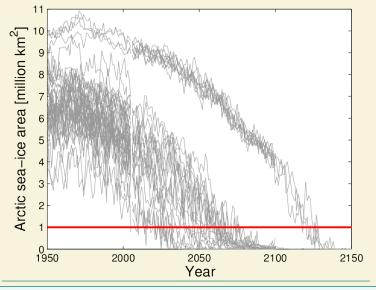
Between trend and chaos The past and future evolution of sea ice

Dirk Notz

Max Planck Institut für Meteorologie

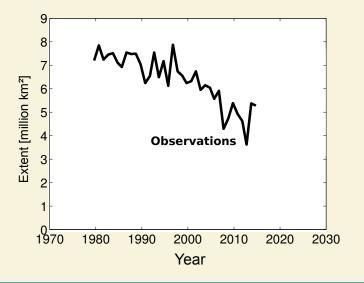
September 1979

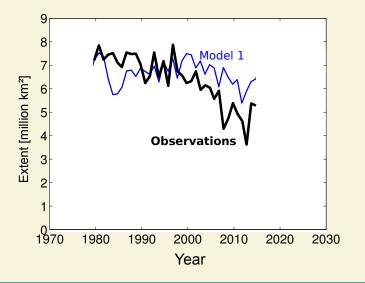


September 2007

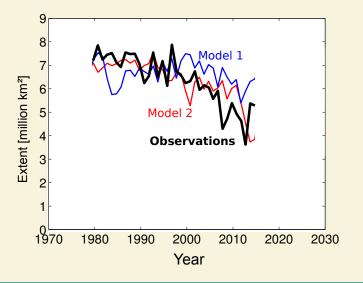
September 20xx??

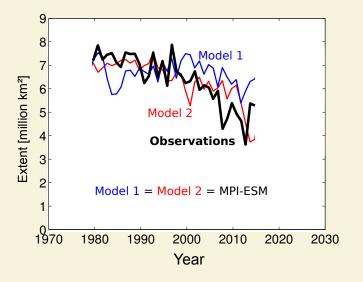
RCP 8.5: Arctic summer sea ice gone by 2005–2130

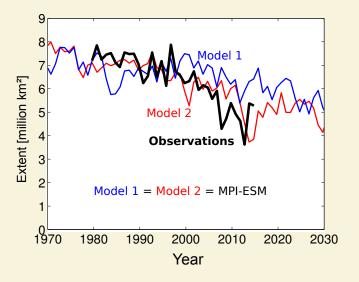


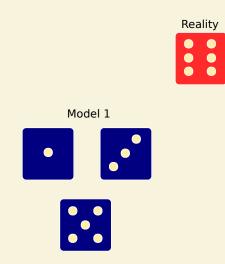

1 Why is it hard to figure out when sea ice is gone?

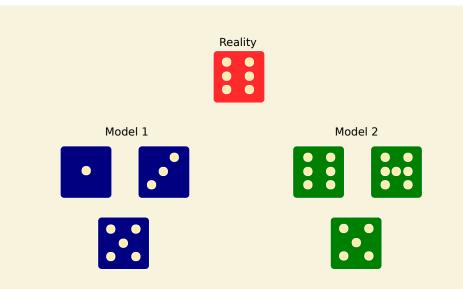
2 Ways forward

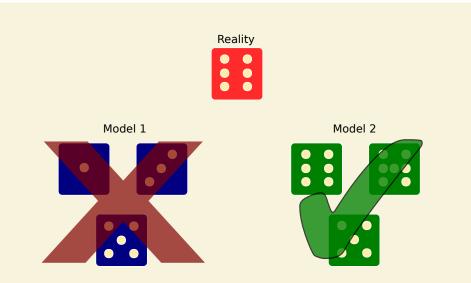








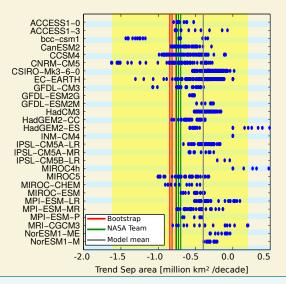




Max-Planck-Institut für Meteorologie

Max-Planck-Institut für Meteorologie

Max-Planck-Institut für Meteorologie


Obvious (?) take home messages

1 The model that best agrees with observations is not necessarily the best model

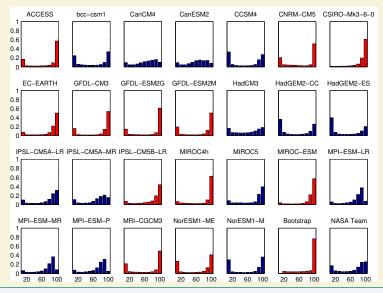
Trends in Arctic sea-ice area from CMIP5

