

National Aeronautics and Space Administration Goddard Institute for Space Studies Goddard Space Flight Center Sciences and Exploration Directorate Earth Sciences Division

CLIVAR DecVar Nov 2015

Forced aspects of decadal predictability

Gavin A. Schmidt NASA Goddard Institute of Space Studies, NY

Sources of decadal predictability

Goddard Institute for Space Studies

Long term trends

Ongoing response to anthropogenic forcing (>10 yrs) Short term response to variable forcings Volcanic eruptions (Pinatubo, El Chichon etc.) (<4 yrs) Solar cycle variability (~ 11yr) Aerosols? Problem: can these be predicted? Ocean mode initialization ENSO related (good skill 6 mon/1yr) Theoretically some skill to ~ 10 yrs(?) via AMOC/PDO Technology maturing but not much demonstrated skill

Recent multi-model ensemble divergence from observations?

Reasons for divergence?

Goddard Institute for Space Studies

Range of 1998-2012 trends

Marvel et al (2015)

Hindcasts require the forcing history

Goddard Institute for Space Studies

Solar cycle predictions?

Goddard Institute for Space Studies

Updates to CMIP5 forcings

Goddard Institute for Space Studies

Schmidt et al (2014)

Goddard Institute for Space Studies

Post 1950 - w/estimated response to updates

Year

Goddard Institute for Space Studies

Evaluation of prior decadal predictions

Goddard Institute for Space Studies

Keenlyside et al. (2008) Prediction Evaluation

Year

Spatial patterns

Goddard Institute for Space Studies

GISTEMP Anomaly (2005-2015)

GISTEMP Anomaly Nov 2004-Oct 2015 wrt 1955-2004

Temperature anomaly (K)

Goddard Institute for Space Studies

Can short-term forcing predictions improve things?

GHGs

Decadal variations around trend not important

Volcanoes

To be discussed in next talk

(But next time, let's not assume background ---> 0)

Solar

- 1) Needs better projections of solar activity
- 2) Needs full modeling effort for response:

Even without 1), we can still assess 2)...

Aerosols

Need better emission datasets (annual/seasonal) Explicit acknowledgement of uncertainty

Solar mechanisms

Goddard Institute for Space Studies

Gray et al after K. Kodera

GISS modelling of solar impacts

Goddard Institute for Space Studies

CMIP5: interactive, OAGCM 20th C transients NINT: non-interactive aerosols/chemistry (~AR4) TCADI: Interactive all-atmosphere chemistry (bulk aerosols) + first indirect effect 5 member ensembles two ocean models (GISS-E2-R & GISS-E2-H) All-forcings + solar-only + ozone response only

TCADI/MATRIX (aerosol moment scheme)

Includes nucleation/ionisation

Forcing:

20th C: Spectral: Lean (2009) TSI: Wang et al. (2005)

Solar-only regressions

NINT Temperature Sensitivity

Ozone solar cycle response

Goddard Institute for Space Studies

Ozone response to solar cycle (SABER)

SABER: Merkel et al. (2011) (One cycle: 2002/3 - 2008/9) Model: single ensemble member (2001/2 - 2007/8)

Chemistry impacts on CH₄ and H₂O

Goddard Institute for Space Studies

O₃ response photochemical and dynamic - strat & trop => increase of CH₄ oxidation

- & photolytic reduction in upper strat H₂O (~0.2 ppmv)
 - => warms upper stratosphere
 - => provides memory for longer term impact...
- Trop. warms, increases trop H₂O and strat input

Surface Air Temperature

Goddard Institute for Space Studies

NINT-R: Lag 1

TCADI-R: Lag 1

Interactivity in GISS-E2R greatly increase tropical and Arctic response

Solar Max-Min: zonal SLP

Goddard Institute for Space Studies

Interactive models have larger shifts in annular modes

Solar Max-Min: zonal SLP

Goddard Institute for Space Studies

Particularly in the Atlantic...

Impact on North Atlantic Ocean?

Goddard Institute for Space Studies

TCADI-R

TCADI-H

Lagged regression to TSI ± 0.5 Sv over a solar cycle Max. +ve change 8-6 yr lag to TSI

Conclusions

Goddard Institute for Space Studies

Forcing changes clearly influence decadal variability and can inform predictions

Ocean initialization experiments have some way to go

- Uncertainty in future forcings is non-negligible and needs to be included in experimental design
- Solar forcing has detectable influences on stratosphere, annular modes which may be predictable

Interactive composition important to include or parameterize

Evolution of North Atlantic coupled system depends on both top-down forcing and ocean responses.

Differing responses in coupled models impacted by variations in control/internal modes ocean variability.