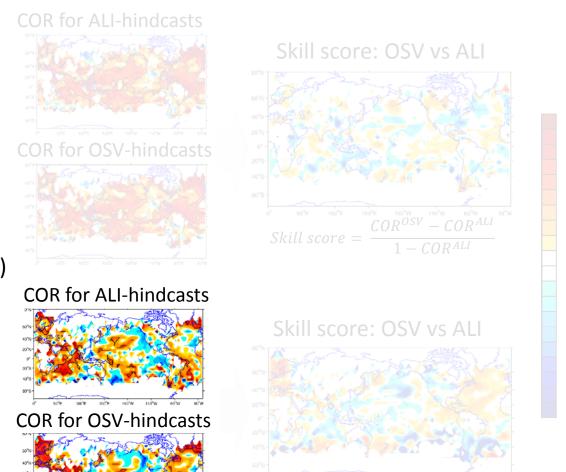


HadISST vs Reynolds SST

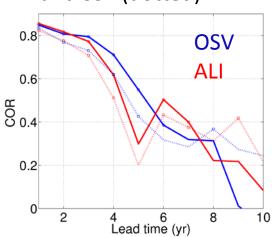
ratio of STD of the annual mean SST over 2003-2010



AMSR-E SST: data retrieved from observations of the satellite microwave radiometer "Advanced Microwave Scanning Radiometer" on-board of EOS


Correlation skill & skill score for SAT

Lead year 1: 55% of area - better skill for OSV


Lead year 5: 57% of area - better skill for OSV

Correlation skill over the North Atlantic

COR skill for the North Atlantic SAT (solid) and SST (dotted)

Summary

Does perturbing the ocean initial state improve the initial spread?

- LIM contributes to the growth of the ensemble spread
- OSV-based perturbations provide larger spread at the beginning of hindcasts, in contrast to atmospheric lagged initialization
- However:
 - most of the perturbation growth comes from the atmosphere
 - spread scores are shown to be sensitive to the choice of verification dataset

How is the predictive skill affected?

- The OSV method did not show much improvement for the predictive skill: about 55-57% of areas show an advantage of OSV over ALI for SAT, SST and OHC
- OSV-hindcasts show better skill over the North Atlantic

General comments to the OSV method

- Cheap method to calculate oceanic perturbations
- The OSV-method could possibly be improved with a different error scaling approach. Also different norms should be tested to get better amplification rates