Decadal predictions (2010-2040) using pattern scaled SSTs and sea-ice concentrations

Bichet A.¹, P. Kushner², L. Mudryk², L. Terray³, and J. Fyfe⁴

¹ LGGE, Grenoble, France
²University of Toronto, Toronto, Canada
³CERFACS, Toulouse, France
⁴Environment Canada, Victoria, Canada

Motivation

AGCMs fit observed trends better than coupled AOGCMs

AGCM: Atmospheric GCM

AOGCM: Coupled Atmosphere-Ocean GCM

Motivation

- AGCMs fit observed trends better than coupled AOGCMs
 - → Partly because AOGCMs struggle to reproduce observed SSTs, not just internal variability (Shin and Sardeshmukh 2011)

AGCM: Atmospheric GCM

AOGCM: Coupled Atmosphere-Ocean GCM

Motivation

- AGCMs fit observed trends better than coupled AOGCMs
 - → Partly because AOGCMs struggle to reproduce observed SSTs, not just internal variability (Shin and Sardeshmukh 2011)

Goal:

- 1. Derive future (global greenhouse gas warming component only (S_{GW})) SST and sea ice patterns from observations
- 2. Use it to force AGCM
- => Gain insights into near-term prediction?

(Hoerling et al. 2011, Bichet et al. 2015 and in prep.)

AGCM: Atmospheric GCM

AOGCM: Coupled Atmosphere-Ocean GCM

Method: Estimate S_{gw} using pattern scaling

Assume separability

$$S_{Obs} = S_{GW} + S_{non-GW (internal + short term anth.)}$$

Method: Estimate S_{GW} using pattern scaling

Assume separability

$$S_{Obs} = S_{GW} + S_{non-GW (internal + short term anth.)}$$

Assume spatio-temporal decomposition

$$S_{GW} = h(x) \cdot g(t)$$

From observations (HadISST SST and sea ice (Hurrell et al. 2008)

From CMIP5 (SSTs global, annual, multi model mean)

Data

• 3 Ensembles of time-varying simulations

	Number of members	Model	SST and sea-ice	Time period	Atm. forcing
GW	10	AGCM CAM5, 2 deg	S _{GW}		
CESM1 (Kay et al. 2015)	30	AOGCM CAM5 + POP, 1deg	/	2010-2040	RCP8.5
CMIP5	26	AOGCMs CMIP5 multi model	/		

Annual SST trends (2010-2040)

GW (pattern scaled)

degrees C per decade

Annual SST trends (2010-2040)

GW (pattern scaled)

-0.3

-0.5

degrees C per decade

0.1

0.3

0.5

-0.1

Annual SST trends (2010-2040)

0.1

0.3

0.5

-0.5

-0.3

-0.1

Annual surface temperature trends (2010-2040)

GW (simulated)

degrees C per decade

Annual surface temperature trends (2010-2040)

GW

CESM1

degrees C per decade

Annual surface temperature trends (2010-2040)

Annual precipitation trends (2010-2040)

GW (simulated)

Annual precipitation trends (2010-2040)

Annual precipitation trends (2010-2040)

April-May-June snow cover trends (2010-2040)

GW (simulated)

cm per decade

April-May-June snow cover trends (2010-2040)

April-May-June snow cover trends (2010-2040)

Summary

- Simple method to estimate GW component of future SST and sea ice
- Use it to force AGCM (2010-2040) → Insights into near-term prediction
- SST pattern: some differences between GW and AOGCMs: no Pacific warming, Indian Ocean N/S, stronger N/S gradient in Atlantic Ocean
 - → Small differences in land temperature trends (colder, regional pattern)
 - → Larger differences in precipitation trends (dryer, opposite trends in US, western tropical Africa, and India)
 - → Small differences in high northern latitude spring snow cover trends
- CESM1 and CMIP5 trends are generally similar, but different from GW

Future work

- Can we explain some GW precipitation patterns with GW SST patterns?
- What is the role of direct radiative forcing?
- Insights into near-term prediction (beyond prescribed SST experiment)?
- Linearity of continental response?
- Limits of the approach:
 - Only make sense in regions strongly influenced by ocean
 - S_{GW} (e.g. not the totality of anth. forcing, depends on S_{obs})
 - Model dependent (although CESM1 looks more like CMIP5 than GW)

April-May-June sea ice trends (2010-2040)

