Simulated sensitivity of the tropical climate to extratropical thermal forcing

Stefanie Talento - Marcelo Barreiro

Universidad de la República Uruguay

Extratropics driving tropics:

Well known Example: El Niño Southern Oscillation

Extratropics driving tropics:

Well known Example: El Niño Southern Oscillation

Extratropics driving tropics:

Not so well understood Evidence:

Well known Example: El Niño Southern Oscillation

Extratropics driving tropics:

Not so well understood Evidence: Paleoclimatic studies Close relationship between Greenland temperatures and rainfall in tropical Atlantic and China during the last glacial period.

Chiang and Friedman, 2012.

Well known Example: El Niño Southern Oscillation

Extratropics driving tropics:

Not so well understood Evidence: Paleoclimatic studies 20th century observations

Influence of the high-latitude North Atlantic on Sahel rainfall: Decadal variability

Chiang and Friedman, 2012.

Well known Example: El Niño Southern Oscillation

Extratropics driving tropics:

Not so well understood Evidence: Paleoclimatic studies 20th century observations Numerical Simulations

Extra-tropical driving of the tropics: Numerical Simulations

Increase in NH high-latitude ice \rightarrow

Southward displacement of Intertropical convergence zone (ITCZ)

Precipitation anomalies

Aquaplanet simulations, AGCM + slab ocean

Imposed inter-hemispheric gradient → ITCZ shifts towards the wamer Hemisphere

Kang et al, 2008.

Chiang and Bitz, 2005.

Objective

Investigate the ITCZ response to extratropical thermal forcing, using realistic boundary surface conditions.

Determine the relative roles of the atmosphere, sea surface temperatures (SST) and land surface temperatures (LST).

Methodology

- Simulations:
 - AGCM (ICTP-SPEEDY) coupled to ocean and land slab models (just thermodynamic coupling).
 - Surface Boundary Conditions: Realistic
 - 40 years simulations
 - Different configurations:
 - Changing the region of application of the slab models

Extratropical forcing

Global boreal summer SST pattern associated with Sahel drought (starting in the late 1960s)

Inter-Hemispheric SST gradient

Folland et al., 1986.

Extratropical forcing

Global boreal summer SST pattern associated with Sahel drought (starting in the late 1960s)

100 60 30 50 $\land \land$ -30 -50 -60 -100 -90⊟ 30 60 90 120 150 180 210 240 270 300 330 360

Inter-Hemispheric SST gradient

Folland et al., 1986.

Warming in NH / Cooling in SH Poleward of 40° Global mean: zero

Forcing pattern: Heat Flux out of sea (W/m²).

Results

Experiment with global slab models

Near-surface Air Temperature Annual Mean

Anomalies with respect to Control

Interval: 1°C

Warming in NH Cooling in SH

Precipitation Annual Mean

Anomalies with respect to Control

Interval: 50 mm/month.

ITCZ shifts towards the warmer Hemisphere

Are these ITCZ shifts possible without changes in the tropical SST?

We repeat the experiments keeping the tropical (30°S-30°N) SST fixed

Results

Experiment with fixed tropical SST, Global land slab model

Near-surface Air Temperature Annual Mean

Global slabs Anomalies with respect to Control

Interval: 1°C.

Fixed tropical SST Anomalies with respect to Control

Interval: 1°C.

Ocean: No anomalies in the tropics Land: Response in tropical Africa

Precipitation Annual Mean

Global slabs Anomalies with respect to Control

Interval: 50 mm/month.

Fixed tropical SST Anomalies with respect to Control

Interval: 50 mm/month.

Tropical response Africa: 60% of magnitude Atlantic: 20% of magnitude (with respect to the previous experiment)

Are these ITCZ shifts possible without changes in the tropical SST nor in the LST over Africa?

We repeat the experiments now with

Fixed tropical SST + Fixed LST over Africa

Results

Experiment with fixed tropical SST, fixed LST over Africa

Near-surface Air Temperature Annual Mean

Global slabs Anomalies with respect to Control

Interval: 1°C.

Fixed tropical SST, fixed LST over Africa Anomalies with respect to Control

Interval: 1°C.

Over Africa: weaker anomalies

Precipitation Annual Mean

Global slabs Anomalies with respect to Control

Interval: 50 mm/month.

Fixed tropical SST, fixed LST over Africa Anomalies with respect to Control

Interval: 50 mm/month.

No shift of the ITCZ

LST over Africa is essential to mantain a shift in the ITCZ when the tropical SST is not allowed to change

How is the teleconnection between high latitudes and Africa generated?

Experiment with fixed tropical SST Annual Mean

Energy balance:

Long-wave radiation effect dominates

Long-wave: Clear-sky effect+ clouds effect

Small changes in clouds \rightarrow Hypothesis: Clear-sky effect is the dominant

Experiment: Fixed tropical SST + clear-sky long-wave effect turned off

Near-surface Air Temperature Annual Mean

Fixed tropical SST Anomalies with respect to Control

Interval: 1°C.

Fixed tropical SST, clear-sky longwave effect turned off Anomalies with respect to Control

Intervalo: 1°C.

The warming over Africa is noticeably reduced

Teleconnection: High Latitudes – LST Africa

Physical mechanism:

- The forcing is imposed
- Warming in high latitudes of NH
- Specific humidity increases there
- Changes in atmospheric circulation advect humidity to Africa
- Clear-sky long-wave effect increases
- Warming of tropical Africa

What happens if we use a more complex ocean model in the tropics? Does the ITCZ still shift?

We repeat the original experiment including ocean dynamics in the tropics.

Results

Experiment with Reduced Gravity Ocean (RGO, Cane-Zebiak) model in the tropics

Near-surface Air Temperature Annual Mean

Interval: 1°C.

Extratropics: no changes Tropics: Weaker signal over the Pacific Ocean

Near-surface Air Temperature Annual Mean

Interval: 1°C.

Interval: 1°C.

Weaker signal over the oceans Similar signal over land and Atlantic Ocean

The ITCZ shifts towards the warmer Hemisphere.

- The ITCZ shifts towards the warmer Hemisphere.
- Fixed tropical SST:
 - ITCZ response weakens
 - Over Africa/Atlantic: response of 60%/20% of the previous magnitude

The ITCZ shifts towards the warmer Hemisphere.

Fixed tropical SST:

- ITCZ response weakens
- Over Africa/Atlantic: response of 60%/20% of the previous magnitude
- Fixed tropical SST, fixed LST over Africa:
 - ITCZ response almost vanishes

The ITCZ shifts towards the warmer Hemisphere.

Fixed tropical SST:

- ITCZ response weakens
- Over Africa/Atlantic: response of 60%/20% of the previous magnitude
- Fixed tropical SST, fixed LST over Africa:
 ITCZ response almost vanishes

 \rightarrow The ITCZ response to the extratropical forcing is not possible just trough purely atmospheric processes.

The ITCZ shifts towards the warmer Hemisphere.

Fixed tropical SST:

- ITCZ response weakens
- Over Africa/Atlantic: response of 60%/20% of the previous magnitude
- Fixed tropical SST, fixed LST over Africa:
 ITCZ response almost vanishes

 \rightarrow The ITCZ response to the extratropical forcing is not possible just trough purely atmospheric processes.

- Medium-complexity ocean model:
 - Tropical ocean dynamics weakens the response over the Pacific
 - Africa/Atlantic: similar signal, indicating importance of LST.

Thanks.

Talento and Barreiro, Climate Dynamics, 2015, doi: 10.1007/s00382-015-2890-9

