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Extra-tropical driving of the tropics: Paleoclimatic evidence

Close relationship between Greenland temperatures and rainfall in tropical Atlantic and 
China during the last glacial period.

Greenland temperature

Hydrological changes in 
Cariaco Basin 
(Venezuela)

Hydrological changes in 
China

Chiang and Friedman, 2012.
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Extra-tropical driving of the tropics: 20th century observations

Influence of the high-latitude North Atlantic on Sahel rainfall:
Decadal variability

Chiang and Friedman, 2012.
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Chiang and Bitz, 2005.

Extra-tropical driving of the tropics: Numerical Simulations

Drying

Moistening

Increase in NH high-latitude ice → 

Southward displacement of Intertropical 
convergence zone (ITCZ)

Precipitation anomalies

Kang et al, 2008.

Aquaplanet simulations, 
AGCM + slab ocean

Imposed inter-hemispheric gradient → 
ITCZ shifts towards the wamer 

Hemisphere



  

Investigate the ITCZ response to extratropical thermal 
forcing, using realistic boundary surface conditions.

Determine the relative roles of the atmosphere, sea surface 
temperatures (SST) and land surface temperatures (LST).

Objective



  

Methodology

 Simulations:

 AGCM (ICTP-SPEEDY) coupled to ocean and land slab 
models (just thermodynamic coupling).

 Surface Boundary Conditions: Realistic

 40 years simulations

● Different configurations:

 Changing the region of application of the slab models



  

Extratropical forcing

Global boreal summer SST pattern associated 
with Sahel drought (starting in the late 1960s)

Folland et al., 1986.

Inter-Hemispheric SST 
gradient



  

Extratropical forcing

Global boreal summer SST pattern associated 
with Sahel drought (starting in the late 1960s)

Folland et al., 1986.

Inter-Hemispheric SST 
gradient

Forcing pattern: Heat Flux out of sea (W/m2).

Warming in NH / Cooling in SH

Poleward of 40º

Global mean: zero



  

Results

Experiment with global slab models



  

Near-surface Air Temperature
Annual Mean

Interval: 1ºC

Anomalies with respect to Control

Warming in NH
Cooling in SH



  

Precipitation
Annual Mean

ITCZ shifts towards the warmer Hemisphere

Interval: 50 mm/month.

Anomalies with respect to Control



  

Are these ITCZ shifts possible without changes in 
the tropical SST?

We repeat the experiments keeping the tropical 
(30ºS-30ºN) SST fixed



  

Results

Experiment with fixed tropical SST, 
Global land slab model



  

Global slabs
Anomalies with respect to Control

Fixed tropical SST
Anomalies with respect to Control

Interval: 1°C. Interval: 1°C.

Ocean: No anomalies in the tropics
Land: Response in tropical Africa

Near-surface Air Temperature
Annual Mean



  

Interval: 50 mm/month. Interval: 50 mm/month.

Tropical response
Africa: 60% of magnitude

Atlantic: 20% of magnitude
(with respect to the previous experiment)

Precipitation
Annual Mean

Global slabs
Anomalies with respect to Control

Fixed tropical SST
Anomalies with respect to Control



  

Are these ITCZ shifts possible without changes in 
the tropical SST nor in the LST over Africa?

We repeat the experiments now with

Fixed tropical SST 
+ 

Fixed LST over Africa



  

Results

Experiment with fixed tropical SST, 
fixed LST over Africa



  

Global slabs
Anomalies with respect to Control

Interval: 1°C. Interval: 1°C.

Over Africa: weaker anomalies

Fixed tropical SST, fixed LST over Africa
Anomalies with respect to Control

Near-surface Air Temperature
Annual Mean



  

Interval: 50 mm/month. Interval: 50 mm/month.

No shift of the ITCZ

Precipitation
Annual Mean

Global slabs
Anomalies with respect to Control

Fixed tropical SST, fixed LST over Africa
Anomalies with respect to Control



  

LST over Africa is essential to mantain a shift in the 
ITCZ when the tropical SST is not allowed to change

How is the teleconnection between high latitudes and Africa 
generated?



  

LST over Africa

Energy balance:

Long-wave radiation 
effect dominates

Experiment with fixed tropical SST
Annual Mean



  

Long-wave: Clear-sky effect+ clouds effect

Small changes in clouds →
Hypothesis: Clear-sky effect is the dominant

Experiment: Fixed tropical SST + clear-sky long-wave 
effect turned off



  

Interval: 1°C. Intervalo: 1°C.

The warming over Africa is 
noticeably reduced

Near-surface Air Temperature
Annual Mean

Fixed tropical SST
Anomalies with respect to Control

Fixed tropical SST, clear-sky long-
wave effect turned off

Anomalies with respect to Control



  

Teleconnection: High Latitudes – LST Africa

Physical mechanism:

 The forcing is imposed

 Warming in high latitudes of NH

 Specific humidity increases there

 Changes in atmospheric circulation advect humidity to Africa

 Clear-sky long-wave effect increases

 Warming of tropical Africa



  

What happens if we use a more complex ocean model 
in the tropics?

Does the ITCZ still shift?

We repeat the original experiment including 
ocean dynamics in the tropics.



  

Results

Experiment with Reduced Gravity Ocean (RGO, 
Cane-Zebiak) model in the tropics



  

Global slabs
Anomalies with respect to Control

+RGO in tropical oceans
Anomalies with respect to Control

Interval: 1°C. Interval: 1°C.

Extratropics: no changes
Tropics: Weaker signal over the Pacific Ocean

Near-surface Air Temperature
Annual Mean



  

Global slabs
Anomalies with respect to Control

+RGO in tropical oceans
Anomalies with respect to Control

Interval: 1°C. Interval: 1°C.

Near-surface Air Temperature
Annual Mean

Weaker signal over the oceans
Similar signal over land and Atlantic Ocean
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Conclusions

 The ITCZ shifts towards the warmer Hemisphere.

 Fixed tropical SST: 
 ITCZ response weakens
 Over Africa/Atlantic: response of 60%/20% of the 

previous magnitude

 Fixed tropical SST, fixed LST over Africa:
 ITCZ response almost vanishes

→ The ITCZ response to the extratropical forcing is not 
possible just trough purely atmospheric processes.

 Medium-complexity ocean model:
 Tropical ocean dynamics weakens the response over the 

Pacific
 Africa/Atlantic: similar signal, indicating importance of 

LST.



  

Thanks.

Talento and Barreiro, Climate Dynamics, 2015, doi: 10.1007/s00382-015-2890-9
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