30-year trends, synthetically increased ensemble

Max-Planck-Institut für Meteorologie

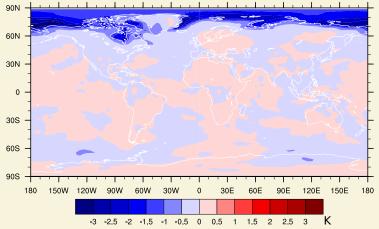
Obvious (?) take home messages

- 1 The model that best agrees with observations is not necessarily the best model
- 2 Metrics with large decadal variability are not helpful in evaluating model simulations on decadal time scales



Obvious (?) take home messages

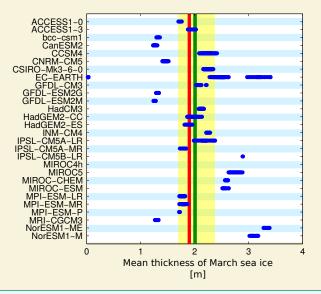
- 1 The model that best agrees with observations is not necessarily the best model
- 2 Metrics with large decadal variability are not helpful in evaluating model simulations on decadal time scales
- 3 30 years are not necessarily a sufficiently long averaging period to remove the impact of decadal variability if the background state changes rapidly


Histograms of Arctic summer sea-ice concentration

Max-Planck-Institut für Meteorologie

Observational uncertainty can have large impact

△SST in September between two simulations initialised in May with either NASA Team or Bootstrap sea-ice area

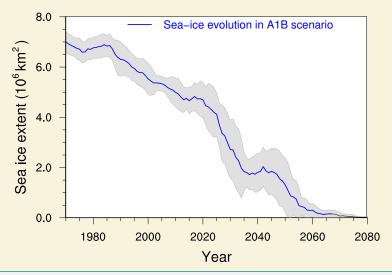


Obvious (?) take home messages

- 1 The model that best agrees with observations is not necessarily the best model
- 2 Metrics with large decadal variability are not helpful in evaluating model simulations on decadal time scales
- 30 years are not necessarily a sufficiently long averaging period to remove the impact of decadal variability if the background state changes rapidly
- 4 Observational uncertainty can be surprisingly large

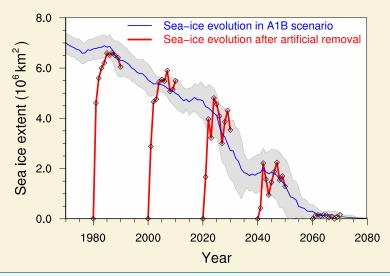
30-year mean thickness of March sea ice

Max-Planck-Institut für Meteorologie


30-year mean PIOMAS volume divided by NASA Team (green) or Bootstrap (red) area

Obvious (?) take home messages

- 1 The model that best agrees with observations is not necessarily the best model
- 2 Metrics with large decadal variability are not helpful in evaluating model simulations on decadal time scales
- 30 years are not necessarily a sufficiently long averaging period to remove the impact of decadal variability if the background state changes rapidly
- 4 Observational uncertainty can be surprisingly large
- 5 Model tuning can mask missing physical realism

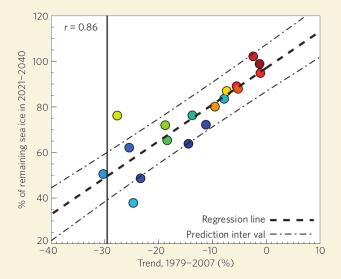


Role of feedbacks

Negative feedbacks reset possible decadal memory

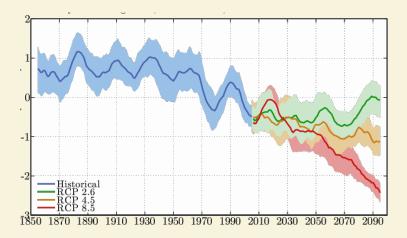
Obvious (?) take home messages

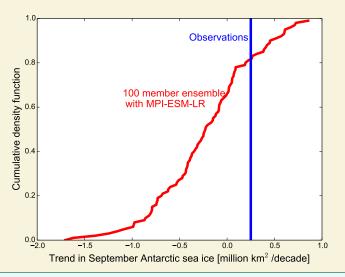
- 1 The model that best agrees with observations is not necessarily the best model
- 2 Metrics with large decadal variability are not helpful in evaluating model simulations on decadal time scales
- **3** 30 years are not necessarily a sufficiently long averaging period to remove the impact of decadal variability if the background state changes rapidly
- 4 Observational uncertainty can be surprisingly large
- 5 Model tuning can mask missing physical realism
- 6 Negative feedbacks make it hard to beat persistence forecasts



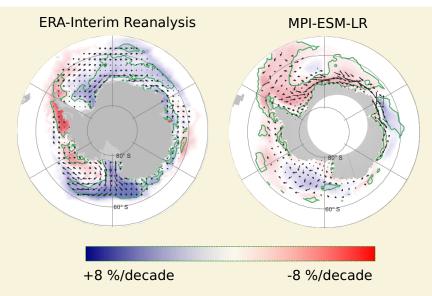
1 Why is it hard to figure out when sea ice is gone?

2 Ways forward

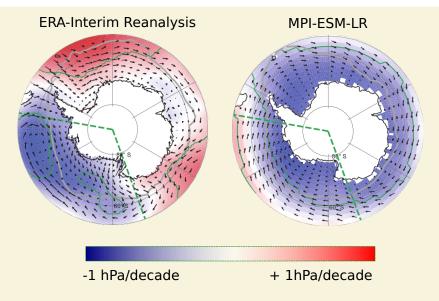

Model convergence is not necessarily desirable


Boe, Nature Geoscience, 2009

Trends in Antarctic sea-ice area from MPI-ESM-LR



Trends in Antarctic sea-ice area from MPI-ESM-LR


Trends of Antarctic winter sea ice

Haumann et al., Geophys. Res. Lett, 2014

Trends of Antarctic winter surface pressure

Haumann et al., Geophys. Res. Lett, 2014

 Model convergence is not necessarily desirable, since it might mask emerging constraints

- Model convergence is not necessarily desirable, since it might mask emerging constraints
- 2 Understand and evaluate processes in models

- Model convergence is not necessarily desirable, since it might mask emerging constraints
- 2 Understand and evaluate processes in models
- 3 Accept that we can't answer certain questions precisely

- Model convergence is not necessarily desirable, since it might mask emerging constraints
- 2 Understand and evaluate processes in models
- 3 Accept that we can't answer certain questions precisely
- Not all our science must directly be policy relevant. Curiosity is nothing to be ashamed of...

1 The observational record is only one realisation of an infinite number of possible trajectories.

- 1 The observational record is only one realisation of an infinite number of possible trajectories.
- Hence, agreement of a simulation with observations does not necessarily mean that that simulation is particularly good.

- 1 The observational record is only one realisation of an infinite number of possible trajectories.
- Hence, agreement of a simulation with observations does not necessarily mean that that simulation is particularly good.
- 3 Model evaluation and improvement is most robustly achieved through understanding, for example of key processes.

- 1 The observational record is only one realisation of an infinite number of possible trajectories.
- Hence, agreement of a simulation with observations does not necessarily mean that that simulation is particularly good.
- 3 Model evaluation and improvement is most robustly achieved through understanding, for example of key processes.
- 4 Communication and interaction between modelers and observationalists is key for success. As fostered, for example, by this workshop - Thanks :-)

- 1 The observational record is only one realisation of an infinite number of possible trajectories.
- Hence, agreement of a simulation with observations does not necessarily mean that that simulation is particularly good.
- 3 Model evaluation and improvement is most robustly achieved through understanding, for example of key processes.
- 4 Communication and interaction between modelers and observationalists is key for success. As fostered, for example, by this workshop - Thanks :-)

